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ABSTRACT
The increasing accessability and speed of Internet has enabled emer-
gence of an online market where data providers publish their valu-
able information and from which customers subscribe and query
data of all types. This virtual space in which the supply-demand
forces exist and the exchange of information is incentivized by mon-
etary gain is referred to as the data market (e.g. Windows Azure
Marketplace DataMarket). The commonly observed pricing mod-
els for information goods and data markets are per unit pricing
(metered usage pricing) and site licensing (unlimited usage pric-
ing). There hasn’t been considerable work on determining a pricing
model and parameters for profit maximization for pricing datasets
which has great relevance and applicability in the datamarket. The
paper determines the optimal prices of datasets for profit maximiza-
tion from an Economics framework both for unit and step pricing
scheme. This paper validates a pricing model against properties
such as arbitrage & competition. The paper presents necessary and
sufficient conditions for a valid pricing scheme and provides an
O(n2) algorithm to validate multi-step pricing models of existing
datasets in the datamarket. The paper also formulates the problem
of computing the closest valid pricing model(under L1 Norm) as
linear program for invalid pricing models.

1. INTRODUCTION
Technology has dramatically improved the ways in which

data can be stored, analyzed and disseminated. The Internet
facilitates almost instantaneous access to data and informa-
tion and plays a key role in enabling data share across busi-
nesses, research organizations, governments and individu-
als alike. Researchers in genomics, for example, rely heav-
ily on publicly available resources such as GenBank [13], a
repository of annotated DNA sequences. Every company has
reams of data that are immensely valuable: sales data, mar-
keting analytics, financial records, customer insights and in-
tellectual property it has generated in the course of business.
Increasing amounts of data as well as extensive data analy-
sis has catalyzed the emergence of data market as a single,
consistent solution to the e-commerce challenges.

The Windows Azure Marketplace DataMarket [4] is a cloud
service offering which functions as an information market-
place and brokerage business. It provides all the facilities a
data provider needs to monetize the intrinsic value of care-
fully created datasets, which are subscribed by customers.
The dataset are priced as monthly subscriptions [6] which
are of two types. In the unlimited subscription type, the
consumer is charged monthly for access to dataset and the
transactions on the dataset are unlimited. For the limited
subscription type, each month there is a pre-defined num-
ber of transactions that can be executed on the dataset. Each
page of results returned from a query uses a single transac-
tion and will count toward the transaction limit. A page of
results may return up to 100 records. In most cases, there is a
percentage markup to cover the cost of bandwidth, compute,
and billing expenses. While some of the datasets are avail-
able for free, most of the proprietary datasets follow a multi-
step pricing model that vary on the limit of transactions al-
lowed per month. The data providers set pricing and terms
and the data market allows access to the data. However,
there is little guidance on how each data provider should
price his dataset, especially in the presence of competition.

Data-management-in-the-cloud services such as Windows
Azure Storage [7], SQL Azure [5], Google App Engine Data-
store [3], Amazon SimpleDB [2] and Amazon RDS [1] charge
for compute time in addition to storage and bandwidth size.
However, such content-time pricing as discussed in [11] is
not desirable for data markets. Firstly it gives an undue ad-
vantage to experienced users over people who are new to the
database, as they would spend less time on the server. Fur-
ther this would necessitate free systems where people can
experiment on the query before migrating to the paid site.
It also gives a negative incentive for sellers to improve per-
formance as any optimization would reduce compute time ,
and thus the seller would require to reset the price frequently.
Thus going forward we concentrate on pricing schemes based
on the data returned.

Information goods vendor offer different pricing schemes
among which the most common and widely studied are the
site licensing or subscription based and per unit or pay-as-
you-go pricing. The factors that decide the choice of pric-
ing scheme include consumers’ usage patterns; and the dif-
ferentiation from competing firms to alleviate price compe-
tition and increase profit. As discussed in [10], the infor-
mation goods market can be divided into two segments of
consumers, one with a declining marginal Willingness to Pay
(WTP) (d-type) and the second with a constant marginal WTP
(c-type). For example, a firm may have declining marginal



WTP for WolframAlpha Facts dataset when it is used by in-
dividual employees for productivity improvements. On the
other hand, firms that plan to use Consumer Expenditure
Data as part of their enterprise system for market analytics
and product development will have a constant and fixed re-
quirement for the dataset.

We establish properties of a good pricing scheme that en-
force that the price should vary sub-linearly with increas-
ing transactions; the pricing model is arbitrage free; and the
profit returns are consistent with the cumulative WTP of each
consumer segment. However, we find these properties do
not always hold in practice. For example two pricing schemes
in which we found fallacies is shown in the following table
(refer to Appendix A.2 for more examples from Azure Data-
Market).

Datasets from Windows Azure Marketplace Datamarket
Company Dataset Transaction

limit
Price level

ESRI 2010 Key US
Demographics

150 $49.95
100 $39.95
50 $24.95
25 $19.95
10 $9.95

Weather
Central LLC

Weather
Imagery

1000000 $2400
100000 $600
10000 $120
2500 $0

Consider a consumer in need of 60 transactions of the De-
mographics dataset from ESRI. He would rather buy 2 ac-
counts for 50 and 10 transactions for a cost of 34.90$ rather
than buying one account for 100 transactions costing 39.95$.
The pricing of the Weather Imagery dataset has a glaring
loop-hole. If a customer wishes to buy 10000 transactions, he
could buy 4 account of 2500 transactions for free rather than
the account for 10000 transactions costing 120$. To avoid ar-
bitrage, in our pricing structures, we derive conditions that
guarantee the validity of generalized functions. We come up
with alternate optimal multi-step pricing scheme as solutions
of linear programs which compute the closest pricing scheme
in case of fallacies.

