
1 

CSE544: Principles of 
Database Systems 

Lectures 5-6 
Database Architecture 
Storage and Indexes 



Announcements 

•  Project 
–  Choose a topic. Set limited goals! 
–  Sign up (doodle) to meet with me this week 

•  Homework 1 
–  A few people have not turned in yet: will do by 

tomorrow. Then we will post solutions 
•  Homework 2 

–  Will be posted today; you will receive email 

•  Paper review for Wednesday 
–  Join processing 



Where We Are 

•  Part 1: The relational data model 

•  Part 2: Database Systems 

•  Part 3: Database Theory 

•  Part 4: Miscellaneous 
CSE544 - Spring, 2012   3 



CSE544 - Spring, 2012 

Where We Are 
•  The relational data model 

–  Motivation of the relational model 
•  Older data models and the need for data independence 
•  Relational model, E/R model, Normal Forms (we skipped them) 

–  Query Languages 
•  SQL 
•  Relational algebra 
•  Relational calculus 
•  Non-recursive datalog with negation 

•  Database Systems 
–  How can we efficiently implement this model? 

4 



Outline 

•  DBMS Architecture 
– Anatomy of a database system.  

J. Hellerstein and M. Stonebraker. In Red 
Book (4th ed). 

•  Storage and Indexes 
– Book: Ch. 8-11, and 20 

CSE544 - Spring, 2012   5 



CSE544 - Spring, 2012 

DMBS Architecture: Outline 
•  Main components of a modern DBMS 
•  Process models 
•  Storage models 
•  Query processor 

6 



DBMS Architecture 
 
 
 
 
 
 
 

Process Manager 

Admission Control 

Connection Mgr 

 
 
 
 
 
 
 

Query Processor 

Parser 

Query Rewrite 

Optimizer 

Executor 

 
 
 

Storage Manager 

Access Methods 

Lock Manager 

Buffer Manager 

Log Manager 

 
 
 
 
 
 
 

Shared Utilities 

Memory Mgr 

Disk Space Mgr 

Replication Services 

Admin Utilities 

[Anatomy of a Db System.   
J. Hellerstein & M. Stonebraker.  
Red Book. 4ed.] 



CSE544 - Spring, 2012 

DMBS Architecture: Outline 
•  Main components of a modern DBMS 
•  Process models 
•  Storage models 
•  Query processor 

8 



Process Model 
Q: Why not simply queue all user requests, and serve them one at 

the time? 



Process Model 
Q: Why not simply queue all user requests, and serve them one at 

the time? 
A: Because of the high disk I/O latency 

 Corollary: in a main memory db you can service transactions 
sequentially! 

 
Alternatives 
1.  Process per connection 
2.  Server process (thread per connection) 

•  OS threads  or DBMS threads 
3.  Server process with I/O process 



CSE544 - Spring, 2012 

Process Per Connection 
•  Overview 

–  DB server forks one process for each client connection 

•  Advantages 
–  ? 

•  Drawbacks 
–  ? 

11 



CSE544 - Spring, 2012 

Process Per Connection 
•  Overview 

–  DB server forks one process for each client connection 

•  Advantages 
–  Easy to implement (OS time-sharing, OS isolation, debuggers, etc.) 

•  Drawbacks 
–  Need OS-supported “shared memory” (for lock table, buffer pool) 
–  Not scalable: memory overhead and expensive context switches 

12 



Server Process  
•  Overview 

–  Dispatcher thread listens to requests, dispatches worker threads 

•  Advantages 
–  ? 
–  ? 

•  Drawbacks 
–  ? 



Server Process  
•  Overview 

–  Dispatcher thread listens to requests, dispatches worker threads 

•  Advantages 
–  Shared structures can simply reside on the heap  
–  Threads are lighter weight than processes: memory, context switching 

•  Drawbacks 
–  Concurrent programming is hard to get right (race conditions, 

deadlocks) 
–  Subtle API thread differences across different operating systems make 

portability difficult 



Sever Process with I/O 
Process 

Problem: entire process blocks on synchronous I/O calls 

•  Solution 1: Use separate process(es) for I/O tasks 

•  Solution 2: Modern OS provide asynchronous I/O 

CSE544 - Spring, 2012   15 



CSE544 - Spring, 2012 

DBMS Threads vs OS 
Threads 

•  Why do DBMSs implement their own threads? 

