
Principles of Database Systems
CSE 544

Lecture #3

Views and Constraints

CSE544 - Spring, 2012 1

Announcements
•  Regular lecture:

– Monday, April 2nd
–  2nd Paper review due (What Goes UP, skip 5-7)

•  Cancelled:
–  Lecture on Wednesday, April 4

•  Project:
– Form teams by April 1st (Sunday)
– Send email to Paris and me: team members (cc

them), team name, a tentative project (or several)

CSE544 - Spring, 2012 2

Reading Material

•  Views:
– Query answering using views, by Halevy
– Book: 3.6

•  Constraints:
– Book 3.2, 3.3, 5.8

CSE544 - Spring, 2012 3

Views

Outline:
•  View basics, including examples
•  Paper and more

– Applications
– Query rewriting v.s. query answering
– Maximal contained rewriting

CSE544 - Spring, 2012 4

View Basics

CSE544 - Spring, 2012 5

CREATE VIEW CustomerPrice AS
 SELECT DISTINCT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

CustomerPrice(customer, price) = a “virtual table”

Views are named relations, defined by a query

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

View Basics

CSE544 - Spring, 2012 6

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

We can later use the view:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

“Find all stores
visited by customers
who bought some
product over $100”

View Basics

CSE544 - Spring, 2012 7

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

CREATE VIEW CustomerPrice AS
 SELECT DISTINCT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

View:

Query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

“Find all stores
visited by customers
who bought some
product over $100”

View Basics

CSE544 - Spring, 2012 8

SELECT DISTINCT u.customer, v.store
FROM (SELECT DISTINCT x.customer, y.price

 FROM Purchase x, Product y
 WHERE x.product = y.pname) u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

Modified query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

Next, unnest the query…

“Find all stores
visited by customers
who bought some
product over $100”

View Basics

CSE544 - Spring, 2012 9

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Modified and unnested query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

“Find all stores
visited by customers
who bought some
product over $100”

Note: Purchase occurs twice (why?)

Practice at Home…

CSE544 - Spring, 2012 10

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

??

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

Answer

CSE544 - Spring, 2012 11

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Types of Views

•  Virtual views:

– Pros/cons ?

•  Materialized views

– Pros/cons ?

CSE544 - Spring, 2012 12

Types of Views

•  Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

•  Materialized views
– Used in databases and data warehouses
– Pre-computed offline – fast at runtime
– May have stale data or expensive synchronization

CSE544 - Spring, 2012 13

Basic Usage of a View

•  Virtual view:
– View inlining, or query modification
– Here the view acts like a macro for a query

•  Materialized view:
– Use the view as derived data
– Save the cost of computing it

CSE544 - Spring, 2012 14

15

Example: Finding Witnesses

CSE544 - Spring, 2012

For each country, find its most expensive product(s)

Product (pname, price, category, manufacturer)
Company (cname, country)

Example: Finding Witnesses

SELECT x.country, max(y.price)
FROM Company x, Product y
WHERE x.cname = y.manufacturer
GROUP BY x.country

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price

For each country, find its most expensive product(s)

Product (pname, price, category, manufacturer)
Company (cname, country)

Example: Finding Witnesses
To find witnesses, create a view with the maximum price

CREATE VIEW CountryMaxPrice AS
 SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country

Product (pname, price, category, manufacturer)
Company (cname, country)

Is this virtual
or materialized?

Example: Finding Witnesses

SELECT u.country, v.pname, v.price
FROM Company u, Product v, CountryMaxPrice AS p
WHERE u.country = p.country and v.price = p.mprice

To find witnesses, create a view with the maximum price

CREATE VIEW CountryMaxPrice AS
 SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country

Product (pname, price, category, manufacturer)
Company (cname, country)

Is this virtual
or materialized?

Next, use it to find the product that matches that price

Example: Finding Witnesses

SELECT u.country, v.pname, v.price
FROM Company u, Product v, CountryMaxPrice p
WHERE u.country = p.country and v.price = p.mprice

If the view is reused, and performance is an issue, then:

CREATE TABLE CountryMaxPrice AS
 SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country

You may also want to create indexes on CountryMaxPrice

Product (pname, price, category, manufacturer)
Company (cname, country)

Is this virtual
or materialized?