We have extended the site licensing approach in [10], where
they consider only one level for step pricing model. In Azure
DataMarket, in addition to such single level subscription pric-
ing, there are available multi-step subscription pricing fixed
on different sets of transaction limit to access the dataset. We
setup a general framework to express the profit for a general-
ized multi-step licensing pricing against the cumulative WTP
of consumer segment and derive conditions for maximizing
profit. We show that for c-type buyer segment,restricting the
number of steps to one, the maximum profit is in line with
the results shown in [10]. We also study other forms of the
WTP function and derive conditions for profit maximization.

The rest of the paper is organized as follows. In Section
2, we begin with literature survey of work in database sys-
tems and economics which focus on monetization of infor-
mation. In Section 3, we describe the desirable properties
of a pricing scheme. In Section 4 we view pricing from an
Economics framework and come up the optimal model and
parameters for profit maximization. In Section 5, we present
necessary and sufficient conditions to validate pricing mod-
els and provide an O(n2) algorithm for validation. We also
formulate the problem of computing the closest valid pricing

model(under L1 Norm) as linear program for sample invalid
pricing models found in Azure DataMarket. We conclude
with our findings and future work in Section 6.

2. RELATED WORK
To the best of our knowledge, there hasn’t been any work

on the pricing of datasets in the data markets. We therefore
set to survey related work in databases where monetization
is considered as well as study existing pricing models in Eco-
nomics.

The economic bidding system of distributed database Mari-
posa [14] operates under a limited-resources assumption, and
charges clients based on amount of resources it expects to ex-
pend on their query, rather than an externally defined value
of the data itself. This assumption leads to database being
able to service only a fraction of its clients, and it hence uses
an auction system to determine who is given the privilege.
We are more interested in heterogeneous data utilities, which
can be more easily studied by assuming unbounded compu-
tational resources.

The paper on Relational Data Markets [9] proposed a dis-
tributed database system in which providers can set arbitrary
costs for their data, and clients can collect data from multiple
overlapping providers of their choice, in order to fill their
needs at minimal cost. This intends to retrieve datasets at an
optimal pricing from the buyer’s perspective and assumes
data providers set an arbitrary cost for their data which is
in contrast to our problem of determining an approach for
seller to price their data.

The motivation behind pricing theory is to maximize prof-
its on top of recovering cost of production. How to Price
Shared Optimizations in the Cloud [8] offers game theoretic
approach to recover costs of optimizations in the face of col-
laborations, where multiple users access the same dataset
and one optimization can benefit multiple users. This ap-
proach solves an orthogonal problem to ours, since we aim
to price data for sellers taking into consideration the various
buyer segments and their willingness to pay. In our frame-
work, we assume negligible marginal cost of production and
the constant fixed costs which don’t disturb the equilibrium
solution as long as total profits is greater than fixed costs.

In [12], the introduction of a product is characterized as
a multistage game. At the beginning of the first stage, two
identical profit-maximizing firms set their product design de-
noted by a product index and the time to market is assumed
to be linear function of product index. The firm with lower
product index enters the market first and sets a monopoly
price. The second firm enters at a later time with a duopoly
price forcing the first firm to re-adjust its price to stay com-
petitive. The paper establishes Nash equilibrium between
product indices of the two firms and the monopoly and duop-
oly prices. Given the equilibrium, the optimal product in-
dex and time of entry into market are computed to maximize
profits for both the firms. This is a possible extension to our
work as it explores competition and effect on prices of firms’
products. The concept of product index can be applied in
case of competing firms with overlapping datasets such that
dataset with higher design would have higher product index
over the other.

3. PROPERTIES OF A PRICING MODEL
Here, we describe a set of desirable properties that a "good"



pricing scheme for datasets should satisfy. Note that these
properties are stated from the perspective of a seller trying to
maximize his profits. The price is modeled as a positive in-
creasing function P(n) of the number of transactions(n ≥ 0)
to be bought.

1. Arbitrage Free: A pricing model should ensure that the
price of the union should be less than the prices of the
individual units i.e.,
P(n1 + n2) ≤ P(n1) + P(n2)

2. Diminishing Returns: The price should vary sub-linearly
with the number of units sold, i.e. we are looking for a
function P(n) such that P(n)

n
is a decreasing function.

3. Consumer Buying Power: The pricing model should
capture and closely follow the buying power of the cus-
tomers, i.e. should try and be as close to the customers’
maximum WTP(defined in 4.1.1).

4. Competition: The pricing should take into account the
number of competitors selling overlapping records in
their datasets and the price of their datasets.

In the next section we study the effect of Property 3 and
Property 4 on the pricing function in order to maximize profit.
In Section 5 we discuss the problem of ensuring that the func-
tion is arbitrage free, which we refer to as a "valid" function.

4. ECONOMIC FRAMEWORK
This section models an economic framework for pricing in

datamarkets. We study two commonly used pricing models
in datamarkets- unit pricing model and step pricing model,
both in absence and presence of competition. Section 4.2 de-
tails pricing models which, in light of details about consumer
segment, is extended in Section 4.3. Pricing in datamarket is
modeled as two stage game where the seller determines the
pricing model in the first stage and optimal prices in the sec-
ond stage. In absence of competition, model and prices are
given by comparing Proposition 1 with Proposition 2. Section
4.2 addresses pricing when there is competition.