16 



CSE544 - Spring, 2012 

DBMS Threads vs OS 
Threads 

•  Why do DBMSs implement their own threads? 
–  Legacy: originally, there were no OS threads 
–  Portability: OS thread packages are not completely portable 
–  Performance: fast task switching 

•  Drawbacks 
–  Replicating a good deal of OS logic 
–  Need to manage thread state, scheduling, and task switching 

•  How to map DBMS threads onto OS threads or processes? 
–  Rule of thumb: one OS-provided dispatchable unit per physical device 
–  See page 9 and 10 of Hellerstein and Stonebraker’s paper 

17 



CSE544 - Spring, 2012 

Historical Perspective (1981) 
In 1981: 
•  No OS threads 
•  No shared memory between processes 

–  Makes one process per user hard to program 
•  Some OSs did not support many to one communication 

–  Thus forcing the one process per user model 
•  No asynchronous I/O 

–  But inter-process communication expensive 
–  Makes the use of I/O processes expensive 

•  Common original design: DBMS threads, frequently yielding 
control to a scheduling routine 

18 



CSE544 - Spring, 2012 

Commercial Systems 
•  Oracle 

–  Unix default: process-per-user mode 
–  Unix: DBMS threads multiplexed across OS processes  
–  Windows: DBMS threads multiplexed across OS threads 

•  DB2 
–  Unix: process-per-user mode 
–  Windows: OS thread-per-user 

•  SQL Server 
–  Windows default: OS thread-per-user 
–  Windows: DBMS threads multiplexed across OS threads 

19 



CSE544 - Spring, 2012 

DMBS Architecture: Outline 
•  Main components of a modern DBMS 
•  Process models 
•  Storage models 
•  Query processor 

20 



CSE544 - Spring, 2012 

Storage Model 
•  Problem: DBMS needs spatial and temporal control over 

storage 
–  Spatial control for performance 
–  Temporal control for correctness and performance   

•  Alternatives 
–  Use “raw” disk device interface directly 
–  Use OS files 

21 



CSE544 - Spring, 2012 

Spatial Control 
Using “Raw” Disk Device Interface 

•  Overview 
–  DBMS issues low-level storage requests directly to disk device 

•  Advantages 
–  ? 
–  ? 

•  Disadvantages 
–  ? 

22 



CSE544 - Spring, 2012 

Spatial Control 
Using “Raw” Disk Device Interface 

•  Overview 
–  DBMS issues low-level storage requests directly to disk device 

•  Advantages 
–  DBMS can ensure that important queries access data sequentially  
–  Can provide highest performance 

•  Disadvantages 
–  Requires devoting entire disks to the DBMS  
–  Reduces portability as low-level disk interfaces are OS specific 
–  Many devices are in fact “virtual disk devices” 

•  SAN = storage area network; NAS = network attached device 

23 



CSE544 - Spring, 2012 

Spatial Control 
Using OS Files 

•  Overview 
–  DBMS creates one or more very large OS files 

•  Advantages 
–  ? 

•  Disadvantages 
–  ? 

24 



CSE544 - Spring, 2012 

Spatial Control 
Using OS Files 

•  Overview 
–  DBMS creates one or more very large OS files 

•  Advantages 
–  Allocating large file on empty disk can yield good physical locality 

•  Disadvantages 
–  Must control the timing of writes for correctness and performance  
–  OS may further delay writes 
–  OS may lead to double buffering, leading to unnecessary copying 
–  DB must fine tune when the log tail is flushed to disk 

25 



CSE544 - Spring, 2012 

Historical Perspective (1981) 
•  Recognizes mismatch problem between OS files and DBMS 

needs 
–  If DBMS uses OS files and OS files grow with time, blocks get 

scattered 
–  OS uses tree structure for files but DBMS needs its own tree 

structure 

•  Other proposals at the time 
–  Extent-based file systems 
–  Record management inside OS 

26 



CSE544 - Spring, 2012 

Commercial Systems 
•  Most commercial systems offer both alternatives 

–  Raw device interface for peak performance 
–  OS files more commonly used 

•  In both cases, we end-up with a DBMS file abstraction 
implemented on top of OS files or raw device interface 

