
Principles of Database Systems
CSE 544

Lecture #2
SQL,

Relational Algebra,
Relational Calculus

1 CSE544 - Spring, 2012

Announcements
•  Makeup:

–  Friday, March 30, 11-12:30, Room TBD
–  1st Paper review due (Answering Queries Using Views, Sec.1-3)

•  Regular lecture:
–  Monday, April 2nd, before class
–  2nd Paper review due (What Goes UP, skip sections 5-7)

•  Cancelled:
–  Lecture on Wednesday, April 4

•  Subscribe to the mailing list!
–  If you haven’t received yesterday’s email, then you aren’t

subscribed yet
•  Still waiting to register for the class?

–  Send me an email and I will register you

CSE544 - Spring, 2012 2

Outline

•  Finish SQL: NULLs, Grouping/aggregation

•  Relational Calculus
•  Relational Algebra

CSE544 - Spring, 2012 3

They are equivalent and why we care

NULLS in SQL
•  Whenever we don’t have a value, we can put a NULL

•  Can mean many things:
–  Value does not exists
–  Value exists but is unknown
–  Value not applicable
–  Etc.

•  The schema specifies for each attribute if can be null
(nullable attribute) or not

CSE544 - Spring, 2012 4

Null Values

Rules for computing with NULLs
•  If x is NULL then 4*(3-x)/7 is still NULL
•  If x is 2 then x>5 is FALSE
•  If x is NULL then x>5 is UNKNOWN
•  If x is 10 then x>5 is TRUE

CSE544 - Spring, 2012 5

Person(name, age, height, weight)

INSERT INTO Person VALUES(‘Joe’,20,NULL,200)

height unknown

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

Null Values

•  C1 AND C2 = min(C1, C2)
•  C1 OR C2 = max(C1, C2)
•  NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

CSE544 - Spring, 2012 6

SELECT *
FROM Person
WHERE (age < 25) AND
 (height > 6 OR weight > 190)

E.g.
age=20
height=NULL
weight=200

Null Values

Unexpected behavior:

Some Persons not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

CSE544 - Spring, 2012 7

Null Values

Can test for NULL explicitly:
x IS NULL
x IS NOT NULL

Now all Person in included

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

CSE544 - Spring, 2012 8

Detour into DB Research
Imielinski&Libski, Incomplete Databases, 1986
•  Database = is in one of several states, or possible worlds

–  Number of possible worlds is exponential in size of db
•  Query semantics = return the certain answers

Very influential paper:
•  Incomplete DBs used in probabilistic databases, what-if

scenarios, data cleaning, data exchange

In SQL, NULLs are the simplest form of incomplete database:
•  Database = a NULL takes independently any possible value
•  Query semantics = not exactly certain answers (why?)

CSE544 - Spring, 2012 9

Outerjoins

SELECT x.name, y.store
FROM Product x JOIN Purchase y ON
 x.name = y.prodName

SELECT x.name, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Same as:

But Products that never sold will be lost !

An “inner join”:

CSE544 - Spring, 2012 10

Product(name, category)
Purchase(prodName, store)

Outerjoins

 SELECT x.name, y.store
 FROM Product x LEFT OUTER JOIN Purchase y ON
 x.name = y.prodName

If we want the never-sold products, need a “left outer join”:

CSE544 - Spring, 2012 11

Product(name, category)
Purchase(prodName, store)

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

Product(name, category)
Purchase(prodName, store)

Outer Joins
•  Left outer join:

–  Include the left tuple even if there’s no match

•  Right outer join:
–  Include the right tuple even if there’s no match

•  Full outer join:
–  Include both left and right tuples even if there’s no

match

CSE544 - Spring, 2012 13

Aggregations

Five basic aggregate operations in SQL
•  count
•  sum
•  avg
•  max
•  min

CSE544 - Spring, 2012 14

COUNT applies to duplicates, unless otherwise stated:

SELECT count(product)
FROM Purchase
WHERE price>3.99

Same as count(*)

We probably want:
SELECT count(DISTINCT product)
FROM Purchase
WHERE price>3.99

Counting Duplicates

CSE544 - Spring, 2012 15

Except if some product is NULL

Purchase(product, price, quantity)

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

What is the answer?