4.1 Definitions:

4.1.1 Willingness To Pay:
Willingness To Pay(WTP) is defined as the maximum amount

a person is willing to pay for a unit quantity of a product. It is
expressed as a function on the number of units, thus WTP(n)
refers to the willingness to pay for the next unit of the prod-
uct assuming he has bought n units already. In our case unit
quantity is a transaction. WTP has following properties:

(a) WTP(n) ≥ 0; whereWTP(n) isWTP for nth transaction.

(b) WTP1 is continuous, smooth and non-increasing on n
(number of transactions). i.e.(WTP) ′ ≤ 0

4.1.2 Cumulative Willingness To Pay:
Cumulative willingness to pay(CWTP(n)) is defined as max-

imum willingness to pay for a total of n number of trans-
action. CWTP(n) =

∑n
0 WTP(n). The following properties

follow for CWTP:

(a) CWTP(n) ≥ 0;
1*n is usually large thereforeWTP is loosely refereed as being
continuous over n.

(b) CWTP1 is continuous, smooth and non-decreasing on
n. i.e. (CWTP) ′ ≥ 0

(c) CWTP1 is a concave function on n. i.e. (CWTP) ′′ ≤ 0

4.1.3 Seller
Sellers are assumed to be rational players selling the dataset.

Sellers allow customers to query over their dataset and charge
them on the number of transactions. A fixed number of records
(Example 100 for Azure DataMarket) is counted as one trans-
action. Each seller of a dataset is fully informed about his/her
dataset, the composition of its consumer segment and the
distribution of demand across the consumer segment.

4.1.4 Customer
Customers are players interested in buying a dataset from

the market with positive willingness to pay. Customers are
completely informed and rational. They only buy when their
CWTP(n) ≥ P(n)(price for n transactions). If there exist
choices in the market, they choose to buy from the seller with
the cheapest price.

4.1.5 DataMarket
A DataMarket brings sellers and customers of a data to-

gether. The market is assumed to be a fair market with healthy
competition. Each competitor sets prices independently and
they don’t collaborate to influence the dynamics of the mar-
ket.

4.2 Assumptions:
We make the following assumptions in developing our pric-

ing model

(a) The pricing model depends only on the number of trans-
actions to access the dataset.

(b) Each transaction is priced independent of the data records
returned as the result. The the pricing model is data in-
variant.

(c) There is a cost associated with the production of the
dataset only in the beginning when it is published on
the datamarket. There is no cost for the seller for every
time it is sold.

(d) The WTP function is the same for all customers. This
can be justified in some sense by averaging over all the
customers.

4.3 Pricing:
A huge variety of pricing models exist in the present mar-

ket. Each seller selects the individual model and its features
based on the product and customer segment. Say, a seller S
is interested in selling a dataset DS to a customer segment C
and chooses a pricing model P. n is a random variable de-
noting the number of transactions desired by the members
of the customer segment C. P(n) gives the price for n trans-
actions over datasetDS. CWTP(n) gives the CWTP of C for n
transactions. Across C, n is distributed over [0 N] with dis-
tribution D(n).
We define a buying function B as a function of the number of
transactions. It denotes the price a customer will pay if he in-
tends to buy n units. Note this may be different from P(n) as
he may end up buying less than n items if CWTP(n) < P(n).



Figure 1: The Figure shows the shaded area under the BD
curve(where the consumer CWTP is greater than the price)
as the profit

Profit of S is given by the area under the BD(i.e. the product
of the B(n) ∗D(n)) curve, as shown in Figure 1.

Π =

∫N
0

B(n)D(n)dn (1)

4.3.1 Pricing model P:
Two commonly observed pricing models used presently to

price information goods and data are : (1) Per unit pricing or
metered pricing. (2) Batch pricing or Step Pricing. Another
pricing model that is often observed is Subscription (fixed
cost for unlimited uses) based pricing which we look at as a
special case of step pricing with a single step.
We reviewed some of the pricing models presently used to
price information goods, cloud services, database services
etc(as detailed in Section 2).We see that the models and pa-
rameters of the pricing models are not chosen in a proper
manner, which keeps the seller’s profit suboptimal. In the
remaining part of the section, we provide mathematically
sound Economics framework based on the above definitions,
to choose which pricing scheme a seller should choose, based
on his dataset and consumer segment, and how to determine
the parameters of the model for profit maximization.

4.3.2 Unit Pricing Model:
Unit pricing or pay as you go pricing or metered pricing

charges for the exact number of executed transactions. The
pricing function varies linearly with the number of transac-
tion ,i.e.

P(n) = Pun; where Pu is the price for 1st transaction

As shown in Figure 2, define critical points nj and n ′j where
the function CWTP(n) and P(n) intersect. Thus the intervals
(nj, n

′
j) define where CWTP(n) > P(n). Note to handle the

boundary case, if CWTP(ε) > P(ε), ε − − > 0 we can define
n1 = 0. Similarly if CWTP(N) > P(N), then we set n ′m = N,
where m is the last interval.