27 



CSE544 - Spring, 2012 

Temporal Control 
Buffer Manager  

•  Correctness problems 
–  DBMS needs to control when data is written to disk in order to 

provide transactional semantics (we will study transactions later) 
–  OS buffering can delay writes, causing problems when crashes 

occur 

•  Performance problems 
–  OS optimizes buffer management for general workloads 
–  DBMS understands its workload and can do better 
–  Areas of possible optimizations 

•  Page replacement policies 
•  Read-ahead algorithms (physical vs logical) 
•  Deciding when to flush tail of write-ahead log to disk 

28 



CSE544 - Spring, 2012 

Historical Perspective (1981) 
•  Problems with OS buffer pool management long recognized 

–  Accessing OS buffer pool involves an expensive system call 
–  Faster to access a DBMS buffer pool in user space 

–  LRU replacement does not match DBMS workload 
–  DBMS can do better 

–  OS can do only sequential prefetching, DBMS knows which page it 
needs next and that page may not be sequential 

–  DBMS needs ability to control when data is written to disk 

29 



CSE544 - Spring, 2012 

Commercial Systems 
•  DBMSs implement their own buffer pool managers 

•  Modern filesystems provide good support for DBMSs 
–  Using large files provides good spatial control 
–  Using interfaces like the mmap suite 

•  Provides good temporal control 
•  Helps avoid double-buffering at DBMS and OS levels 

30 



CSE544 - Spring, 2012 

DMBS Architecture: Outline 
•  Main components of a modern DBMS 
•  Process models 
•  Storage models 
•  Query processor  (will go over the query processor in 

lectures 6-7) 

31 



Outline 

•  DBMS Architecture 
– Anatomy of a database system.  

J. Hellerstein and M. Stonebraker. In Red 
Book (4th ed). 

•  Storage and Indexes 
– Book: Ch. 8-11, and 20 

CSE544 - Spring, 2012   32 



33 

Arranging Pages on Disk 
A disk is organized into blocks  (a.k.a. pages) 
•  blocks on same track, followed by 
•  blocks on same cylinder, followed by 
•  blocks on adjacent cylinder 

A file should (ideally) consists of sequential blocks on 
disk, to minimize seek and rotational delay. 

For a sequential scan, pre-fetching several pages at a 
time is a big win! 

CSE544 - Spring, 2012     



34 

Issues 

•  Managing free blocks 

•  Represent the records inside the blocks 

•  Represent attributes inside the records 

CSE544 - Spring, 2012     



35 

Managing Free Blocks 

•  Linked list of free blocks 

•  Or bit map 

CSE544 - Spring, 2012     



36 

File Organization 

Header 
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Linked list of pages: 
Data   
page 

Data   
page 

 
 
 

Full pages 

 
 
 

Pages with some free space 



37 

File Organization 

Data   
page 

Data   
page 

Data   
page 

Better: directory of pages 

Directory 

Header 



38 

Page Formats 
Issues to consider 
•  1 page = fixed size (e.g. 8KB) 
•  Records: 

– Fixed length 
– Variable length 

•  Record id = RID 
– Typically RID = (PageID, SlotNumber) 

Why do we need RID’s in a relational DBMS ? 



39 

Page Formats 

Fixed-length records: packed representation 

Rec 1 Rec 2 Rec N 

Free space N 

Problems ? 



40 

Page Formats 

Free 
space 

 
 
 
Slot directory 

Variable-length records 



41 

Record Formats:  Fixed Length 

•  Information about field types same for all records 
in a file; stored in system catalogs. 

•  Finding i’th field requires scan of record. 
•  Note the importance of schema information! 

Base address (B) 

L1 L2 L3 L4 

pid name descr maker 

Address = B+L1+L2 

Product(pid, name, descr, maker) 



42 

Record Header 

L1 L2 L3 L4 

To schema 
length 

timestamp (e.g. for MVCC) 

Need the header because: 
•  The schema may change 

for a while new+old may coexist 
•  Records from different relations may coexist 

header 

pid name descr maker 



43 

Variable Length Records 

L1 L2 L3 L4 

Other header information 

length 

Place the fixed fields first:  F1 
Then the variable length fields: F2, F3, F4 
Null values take 2 bytes only 
Sometimes they take 0 bytes (when at the end) 

header pid name descr maker 



44 

BLOB 

•  Binary large objects 
•  Supported by modern database systems 
•  E.g. images, sounds, etc. 
•  Storage: attempt to cluster blocks together 

CLOB = character large object 
•  Supports only restricted operations 



File Organizations 

•  Heap (random order) files: Suitable when typical 
access is a file scan retrieving all records. 