Find total quantities for all sales over $1, by product.

CSE544 - Spring, 2012 16

product price quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: group attrs and aggregates.

CSE544 - Spring, 2012 17

1&2. FROM-WHERE-GROUPBY

CSE544 - Spring, 2012 18

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

3. SELECT

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

19

Ordering Results

SELECT product, sum(quantity) as TotalSales
FROM purchase
GROUP BY product
ORDER BY TotalSales DESC
LIMIT 20 -- postgres onl

SELECT product, sum(quantity) as TotalSales
FROM purchase
GROUP BY product
ORDER BY sum(quantity) DESC
LIMIT 20 -- postgres only

Equivalent, but not all systems accept both syntax forms

HAVING Clause

SELECT product, sum(quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING count(*) > 30

Same query as earlier, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

WHERE vs HAVING

•  WHERE condition: applied to individual rows
– Determine which rows contributed to the aggregate
– All attributes are allowed
– No aggregates functions allowed

•  HAVING condition: applied to the entire group
– Entire group is returned, or not al all
– Only group attributes allowed
– Aggregate functions allowed

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

 and on attributes a1,…,ak

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE544 - Spring, 2012 23

Semantics of SQL With Group-By

Evaluation steps:
1.  Evaluate FROM-WHERE using Nested Loop Semantics
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE544 - Spring, 2012 24

Empty Groups

•  In the result of a group by query, there is
one row per group in the result

•  A group can never be empty!
•  In particular, count(*) is never 0

CSE544 - Spring, 2012

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

What if there
are no

purchases for a
manufacturer

25

Purchase(product, price, quantity)
Product(pname, manufacturer)

Empty Group Problem

CSE544 - Spring, 2012

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

What if there
are no

purchases for a
manufacturer

26

Purchase(product, price, quantity)
Product(pname, manufacturer)

Empty Group Solution: Outer Join

CSE544 - Spring, 2012

SELECT x.manufacturer, count(y.product)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

27

Purchase(product, price, quantity)
Product(pname, manufacturer)

Relational Query Languages

1.  Relational Algebra

2.  Recursion-free datalog with negation
–  This is the core of SQL, cleaned up

3.  Relational Calculus

These three formalisms express the same class of queries

Running Example

CSE544 - Spring, 2012 29

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Find all actors who acted both in 1910 and in 1940:

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Two Perspectives

•  Named Perspective:
 Actor(id, fname, lname)
 Casts(pid,mid)
 Movie(id,name,year)

•  Unnamed Perspective:
 Actor = arity 3
 Casts = arity 2
 Movie = arity 3

CSE544 - Spring, 2012 30

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

1. Relational Algebra
Used internally by RDBMs to execute

queries

The Basic Five operators:
•  Union: ∪
•  Difference: -
•  Selection: σ
•  Projection: Π
•  Join: ⨝

Renaming: ρ (for named perspective)

1. Relational Algebra (Details)
•  Selection: returns tuples that satisfy condition

–  Named perspective: σyear = ‘1910’(Movie)
–  Unnamed perspective: σ3 = ‘1910’ (Movie)

•  Projection: returns only some attributes
–  Named perspective: Π fname,lname(Actor)
–  Unnamed perspective: Π 2,3(Actor)

•  Join: joins two tables on a condition
–  Named perspective: Casts ⨝ mid=id Movie
–  Unnamed perspectivie: Casts ⨝ 2=1 Movie

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

1. Relational Algebra
Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

⨝ mid=id

σyear1=‘1910’ and year2=‘1940’

⨝ id=pid

⨝ mid=id

Casts Movie Casts Movie Actor

⨝ id=pid

Πfname,lname

ρ year2=year ρ year1=year

Note how we
renamed year
to year1, year2

Named perspective

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

1. Relational Algebra

⨝ 2=1

σ8 =‘1910’ and 13=‘1940’