Figure 2: The Figure shows the critical points where the
CWTP and price curves intersect and the shaded regions
show where the customers buy from a unit pricing model

Figure 3: The Figure details the 3 possible scenarios of the
location of critical points for a particular step of a step pric-
ing model

The profit from unit pricing is given by

Πu =

∫N
0

B(n)D(n)dn

=

∫n ′
1

n1=0

Pu · n ·D(n)dn +

∫N
n ′
1

Pu · n ′1 ·D(n)dn (2)

4.3.3 Step Pricing Model:
Step pricing or batch pricing can be viewed as a subscrip-

tion based pricing with multiple levels of the form (P1, T1),
(P2, T2), ..., (Pm, Tm) wherem is the total number of steps and
P1 ≤ P2 ≤ P3... ≤ Pm and T1 ≤ T2 ≤ T3... ≤ Tm = N. This
structure implies that the customer can buy upto Tj tuples by
paying Pj. The buying function is extended to pricing levels
as

Bj(n) = Pi where i = max
(
i ≤ j|(Pi ≤ CWTP(Ti))

= 0 otherwise (3)

Buying function returns the price(say Pi) of the level cus-
tomer has the willingness to pay for and he buys upto min(Ti, n)
transactions for Pi.

Now, consider a level j(Tj−1 ≤ n < Tj). Since (CWTP) ′ ≥
0, each pricing level will have at most one critical point(nj).
In other words, Pj = CWTP(n) will have atmost one solution.
Based on if nj ≤ Tj−1 or Tj−1 < nj ≤ Tj or nj > Tjwe analyze
three different cases. as shown in Figure 3.

C1: nj ≤ Tj−1
In this case everyone in level j will buy from level j.



Profit from level j

Πj =

∫Tj
Tj−1

PjD(n)dn (4)

C2: Tj−1 < nj < Tj
Customers with nj ≤ n < Tj will buy from level j and
customers with Tj−1 ≤ n < nj will buy from a level
i given by max

(
i ≤ j|(Pi ≤ CWTP(Ti))

)
. Profit from

level j

Πj =

∫nj

Tj−1

PiD(n)dn +

∫Tj
nj

PjD(n)dn (5)

C3: nj ≥ Tj
Everyone in level j will buy from a level i given by
max

(
i|(Pi ≤ CWTP(Ti) < Pi+1)

)
. Profit from jthlevel

Πj =

∫Tj
Tj−1

PiD(n)dn (6)

An intelligent seller will never want to fall in case C3 as
then the jth level is never used by the customers and thus
has one less step to try and approximate the willingness to
pay function. [We show later that profit decreases with de-
crease in the number of levels thus a seller needs to avoids re-
dundant levels for profit maximization]. Thus S always want
nj < Tj or in other words P(Tj) > CWTP(Tj)

It follows directly from the equation(4)and Figure 3, that
just by increasing the price of the jth level to CWTP(Tj−1) the
seller can increase his profit. Thus, in the case C1, S places
itself sub-optimally if Pj < CWTP(Tj−1). In other words nj ≥
Tj−1.

Above arguments impose the constraint that Tj−1 ≤ nj <
Tj on the critical point. In other words the jth critical point
should always fall within the jth level window. Also for the
customers looking for n transactions with Tj−1 ≤ n < Tj , but
having CWTP(n) < Pj, will look to buy Tj−1 transactions for
Pj−1,i.e. i = j − 1 in equation(5). Thus the buying function
for the jth level simplifies as

Bj(n) = Pj if CWTP(n) ≥ Pj
= Pj−1 if CWTP(n) < Pj (7)

and the three cases can be easily tied together as
Tj−1 ≤ nj < Tj

Πj =

∫nj

nj−1

B(n)D(n)dn

=

∫nj

Tj−1

Pj−1D(n)dn +

∫Tj
nj

PjD(n)dn (8)

Total profit from all the levels is given by:

Πs =

m∑
j=0

(Πj) (9)

4.4 Consumer Segment C:
This section extends previously discussed models in light

of properties of consumer segment C and determines the op-
timal prices in each case. Based on the willingness to pay cus-
tomer segment can be viewed to be comprised of two types
of customers: c-type and d-type. c-type customers have con-
stant marginal WTP up to a fixed number of transactions.

Figure 4: The figure shows the CWTP for a d-type customer
under step pricing model

In other words, for c-type customers CWTPc is linear. d-
type customers have declining marginal WTP i.e a sublinear
CWTPd. For example a financial analysis firm analyzing a
particular dynamic dataset as its service, keeps continuously
querying on it and has a constant WTP upto a fixed num-
ber of transactions(i.e. linear CWTPc). On other hand a fi-
nancial consultancy that works across different datasets has
a declining marginal WTP for one particular dataset i.e sub-
linear CWTPd.

Let k fraction of C be of d-type and remaining (1− k) be of
c-type. Across this consumer segment C let n(desired num-
ber of transactions) be uniformly distributed over [0, 1],i.e.
we normalize N to 1. To simplify calculations, for the remain-
ing part of the section we will assume D(n) to be uniformly
distributed from [0, 1].

4.4.1 Unit pricing:
We look at the problem of maximizing the profit under 3

cases - when S can expect demand from both c-type and d-
type buyers or from only c-type or from only d-type. The
CWTP(n) for each c-type customer is w · n where w could
be interpreted as the average WTP for each transaction and
n the desired number of transactions. For d type customers
we assign a sublinear function to CWTPd(n) for further anal-
ysis, in particular we take CWTPd(n) = a

√
n, as shown in

Figure 4. Analysis is fairly general incase S finds another
sublinear function as CWTP for its d-type customers.