•  Sorted Files Best if records must be retrieved in 
some order, or only a `range’ of records is needed. 

•  Indexes Data structures to organize records via trees 
or hashing.   
–  Like sorted files, they speed up searches for a subset of 

records, based on values in certain (“search key”) fields 
–  Updates are much faster than in sorted files. 

45 



Index 

•  A (possibly separate) file, that allows 
fast access to records in the data file 

•  The index contains (key, value) pairs: 
– The key = an attribute value 
– The value = one of: 

•  pointer to the record  secondary index 
•  or the record itself  primary index 

46 CSE544 - Spring, 2012      Note: “key” (aka “search key”) again means something else 



47 

Index Classification 
•  Clustered/unclustered 

–  Clustered = records close in index are close in data 
–  Unclustered = records close in index may be far in data 

•  Primary/secondary 
–  Meaning 1: 

•  Primary = is over attributes that include the primary key 
•  Secondary = otherwise 

–  Meaning 2: means the same as clustered/unclustered 
•  Organization B+ tree or Hash table 



Clustered/Unclustered 

•  Clustered 
–  Index determines the location of indexed records 
–  Typically, clustered index is one where values are 

data records (but not necessary) 

•  Unclustered 
–  Index cannot reorder data, does not determine 

data location 
–  In these indexes: value = pointer to data record 

CSEP 544 - Fall 2011 48 



49 

Clustered Index 

•  File is sorted on the index attribute 
•  Only one per table 

10 

20 

30 

40 

50 

60 

70 

80 

10 

20 

30 

40 

50 

60 

70 

80 



50 

Unclustered Index 

•  Several per table 

10 

10 

20 

20 

20 

30 

30 

30 

20 

30 

30 

20 

10 

20 

10 

30 



Clustered vs. Unclustered 
Index 

Data entries 
(Index File) 
(Data file) 

Data Records 

Data entries 

Data Records 

CLUSTERED UNCLUSTERED 

B+ Tree B+ Tree 

51 CSE544 - Spring, 2012      



CSEP 544 - Fall 2011 

Hash-Based Index 

18 

18 

20 

22 

19 

21 

21 

19 

10 21 

20 20 

30 18 

40 19 

50 22 

60 18 

70 21 

80 19 

H1 

h1(sid) = 00 

h1(sid) = 11 

sid 

H2 age 

h2(age) = 00 

h2(age) = 01 

Another example of  
clustered/primary index 

Another example 
of unclustered/secondary index 

Good for point queries but not range queries 

52 



53 

Alternatives for Data Entry k* 
in Index 

Three alternatives for k*: 
 
•  Data record with key value k 

•  <k, rid of data record with key = k> 

•  <k, list of rids of data records with key = k> 



54 

Alternatives 2 and 3 

10 

10 

20 

20 

20 

30 

30 

30 

10 

20 

30 

… 



55 

B+ Trees 

•  Search trees 
 
•  Idea in B Trees 

–  Make 1 node = 1 block 
–  Keep tree balanced in height 

•  Idea in B+ Trees 
–  Make leaves into a linked list: facilitates range 

queries 
CSE544 - Spring, 2012      



56 

•  Parameter d = the degree 
•  Each node has >= d and <= 2d keys (except 

root) 

•  Each leaf has >=d and <= 2d keys: 