⨝ 1=1

⨝ 2=1

Casts Movie Casts Movie Actor

⨝ 1=1

Π2,3

Unnamed perspective

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog

•  Very friendly notation for queries
•  Designed for recursive queries in the 80s
•  Today: a couple of commercial products,

e.g. LogicBlox

•  In class
–  recursion-free datalog with negation (next)
–  recursive datalog, (in the “Theory” part)

CSE544 - Spring, 2012 35

2. Datalog

How to try out datalog quickly:
•  Download DLV from

http://www.dbai.tuwien.ac.at/proj/dlv/
•  Run DLV on this file:

parent(william, john).
parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).

male(john).
male(james).
female(sue).
male(bill).
female(carol).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Find Actors who acted in Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog: Terminology

CSE544 - Spring, 2012 41

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

body head

atom atom atom

f, l = head variables
x,y,z = existential variables

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog program

CSE544 - Spring, 2012 42

 B0(x) :- Actor(x,'Kevin', 'Bacon')
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
 B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
 Q4(x) :- B1(x)
 Q4(x) :- B2(x)

Find all actors with Bacon number ≤ 2

Note: Q4 is the union of B1 and B2

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog with negation

CSE544 - Spring, 2012 43

 B0(x) :- Actor(x,'Kevin', 'Bacon')
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
 Q6(x) :- Actor(x,f,l), not B1(x), not B0(x)

Find all actors with Bacon number ≥ 2

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Safe Datalog Rules

CSE544 - Spring, 2012 44

U1(x,y) :- Movie(x,z,1994), y>1910

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears
in some positive relational atom

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog v.s. SQL

•  Non-recursive datalog with negation is a
cleaned-up, core of SQL

•  You should be able to translate easily
between non-recursive datalog with
negation and SQL

CSE544 - Spring, 2012 45

3. Relational Calculus

•  Predicate calculus, or first order logic
•  The most expressive formalism for queries:

easy to write complex queries

•  TRC = Tuple RC = named perspective
•  DRC = Domain RC = unnamed perspective

CSE544 - Spring, 2012 46

3. Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Predicate P:

Q(x1, …, xk) = P

Query Q:

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940))

Example: find the first/last names of actors who acted in 1940

Q(f,l) = ∃z. (Actor(z,f,l) ∧∀x.(Casts(z,x) ⇒ ∃y.Movie(x,y,1940)))

What does this query return ?

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

3. Relational Calculus: Example

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. Relational Calculus: Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. Relational Calculus: Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

51

3. Relational Calculus: Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Dan Suciu -- p544 Fall 2011

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. Domain Independent Relational
Calculus

•  As in datalog, one can write “unsafe” RC
queries; they are also called domain
dependent

•  Checking whether a query is safe is
undecidable. L

•  Lesson: make sure your RC queries are
domain independent

CSE544 - Spring, 2012 52

3. Relational Calculus

How to write a complex SQL query:
•  Write it in RC
•  Translate RC to datalog (see next)
•  Translate datalog to SQL

Take shortcuts when you know what you’re
doing

CSE544 - Spring, 2012 53

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

Step 2: Make all subqueries domain independent

Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. From RC to Non-recursive
Datalog w/ negation

Step 3: Create a datalog rule for each subexpression;
 (shortcut: only for “important” subexpressions)

Q(x) = ∃y. Likes(x, y) ∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

H(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. From RC to Non-recursive
Datalog w/ negation

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Likes L2, Serves S
 WHERE L2.drinker=L.drinker and L2.beer=L.beer
 and L2.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L2.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. From RC to Non-recursive
Datalog w/ negation

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Serves S
 WHERE L.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y) Unsafe rule

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Summary of Translation

•  RC à recursion-free datalog w/ negation
– Subtle: as we saw; more details in the paper

•  Recursion-free datalog w/ negation à RA
•  RA à RC

Theorem: RA, non-recursive datalog w/ negation,
and RC, express exactly the same sets of queries:

RELATIONAL QUERIES