Demand only from c-type: Thus no d-type customer buys
any units, i.e. Pun > CWTPd(n)∀n ∈ [0,N = 1]. Note for
our particular choice of function CWTPd(n) = a

√
(n), this

case cannot occur as CWTPd(ε) > a
√

(ε), as ε − − > 0. But
we include this case for completion in case the CWTPd has
some other form.

Πu =

{ ∫N=1

0
(1 − k)Pundn = Pu

(1−k)
2

when Pu ≤ w
0 when Pu > w

Profit is maximum for P∗u = w and Π∗u = w (1−k)
2

Demand only from d-type: Thus no c-type customers buy
any units, i.e. Pu > w

Thus Πu = k ·
∫n ′

1
0
Pu · n · dn + k ·

∫1
n ′
1
Pu · n ′1 · dn

Here, n1 = 0, n ′1 = min(1, a
2

P2
).

Thus



Πu =


∫ a2

P2
u

0 kPundn +
∫1

a2

P2
u

kPu(
a2

P2u
)dn when Pu > a∫1

0
kPundn = kPu

2
when Pu ≤ a

Solving ∂Πu
∂Pu

= 0 gives the maximum profit(Π∗u) and the op-
timal unit price(P∗u). Note this is the maximum profit for the
case Pu > w.

Demand from both c-type and d-type:

Thus for this case Pu ≤ w.

Πu =


∫ a2

P2
u

0 kPundn +
∫1

a2

P2
u

kPu(
a2

P2u
)dn +

∫1
0
(1 − k)Pundn; Pu > a∫1

0
kPundn +

∫1
0
(1 − k)Pundn;Pu ≤ a

Solving ∂Πu
∂Pu

= 0 gives the maximum profit(Π∗u) and the
optimal unit price(P∗u).

Proposition 1: Maximum profit and optimum price for the unit
pricing model is given by Π∗u and P∗u. For c-type customers, unit
pricing achieves maximum profit by setting Pu = w.

4.4.2 Step Pricing:
Demand only from c-type
i.e. no demand form d-type or (Pj > a

√
n)∀j ∈ [1, 2..,m]

The jth critical point is given by solving Pj = wnj and Pj’s
are constrained as (Tj−1 ≤

Pj
w
< Tj).

Πj =

∫ Pj
w

Tj−1

(1 − k)Pj−1dn +

∫Tj
Pj
w

(1 − k)Pjdn

= (1 − k){Pj−1(
Pj

w
− Tj−1) + Pj(Tj −

Pj

w
)} (10)

Πs =

m∑
j=1

Πj =

m∑
j=1

{(1 − k){Pj−1(
Pj

w
− Tj−1) + Pj(Tj −

Pj

w
)}}

=
(1 − k)

w
{

m−1∑
j=1

PjPj+1 −

m∑
j=1

P2j + Pmw} (11)

Its interesting to observe that the profit from a site pricing
is independent of the step size(Tj’s) as long as (wTj−1 ≤ Pj <
wTj) holds. Optimal P∗j are obtained by solvingm equations(
∂Πs
∂Pj

= 0 ) inm variables(Pj).

P∗j =
wj

m + 1

Π∗s =
(1 − k)wm

2(m + 1)
(12)

Optimal profit increases with number of steps but number of
steps are restricted to be small for obvious reasons.

Demand only from d-type:-
i.e. no demand form c-type or (Pj > wnj)∀j ∈ [1, 2..,m]

The jth critical point is given by solving Pj = a
√
n and Pj’s

are constrained as (Tj−1 ≤
P2j

a2
< Tj) (from ??8).

Πj =

∫ P2
j

a2

Tj−1

kPj−1dn +

∫Tj
P2
j

a2

kPjdn

= kPj−1(
P2j
a2

− nj−1) + kPj(Tj −
P2j
a2

) (13)

Πs =

m∑
j=1

Πj =

m∑
j=1

k

{
Pj−1(

P2j
a2

− nj−1) + Pj(Tj −
P2j
a2

)

}

=
k

a2


m−1∑
j=1

PjP
2
j+1 −

m∑
j=1

P3j + Pma
2

 (14)

Its interesting to observe that the profit from a site pric-
ing from d-type customers is also independent of the step

size(Tj’s) as long as (Tj−1 ≤
P2j

a2
< Tj) holds. Optimal price

levels P∗j s and maximum profit Π∗j is obtained by solving m
equations( ∂Πs

∂Pj
= 0 ) inm variables(Pj).

form = 2

P1 =
a√

9 − 2
√
3

P2 =

√
3a√

9 − 2
√
3

form = 3 (α =
√
9 − 2

√
3)

P1 =
a√

α(3α − 2
√
3)

;P2 =

√
3a√

α(3α − 2
√
3)

;P3 =
a
√
α√

α(3α − 2
√
3)

Demand from both c-type and d-type:-
i.e.∃j|(pj < wnj) for some demand from c-type and ∃j|(pj <
k
√
nj)for some demand from d-type.

Πs =
(1 − k)

w


m−1∑
j=1

PjPj+1 −

m∑
j=1

P2j + Pmw

+

k

a2


m−1∑
j=1

PjP
2
j+1 −

m∑
j=1

P3j + Pma
2

 (15)

Optimal price levels P∗j s and maximum profit Π∗j is obtained
by solvingm equations( ∂Πs

∂Pj
= 0 ) inm variables(Pj).