B+ Trees Basics 

30 120 240 

Keys k < 30 
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k 

40 50 60 

40 50 60 

Next leaf 



B+ Tree Example 

80 

20 60 100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 

10 15 18 20 30 40 50 60 65 80 85 90 

d = 2 Find the key 40 



B+ Tree Example 

80 

20 60 100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 

10 15 18 20 30 40 50 60 65 80 85 90 

d = 2 Find the key 40 

40 ≤ 80 



B+ Tree Example 

80 

20 60 100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 

10 15 18 20 30 40 50 60 65 80 85 90 

d = 2 Find the key 40 

40 ≤ 80 

20 < 40 ≤ 60 



B+ Tree Example 

80 

20 60 100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 

10 15 18 20 30 40 50 60 65 80 85 90 

d = 2 Find the key 40 

40 ≤ 80 

20 < 40 ≤ 60 

30 < 40 ≤ 40 



61 

Using a B+ Tree 

•  Exact key values: 
– Start at the root 
– Proceed down, to the leaf 

•  Range queries: 
– As above 
– Then sequential traversal 

SELECT name 
FROM People 
WHERE age = 25 

SELECT name 
FROM People 
WHERE 20 <= age 
  and  age <= 30 

CSE544 - Spring, 2012      

Index on People(age) 



Which queries can use this 
index ? 

CSE544 - Spring, 2012      62 

SELECT * 
FROM People 
WHERE name = ‘Smith’  
   and zipcode = 12345 

Index on People(name, zipcode) 

SELECT * 
FROM People 
WHERE name = ‘Smith’ 

SELECT * 
FROM People 
WHERE zipcode = 12345 



63 

B+ Tree Design 

•  How large d ? 
•  Example: 

– Key size = 4 bytes 
– Pointer size = 8 bytes 
– Block size = 4096 byes 

•  2d x 4  + (2d+1) x 8  <=  4096 
•  d = 170 

CSE544 - Spring, 2012      



B+ Trees in Practice 

•  Typical order: 100.  Typical fill-factor: 67% 
–  average fanout = 133 

•  Typical capacities 
–  Height 4: 1334 = 312,900,700 records 
–  Height 3: 1333 =     2,352,637 records 

•  Can often hold top levels in buffer pool 
–  Level 1 =           1 page  =     8 Kbytes 
–  Level 2 =      133 pages =     1 Mbyte 
–  Level 3 = 17,689 pages = 133 Mbytes        

64 CSE544 - Spring, 2012      



65 

Insertion in a B+ Tree 
Insert (K, P) 
•  Find leaf where K belongs, insert 
•  If no overflow (2d keys or less), halt 
•  If overflow (2d+1 keys), split node, insert in parent: 

•  If leaf, keep K3 too in right node 
•  When root splits, new root has 1 key only 

K1 K2 K3 K4 K5 

P0 P1 P2 P3 P4 p5 

K1 K2 

P0 P1 P2 

K4 K5 

P3 P4 p5 

parent    
      K3     

parent 



66 

Insertion in a B+ Tree 

80 

20 60 

10 15 18 20 30 40 50 60 65 80 85 90 

Insert K=19 

100 120 140 

10 15 18 20 30 40 50 60 65 80 85 90 



67 

Insertion in a B+ Tree 

80 

20 60 

10 15 18 20 30 40 50 60 65 80 85 90 19 

After insertion 

100 120 140 

10 15 18 19 20 30 40 50 60 65 80 85 90 



68 

Insertion in a B+ Tree 

80 

20 60 

10 15 18 20 30 40 50 60 65 80 85 90 19 

Now insert 25 

100 120 140 

10 15 18 19 20 30 40 50 60 65 80 85 90 



69 

Insertion in a B+ Tree 

80 

20 60 

20 25 30 40 50 

10 15 18 20 25 30 40 60 65 80 85 90 19 

After insertion 

50 

100 120 140 

10 15 18 19 60 65 80 85 90 



70 

Insertion in a B+ Tree 

80 

20 60 

10 15 18 20 25 30 40 60 65 80 85 90 19 

But now have to split ! 