20

Example: Finding Witnesses

SELECT u.country, v.pname, v.price
FROM Company u, Product v,
 (SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country) AS p
WHERE u.country = p.country and v.price = p.mprice

For one-time use, don’t create a view, but instead:

CSE544 - Spring, 2012

WITH CountryMaxPrice AS
 (SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country)
SELECT u.country, v.pname, v.price
FROM Company u, Product v, CountryMaxPrice p
WHERE u.country = p.country and v.price = p.mprice

Or:

Product (pname, price, category, manufacturer)
Company (cname, country)

21

Example: Finding Witnesses

Finally, here’s a totally different solution:

SELECT x.country, y.pname, y.price
FROM Company x, Product y
WHERE x.cname = y.manufacturer
 and y.price >=
 ALL (SELECT z.price
 FROM Product z
 WHERE x.cname = z.manufacturer)

CSE544 - Spring, 2012

Product (pname, price, category, manufacturer)
Company (cname, country)

22

Closer Look at Query Modification

CSE544 - Spring, 2012

1

2

4

3

R encodes a graph

1 2
2 1
2 3
1 4
3 4

R=

q(x) :- R(x,y)

q(x) :- R(x,y) ∧ R(y,z) ∧ R(z,u)

What do these queries return ?

23

Closer Look at Query Modification

CSE544 - Spring, 2012

1

2

4

3

R encodes a graph

1 2
2 1
2 3
1 4
3 4

R=

q(x) :- R(x,y)

q(x) :- R(x,y) ∧ R(y,z) ∧ R(z,u)

What do these queries return ?

Nodes that have at least one child: {1,2,3}

Nodes that have a great-grand-child: {1,2}

Closer Look at Query Modification

R encodes a graph

V1(x,y) :- R(x,z),R(z,y)

Consider the views:

Q(x,y) :- V1(x,z),V1(z,y)

Expand this query:

Closer Look at Query Modification

R encodes a graph

V1(x,y) :- R(x,z),R(z,y)

Consider the views:

Q(x,y) :- V1(x,z),V1(z,y)

Expand this query:

Answer:
Q(x,y) :-
 R(x,z1),R(z1,z2),R(z2,z3),R(z3,y)

Closer Look at Query Modification

R encodes a graph

V1(x,y) :- R(x,z),R(z,y)
V2(x,y) :- V1(x,z),V1(z,y)
V3(x,y) :- V2(x,z),V2(z,y)

Now consider the following views:

Q(x,y) :- V3(x,z),V3(z,y)

Expand this query:

Closer Look at Query Modification

R encodes a graph

V1(x,y) :- R(x,z),R(z,y)
V2(x,y) :- V1(x,z),V1(z,y)
V3(x,y) :- V2(x,z),V2(z,y)

Now consider the following views:

Q(x,y) :- V3(x,z),V3(z,y)

Expand this query:

Answer:
Q(x,y) :-
 R(x,z1),R(z1,z2),R(z2,z3),R(z3,z4),
 R(z4,z5),R(z5,z6),R(z6,z7),R(z7,z8),
 R(z8,z9),R(z9,z10),R(z10,z11),R(z11,z12),
 R(z12,z13),R(z13,z14),R(z14,z15),R(z15,y)

Lesson: expanding multiple levels of views à exponential size increase

Applications of Views

What applications does the paper describe?

28

Applications of Views
What applications does the paper describe?

•  Query optimization

– E.g. Indexes

•  Physical and logical data independence
– E.g. de-normalization, data partitioning

•  Semantic caching

•  Data integration

29

Indexes

30

REALLY important to speed up query processing time.

SELECT *
FROM Person
WHERE name = 'Smith'

CREATE INDEX myindex05 ON Person(name)

Person (pid, name, age, city)

May take too long to scan the entire Person table

Now, when we rerun the query it will be much faster

B+ Tree Index

CSE544 - Spring, 2012 31

Adam Betty Charles …. Smith ….

We will discuss them in detail in a later lecture.

Creating Indexes

32

Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55
 AND city = 'Seattle'

SELECT *
FROM Person
WHERE city = 'Seattle'

CREATE INDEX doubleindex ON Person (age, city)

SELECT *
FROM Person
WHERE age = 55

For which of the queries below is this index helpful?

Person(pid, name, age, city)

Creating Indexes

33

Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55
 AND city = 'Seattle'

SELECT *
FROM Person
WHERE city = 'Seattle'

CREATE INDEX doubleindex ON Person (age, city)

SELECT *
FROM Person
WHERE age = 55

For which of the queries below is this index helpful?