Proposition 2:Optimal profit for a firm selling to c- and d-type
customers using the step-pricing scheme is independent of the step
size(Tj’s) as long as price of each level obeys the constraint of profit
maximization

(
(Tj−1 ≤

Pj
w
< Tj) for c-type and

(Tj−1 ≤
P2j

a2 < Tj) for d-type
)

. The maximum profit Π∗s is
obtained by setting price levels as P∗j .

4.5 Duopoly Competition:
In this section, we determine the optimal pricing strategies

in light of competition. Two firms selling datasetsD1 andD2
are considered competitors when D1 and D2 have overlap-
ping views and thus overlapping target consumer segment.
We model duopoly as two stage game where the sellers de-
termine the pricing scheme in the first stage and their opti-



mal prices in the second stage. This formulation is appro-
priate as decision about the pricing scheme require substan-
tial attention from senior executives, lengthy experimental
trials, advertising strategies, marketing strategies, account-
ing and other infrastructure considerations. On other hand,
tweaking pricing parameters of a pricing model, in response
to market dynamics, is relatively easier.

In the first stage, each seller selects from three options among
pricing schemes: (i) unit-pricing scheme,(ii) site-pricing scheme
and (iii) both pricing schemes.

Lemma 1: When each firm offers one and the same pricing scheme,
then the Bertrand equilibrium is obtained thus equilibrium prices
and profits are equal to zero.

When both firm offers the same pricing scheme in the first
stage then in the second stage the pricing game reduces to
a Bertrand game. Buyers purchase from the firm that offers
the lower price. Firms keep on undercutting its competitors
price to capture consumer segment and at equilibrium, no
firm can have positive price as it gives undue advantage to its
competitor. Thus Bertrand equilibrium is obtained. In case
of step pricing the subgame(in second stage) at each level re-
duces to a Bertrand game. Any positive level price cant be
sustained in equilibrium as the firms have incentive to cut
each others price by a small amount. Hence Bertrand equi-
librium is obtained.

Lemma 2: When one firm offers both pricing schemes, then ir-
respective of the choice of pricing scheme of the other firm, the
Bertrand equilibrium is obtained.

Let firm A offers both unit and step pricing scheme and
firm B offers only unit pricing. In pricing subgame(in second
stage) where firm A competed with firm B over unit pricing
scheme, leads to a bertrand game in unit pricing. Both the
firms are forced to reduce unit prices to zero(Lemma 1)and
no customer buys from step pricing scheme with positive
price levels. This leads to Bertrand game. The same argu-
ment follows in case where firm B offers step pricing and
firm A offers both pricing scheme.

Proposition3: Pareto-dominant pure strategy equilibrium in the
duopoly game: One seller offers the unit-pricing scheme and the
other seller offers the site-pricing scheme (prices in Duopoly equi-
librium)

The following table illustrates Proposition 3 in detail, de-
termining the profit of each firm in nine potential scenarios.

Adopting Pricing Schemes (PS) for Profit
Firm B/Firm A Unit PS Site PS Both PS
Unit PS (0, 0) (Πu, Πs) (0, 0)
Unit PS (Πs, Πu) (0, 0) (0, 0)
Unit PS (0, 0) (0, 0) (0, 0)

In summary, we derive optimal price(P∗) and optimal profit(Π∗)
for a data seller entering the datamarket, for both unit pricing
model and step pricing model. In absence of competition, the dataseller
should compare the profit from both the models first and then select
that pricing model which yields maximum profit as per the compo-
sition of its target consumer segment. We show that for the unit
pricing scheme, setting your per unit price equal to the willing-
ness to pay for c-type customers maximizes the profit. We also
show that for step pricing scheme, optimal profit is independent of
the step sizes as long as price of each level obeys the constraint of

Figure 5: The Figure shows the presence of arbitrage, when
Tk + 1 can be generated by using lower levels, i and j, s.t.
Pi + Pj < Pk+1 and Ti + Tj > Tk + 1

profit maximization. For step pricing, increasing the number of
steps increase the profit. Under duopoly competition, we provide
guidelines on how a firm should choose its pricing model.

In case, the data seller has already entered the market, he
may not be in a position to redefine his entire pricing model
as per the above framework. In the following section we pro-
vide guidelines for him to figure out if his present pricing is
Arbitrage free. If not, we help him to come up with a pricing
model very close to his present model and free from Arbi-
trage.

5. VALID PRICING STRUCTURE
We find that most price structures currently in Azure Data-

Market are in the form of subscription pricing with multi-
ple levels, i.e. of the form (P1, T1), (P2, T2), ..., (Pn, Tn) where
P1 ≤ P2 ≤ P3.. ≤ Pn and T1 ≤ T2 ≤ T3.. ≤ Tn. This struc-
ture implies that the customer can buy upto Tk transactions
by paying Pk. We find that these step functions do obey the
diminishing returns property in a weak way. In particular
P1
T1
≥ P2

T2
≥ P3

T3
... ≥ Pn

Tn
,

i.e. the price per transaction comes down as the number of
transactions bought increases. Note this is ensured only at
the end points of the structure, i.e. if the customer wants
to buy exactly Ti transactions. But, due to the presence of
discrete steps the function is no longer concave and is sus-
ceptible to arbitrage, i.e. the customer looking for T transac-
tions with Tj < t < Tj+1, can in certain cases actually fulfill
his requirement by paying less than Pj+1. Formally if O(t)
is the least price to get t transactions and I(t) be the price I
by the price structure,i.e. I(t) = Pj+1 if Tj < t < Tj+1, then
O(t) < I(t), as shown in Figure 5