50 

100 120 140 

20 25 30 40 50 10 15 18 19 60 65 80 85 90 



71 

Insertion in a B+ Tree 

80 

20 30 60 

10 15 18 19 20 25 

10 15 18 20 25 30 40 60 65 80 85 90 19 

After the split 

50 

30 40 50 

100 120 140 

60 65 80 85 90 



72 

Deletion from a B+ Tree 

80 

20 30 60 

10 15 18 20 25 30 40 60 65 80 85 90 19 

Delete 30 

50 

100 120 140 

10 15 18 19 20 25 30 40 50 60 65 80 85 90 



73 

Deletion from a B+ Tree 

80 

20 30 60 

10 15 18 20 25 40 60 65 80 85 90 19 

After deleting 30 

50 

40 50 

May change to 
40, or not 

100 120 140 

10 15 18 19 20 25 60 65 80 85 90 



74 

Deletion from a B+ Tree 

80 

20 30 60 

10 15 18 20 25 40 60 65 80 85 90 19 

Now delete 25 

50 

100 120 140 

40 50 10 15 18 19 20 25 60 65 80 85 90 



75 

Deletion from a B+ Tree 

80 

20 30 60 

20 

10 15 18 20 40 60 65 80 85 90 19 

After deleting 25 
Need to rebalance 
Rotate 

50 

100 120 140 

40 50 10 15 18 19 60 65 80 85 90 



76 

Deletion from a B+ Tree 

80 

19 30 60 

10 15 18 20 40 60 65 80 85 90 19 

Now delete 40 

50 

100 120 140 

19 20 40 50 10 15 18 60 65 80 85 90 



77 

Deletion from a B+ Tree 

80 

19 30 60 

10 15 18 20 60 65 80 85 90 19 

After deleting 40 
Rotation not possible 
Need to merge nodes 

50 

100 120 140 

19 20 50 10 15 18 60 65 80 85 90 



78 

Deletion from a B+ Tree 

80 

19 60 

19 20 50 

10 15 18 20 60 65 80 85 90 19 

Final tree 

50 

100 120 140 

10 15 18 60 65 80 85 90 



Practical Aspects of B+ Trees 

Key compression: 
•  Each node keeps only the from parent 

keys 
•  Jonathan, John, Johnsen, Johnson … à 

– Parent: Jo 
– Child: nathan, hn, hnsen, hnson, … 

 

CSE544 - Spring, 2012     79 



Practical Aspects of B+ Trees 

Bulk insertion 
•  When a new index is created there are 

two options: 
– Start from empty tree, insert each key one-

by-one 
– Do bulk insertion – what does that mean ? 

CSE544 - Spring, 2012     80 



Practical Aspects of B+ Trees 

Concurrency control 
•  The root of the tree is a “hot spot” 

– Leads to lock contention during insert/
delete 

•  Solution: do proactive split during insert, 
or proactive merge during delete 
–  Insert/delete now require only one 

traversal, from the root to a leaf 
– Use the “tree locking” protocol 81 



82 

Summary on B+ Trees 

•  Default index structure on most DBMS 
•  Very effective at answering ‘point’ 

queries: 
    productName = ‘gizmo’ 

•  Effective for range queries: 
    50 < price AND price < 100 

•  Less effective for multirange: 
    50 < price < 100  AND 2 < quant < 20 

CSE544 - Spring, 2012      



Indexes in Postgres 

83 

CREATE  INDEX V1_N ON V(N) 

CREATE  TABLE    V(M int,   N varchar(20),    P int); 

CREATE  INDEX V2 ON V(P, M) 

CREATE  INDEX VVV ON V(M, N) 

CLUSTER V USING V2 Makes V2 clustered 



Database Tuning Overview 

•  The database tuning problem 
•  Index selection (discuss in detail) 
•  Horizontal/vertical partitioning (see 

lecture 3) 
•  Denormalization (discuss briefly) 

84 CSEP 544 - Fall 2011 



CSEP 544 - Fall 2011 

Levels of Abstraction in a 
DBMS 

Disk 

Physical Schema 

Conceptual Schema 

External Schema External Schema External Schema 

a.k.a logical schema 
describes stored data 
in terms of data model 

includes storage details 
file organization 
indexes 

views 
access control 

85 



The Database Tuning 
Problem 

•  We are given a workload description 
–  List of queries and their frequencies 
–  List of updates and their frequencies 
–  Performance goals for each type of query 

•  Perform physical database design 
–  Choice of indexes 
–  Tuning the conceptual schema 

•  Denormalization, vertical and horizontal partition 

–  Query and transaction tuning 

86 CSEP 544 - Fall 2011 



The Index Selection Problem 

•  Given a database schema (tables, attributes) 
•  Given a “query workload”: 

–  Workload = a set of (query, frequency) pairs 
–  The queries may be both SELECT and updates 
–  Frequency = either a count, or a percentage 

•  Select a set of indexes that optimizes the 
workload 

87 

In general this is a very hard problem 
CSEP 544 - Fall 2011 



Index Selection: Which Search 
Key 

•  Make some attribute K a search key if 
the WHERE clause contains: 
– An exact match on K 
– A range predicate on K 
– A join on K 

88 CSEP 544 - Fall 2011 



Index Selection Problem 1 

V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 
Your workload is this 

Which indexes should we create? 