Person(pid, name, age, city)

YES YES NO

CREATE INDEX W
 ON Person(age)
CREATE INDEX P
 ON Person(city)

Indexes are Materialized Views

Person(pid, name, age, city)

If W and P are “views”, what is their schema?
Which query defines them?

CREATE INDEX W
 ON Person(age)
CREATE INDEX P
 ON Person(city)

Indexes are Materialized Views

CREATE VIEW W AS
 SELECT age, pid
 FROM Person y
CREATE VIEW P AS
 SELECT city, pid
 FROM Person y

Indexes as LAV:

Person(pid, name, age, city)

Each index is a relation:
 (index value, record id)
Some DBMS make very advanced use…

CREATE INDEX W
 ON Person(age)
CREATE INDEX P
 ON Person(city)

Indexes are Materialized Views

SELECT age, city
FROM Person
WHERE age > 22
 and city LIKE ‘S%’

SELECT x.age, y.city
FROM W x, P y
WHERE x.age > 22
 and y.city LIKE ‘S%
 and x.pid = y.pid

CREATE VIEW W AS
 SELECT age, pid
 FROM Person y
CREATE VIEW P AS
 SELECT city, pid
 FROM Person y

Indexes as LAV:

“Covering indexes”:
When the query uses
only the indexes

Person(pid, name, age, city)

Denormalization

•  Scenario: we have a relational schema that is
in BCNF (recall: this means only
the key implies any other attribute(s))

•  But we often need to join these two relations,
so we compute their join

CSE544 - Spring, 2012 37

Purchase(pid, customer, product, store)
Product(pname, price)

Denormalization

•  This table is not in BCNF (why not?)
•  But that’s OK, the application still sees the

original two relations. How?

CSE544 - Spring, 2012 38

CREATE Table CustomerPurchase AS
 SELECT x.pid, x.customer, x.store, y.pname, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(pid, customer, product, store) – a view…
Product(pname, price) – a view…

Data Integration Terminology

Local DB1 Local DBk …

Integrated Data

Local DB1 Local DBk …

Integrated Data

Global as View

V V1 Vk

Local as View

Which one needs query expansion,
which one needs query answering using views ?

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can you rewrite this query in terms of the views?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1), black(z1),
 edge(z1,z2),edge(z2,z3)
 black(z3), edge(z3,y)

x y

x y

x y

NOTE:
 means “any color”
 means “black”

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can you rewrite this query in terms of the views?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1), black(z1),
 edge(z1,z2),edge(z2,z3)
 black(z3), edge(z3,y)

x y

x y

x y

q(x,y) :- v2(x,z1),v1(z1,z2),v2(z2,z3),v1(z3,y)
Answer:

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

What about this query?

[Duschka&Genesereth’97]

q(x,y) :- black(x),edge(x,z1), black(z1),
 edge(z1,z2),black(z2),edge(z2,z3)
 black(z3), edge(z3,y),black(y)

x y

x y

x y

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can we rewrite this query?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1),edge(z1,z2),
 edge(z2,z3), edge(z3,y)

x y

x y

x y

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can we rewrite this query?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1),edge(z1,z2),
 edge(z2,z3), edge(z3,y)

x y

x y

x y

q(x,y) :- v1(x,z1),v2(z1,z2),v1(z2,z3),v2(z3,y)
q(x,y) :- v2(x,z1),v1(z1,z2),v2(z2,z3),v1(z3,y)
q(x,y) :- v2(x,z1),v1(z1,z2),v1(z2,z3),v2(z3,y)
. . . .

No! Maximally contained rewriting is: x y

x y

x y

.

Query Rewriting Using Views

45

Purchase(buyer, seller, product, store)
Person(pname, city)

CREATE VIEW SeattleView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y
 WHERE x.city = ‘Seattle’
 AND x.pname = y.buyer

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’
 AND x.pname = y.buyer
 AND y.product=‘gizmo’

Goal: rewrite this query
in terms of the view

Have this
materialized
view:

Query Rewriting Using Views

CSE544 - Spring, 2012 46

SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Purchase(buyer, seller, product, store)
Person(pname, city)

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’
 AND x.pname = y.buyer
 AND y.product=‘gizmo’

Query Rewriting Using Views

47

CREATE VIEW DifferentView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y, Product z
 WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer AND
 y.product = z.name AND
 z.price < 100

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’ SELECT buyer, seller

FROM DifferentView
WHERE product= ‘gizmo’

“Maximally
contained
rewriting”

Summary
•  View inlining, or query

modification

•  Query answering/rewriting
using views

•  Updating views

•  Incremental view update

DB View

Answer

V

Q

DB View

Answer

V

Q

DB View
V

Update ??