Note that the inherent property of a step function that makes
it non-concave would imply that a customer would be able
to arbitrage this structure if he were allowed to buy a frac-
tional number of such contracts. However the natural re-
striction on buying an integral number of contracts leads to a
set of conditions that can ensure that even though the struc-
ture isn’t concave in a strict sense, it is arbitrage-free. Note
one application where such an analysis would be useful is in
determining the total sales given the demand function D(t),
i.e. the number of customers requiring t transactions for each
t. If such a demand function were known(or estimated), the



profit would be expected to be the integral of the product of
D(t) and the price buying I(t) i.e.
Π =
∫
D(t) · I(t)dt.

However as this structure is susceptible to arbitrage the ac-
tual profit would only be
Π =
∫
D(t) ·O(t)dt,

assuming that the customers would take advantage of arbi-
trage, if possible. Thus ensuring that
O(t) = I(t)∀t

allows the seller to make an accurate estimate of the sales.
We call such a structure valid.

5.1 Conditions for Validity
Here we derive sufficient and necessary conditions on a

pricing structure to ensure that O(t) = I(t) ∀t, and give an
O(n2) algorithm to check for the validity of any arbitrary
function.
Claim: Pricing structure is valid if Pk+1 ≤ min1≤j≤k Pj +
I(Tk + ε − Tj)∀k = {1, 2, ...n − 1}, ε − − > 0

Proof: Let the conditions be true. We will use induction on
the number of steps to show this.

Base: k = 1, There is no way to arbitrage the first level, as
P1 ≤ Pk∀k

Induction Hypothesis: Assume that the price structure is
valid upto the kth level,i.e. for O(t) = I(t)t ≤ Tk

Induction Step: We need to show that the pricing struc-
ture is valid upto the k + 1th level, i.e. O(t) = I(t), for
Tk < t ≤ Tk+1.
We first show that O(t) = I(t) for t = Tk + ε, by contradic-
tion.
Suppose O(t) < I(t) for t = Tk + ε. Then O(t) must be using
atleast one of the subscription levels ≤ k . Let it use level j.
Then Pk+1

= I(t)
> O(t),(asumption)
= Pj +O(t − Tj),(Optimality)
≥ min1≤j≤kPj +O(t − Tj),
≥ min1≤j≤kPj + I(t − Tj),(IH)

which contradicts our condition. Thus we get that I(t) ≤
O(t) for t = Tk + ε.

We now use this to show that the validity in the rest of the
interval follows. Consider any Tk < t ′ ≤ Tk+1, Note t ′ > t.
Thus O(t ′) ≥ O(t) = I(t) = Pk+1 = I(t ′). Thus the structure
is valid for all t ′, Tk < t ′ ≤ Tk+1, which completes the proof.
This proves that these conditions are sufficient to ensure va-
lidity of the pricing structure. The necessity part is obvious-
clearly if any of the conditions doesn’t hold, then that gives
us a way to arbitrage the structure. Thus we can derive an
algorithm to check for validity of the structure by just check-
ing these conditions. To check the kth level we need to O(k)
time. Thus to check for all n levels we require O(n2) time.

Proposition 4: A multi-step pricing function (P,T) is valid iff
Pk+1 ≤ min1≤j≤k Pj + I(Tk + ε − Tj)∀k = {1, 2, ...n − 1},
ε − − > 0

5.2 Dual Conditions for Validity
By ensuring that the price cannot be arbitraged for each

t = Tk + ε, we derive these conditions that are linear in the
pricing levels P. We can derive similar conditions by looking
at the dual problem,i.e. given a price pk−ε, can we get more

Figure 6: The Figure shows the Original Pricing Structure
(P,T) in blue and the new Pricing Structure (P’,T) in green.
The distance between the 2 functions is defined as the in-
tegral of the difference of the functions, i.e. the sum of the
areas indicated in pink

that Tk transactions. Following a similar analysis we get the
following conditions. Let IT(p) = Tj for Pj ≤ p < Pj+1, i.e.
the number of transactions that the structure implies for a
given price p. We get the following sufficient and necessary
conditions on the structure to ensure validity
Tk ≥ max1≤j≤k−1Tj+IT(pk−pj−ε) ∀k = {2, 3...n}, ε−− > 0.
As the intuition is similar to the previous result, we push
back the proof to the appendix(A.1).

Proposition 5: A multi-step pricing function (P,T) is valid iff
Tk ≥ max1≤j≤k−1Tj+IT(pk−pj−ε) ∀k = {2, 3...n}, ε−− > 0.

5.3 Optimal Pricing Structure
In the previous section we derived conditions that must

hold for a valid pricing structure. Here, given an invalid
structure denoted by (P, T) where P = {P1, P2...Pn} and T =
{T1, T2...Tn}, we look for structures (P ′, T) or (P, T ′) which are
valid and close to the given structure under a suitable dis-
tance measure.
Let us first look at the case when we solve the prices keeping

the transaction levels constant, i.e. we vary P keeping T con-
stant. We look to minimize the objective function

∑
i |P
′
i −

Pi| · |Ti − Ti−1|. Note this minimizes the sum of the areas of
the differences of the rectangles as shown in Figure 6. This is
exactly the L1 norm of the difference of two function f and g,
which is

∫
|f − g|dx. Thus we get the following problem. For

convenience we take T0 = P0 = 0.
min
∑
i |P
′
i − Pi| · (Ti − Ti−1)

s.t. (P ′, T) is valid.