Index Selection Problem 1 

90 

V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 
Your workload is this 

CSE544 - Spring, 2012      A:  V(N) and V(P) (hash tables or B-trees) 



Index Selection Problem 2 

91 

V(M, N, P); 

SELECT *  
FROM V 
WHERE N>? and N<? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 
Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

CSE544 - Spring, 2012      Which indexes should we create? 



Index Selection Problem 2 

92 

V(M, N, P); 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 
Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

SELECT *  
FROM V 
WHERE N>? and N<? 

CSE544 - Spring, 2012      A:  definitely V(N) (must B-tree); unsure about  V(P) 



Index Selection Problem 3 

93 

V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE N=? and P>? 

100000 queries: 1000000 queries: 
Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

CSE544 - Spring, 2012      Which indexes should we create? 



Index Selection Problem 3 

94 

V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE N=? and P>? 

100000 queries: 1000000 queries: 
Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

A:  V(N, P) 



Index Selection Problem 4 

95 

V(M, N, P); 

SELECT *  
FROM V 
WHERE P>? and P<? 

1000 queries: 100000 queries: 
Your workload is this 

SELECT *  
FROM V 
WHERE N>? and N<? 

CSE544 - Spring, 2012      Which indexes should we create? 



Index Selection Problem 4 

96 

V(M, N, P); 

SELECT *  
FROM V 
WHERE P>? and P<? 

1000 queries: 100000 queries: 
Your workload is this 

SELECT *  
FROM V 
WHERE N>? and N<? 

CSE544 - Spring, 2012      A: V(N) secondary,   V(P) primary index 



The Index Selection Problem 

•  SQL Server 
–  Automatically, thanks to AutoAdmin project 
–  Much acclaimed successful research project from 

mid 90’s, similar ideas adopted by the other major 
vendors 

•  PostgreSQL 
–  You will do it manually, part of homework 5 
–  But tuning wizards also exist 

97 CSE544 - Spring, 2012      



Index Selection: Multi-attribute 
Keys 

Consider creating a multi-attribute key on 
K1, K2, … if 

•  WHERE clause has matches on K1, K2, 
… 
– But also consider separate indexes 

•  SELECT clause contains only K1, K2, .. 
– A covering index is one that can be used 

exclusively to answer a query, e.g. index R
(K1,K2) covers the query: 98 CSE544 - Spring, 2012     SELECT K2 FROM R WHERE K1=55 



To Cluster or Not 

•  Range queries benefit mostly from 
clustering 

•  Covering indexes do not need to be 
clustered: they work equally well 
unclustered 

99 CSEP 544 - Fall 2011 



100 

Percentage tuples retrieved 

Cost 

0 100 

Sequential scan 

SELECT * 
FROM R 
WHERE K>? and K<? 

CSE544 - Spring, 2012     



Hash Table v.s. B+ tree 

•  Rule 1: always use a B+ tree  J 

•  Rule 2: use a Hash table on K when: 
– There is a very important selection query on 

equality (WHERE K=?), and no range queries 
– You know that the optimizer uses a nested 

loop join where K is the join attribute of the 
inner relation (you will understand that in a few 
lectures) 



Balance Queries v.s. Updates 

•  Indexes speed up queries 
– SELECT FROM WHERE 

•  But they usually slow down updates: 
–  INSERT, DELECTE, UPDATE 
– However some updates benefit from 

indexes 
UPDATE R 
   SET A = 7 
   WHERE K=55 



Tools for Index Selection 

•  SQL Server 2000 Index Tuning Wizard 
•  DB2 Index Advisor 

•  How they work: 
– They walk through a large number of 

configurations, compute their costs, and 
choose the configuration with minimum 
cost 

103 CSE544 - Spring, 2012     