DB View
V

Update ??

Constraints

CSE544 - Spring, 2012 49

Constraints

•  A constraint = a property that we’d like our
database to hold

•  Enforce it by taking some actions:
– Forbid an update
– Or perform compensating updates

•  Two approaches:
– Declarative integrity constraints
– Triggers

CSE544 - Spring, 2012 50

Integrity Constraints in SQL

•  Keys, foreign keys
•  Attribute-level constraints
•  Tuple-level constraints
•  Global constraints: assertions

The more complex the constraint, the harder
it is to check and to enforce

CSE544 - Spring, 2012 51

simple

complex

Keys

OR:

CSE544 - Spring, 2012 52

CREATE TABLE Product (
 name CHAR(30) PRIMARY KEY,
 price INT)

CREATE TABLE Product (
 name CHAR(30),
 price INT,

PRIMARY KEY (name))

Keys with Multiple Attributes

53

CREATE TABLE Product (
 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (name, category))

name category price
Gizmo Gadget 10

Camera Photo 20
Gizmo Photo 30
Gizmo Gadget 40

Other Keys

CREATE TABLE Product (
 productID CHAR(10),

 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (productID),
 UNIQUE (name, category))

CSE544 - Spring, 2012 54

There is at most one PRIMARY KEY;
there can be many UNIQUE

Foreign Key Constraints

CREATE TABLE Purchase (
 buyer CHAR(30),
 seller CHAR(30),
 prodName CHAR(30) REFERENCES Product,
 store VARCHAR(30))

CSE544 - Spring, 2012 55

Foreign key

Purchase(buyer, seller, product, store)
Product(name, price)

CSE544 - Spring, 2012 56

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

Foreign Key Constraints

CSE544 - Spring, 2012 57

Purchase(buyer, seller, product, category, store)
Product(name, category, price)

CREATE TABLE Purchase(
 buyer VARCHAR(50),
 seller VARCHAR(50),
 prodName CHAR(20),
 category VAVRCHAR(20),
 store VARCHAR(30),
 FOREIGN KEY (prodName, category)
 REFERENCES Product);

What happens during updates ?

Types of updates:
•  In Purchase: insert/update
•  In Product: delete/update

58

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

What happens during updates ?

•  SQL has three policies for maintaining
referential integrity:

•  Reject violating modifications (default)
•  Cascade: after a delete/update do a

delete/update
•  Set-null set foreign-key field to NULL

CSE544 - Spring, 2012 59

Constraints on Attributes and
Tuples

CSE544 - Spring, 2012 60

CREATE TABLE Purchase (. . .
 store VARCHAR(30) NOT NULL, . . .)

CREATE TABLE Product (. . .
 price INT CHECK (price >0 and price < 999))

Attribute level constraints:

Tuple level constraints:

. . . CHECK (price * quantity < 10000) . . .

CSE544 - Spring, 2012 61

CREATE TABLE Purchase (
 prodName CHAR(30)
 CHECK (prodName IN

 SELECT Product.name
 FROM Product),
 date DATETIME NOT NULL)

What
is the difference from

Foreign-Key ?

General Assertions

CSE544 - Spring, 2012 62

CREATE ASSERTION myAssert CHECK
 NOT EXISTS(

 SELECT Product.name
 FROM Product, Purchase
 WHERE Product.name = Purchase.prodName
 GROUP BY Product.name
 HAVING count(*) > 200)

Comments on Constraints

•  Can give them names, and alter later

•  We need to understand exactly when they
are checked

•  We need to understand exactly what
actions are taken if they fail

CSE544 - Spring, 2012 63

Semantic Optimization using
Constraints

64

SELECT Purchase.store
FROM Product, Purchase
WHERE Product.name=Purchase.product

SELECT Purchase.store
FROM Purchase

When can we rewrite the query ?

Purchase(buyer, seller, product, store)
Product(name, price)

Semantic Optimization using
Constraints

65

SELECT Purchase.store
FROM Product, Purchase
WHERE Product.name=Purchase.product

Purchase(buyer, seller, product, store)
Product(name, price)

SELECT Purchase.store
FROM Purchase

Yes, provided that:

Purchase.product is
foreign key AND not null