The linearity of the objective function and the conditions re-
duce this to the following linear program in P ′.

min
∑
i |P
′
i − Pi| · (Ti − Ti−1)

s.t. P ′k+1 ≤ P ′j +I(Tk+ε−Tj) 1 ≤ j ≤ k−1, k = {1, 2...n−1}
P ′1 ≤ P ′2 ≤ ...P ′n

Note that the function I is only dependent on T and returns
a price for a level, so some P ′i . Note the absolute value in the
objective function can be removed, by using the following



Figure 7: The Optimal Valid Pricing Structures(varying
price level or transaction levels) and the original Pricing
Structure for Alteryx LLC - Geography Search Service with
Geocoding

common substitution, where |x − k| in the objective function
can be replaced by a pseudo variable t and adding the con-
straints t < x − k and t < k − x

Following a similar derivation, we can express the dual prob-
lem of getting a step function (P, T ′) as a linear program in
T ′. The program is given by

min
∑
i |T
′
i − Ti| · (Pi − Pi−1)

s.t. T ′k ≥ T ′j + IT(Pk − Pj − ε) 1 ≤ j ≤ k − 1k = {2, 3...n}
T ′1 ≤ T ′2 ≤ ...T ′n

Note that the function IT is only dependent on P and returns
transactions for a price, so some T ′i .

5.4 Results on Azure Datasets
We show the results of running the linear program on two

datasets from Azure DataMarket in Figure 7 and Figure 8.
We use MATLAB to perform the linear program. Appendix
A.3 shows the results of the algorithms on some of the priced
datasets present in Azure DataMarket. In the first Arbitrage-
free pricing, the price level is adjusted keeping the transac-
tion limit as fixed. In many datasets such as Business Lookup,
and Weather Imagery the lower levels are clubbed together
as a single step. Small price adjustments are made in the
lower steps for datasets such as MLB year-to-date and De-
mographics dataset. In the second Arbitrage-free pricing, the
transaction limit is adjusted keeping the price level as fixed.
In many datasets, some of the transaction intervals is zero
such as Business Lookup, and Weather Imagery. This is the
corollary to the previous arbitrage-free pricing in that these
steps are dropped to remove arbitrage.

6. CONCLUSIONS AND FUTURE WORK
After studying the current pricing models of information

goods and those in place for datamarkets, the paper brings
out the issues with various pricing models. Pricing on the
number of units rather than on content-time is desirable for
pricing datasets. Adopting the pricing model in Windows
Azure Marketplace DataMarket, the paper considers ways
to price the data in a more organized way. The paper begins
by reflecting on the issues with the pricing model in terms
of the disconnect with the target customer market segments

Figure 8: The Optimal Valid Pricing Structures(varying
price level or transaction levels) and the original Pric-
ing Structure for AWS Convergence Technologies Inc.
(Weather Bug) - Historical Observations

and their buying power; the need to account for competing
data sellers who provide similar datasets with either overlap-
ping records or other value additions; and the need to avoid
arbitrage situations. The paper sets up the Economics frame-
work based on CWTP and computes the optimal prices for
both unit pricing model and step pricing model. This could
be leveraged by new datasets yet to be published on data-
markets. For existing datasets, the necessary and sufficient
conditions for a valid pricing scheme are determined and an
O(n2) algorithm is formulated to validate multi-step pricing
models. In case the pricing models has arbitrage, a linear
program id formulated to compute the closest valid step pric-
ing under L1 norm. Future research can develop properties
to identify competing datasets in the data market and pro-
vide mechanism to determine optimal design level, time to
market and optimal prices for profit maximization. Differen-
tial pricing could be used for business or research data or cer-
tain important attributes/tuples that may be flagged. Future
work could also concentrate on removing the restrictions on
keeping either the tuple level or price levels constant.
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8. APPENDIX
A.1 Proof of the Dual Conditions For Validity

Let OT(p) be the maximum number of transactions that can
be derived for a given price p.
Claim: Pricing structure is valid if Tk ≥ max1≤j≤k−1Tj +
IT(pk − pj − ε) ∀k = {2, 3...n}, ε − − > 0

Proof: Let the conditions be true. We will use induction on
the number of steps to show this.

Base: k = 1, There is no way to arbitrage the first level, as
T1 ≤ Tk∀k

Induction Hypothesis: Assume that the price structure is
valid upto the kth level,i.e. for OT(p) = IT(p)p < Pk

Induction Step: We need to show that the pricing struc-
ture is valid upto the k + 1th level, i.e. OT(p) = IT(p), for
Pk ≤ t < Pk+1.
We first show that OT(p) = IT(p) for p = pk+1 − ε, by con-
tradiction.
Suppose OT(p) > IT(p) for p = pk − ε. Then OT(t) must
be using atleat one of the subscription levels ≤ k . Let it use
level j. Then Tk

= IT(p)
< OT(p),(asumption)
= Tj +OT(p − Pj),(Optimality)
≤ max1≤j≤kPj +OT(p − Pj),
≤ max1≤j≤kPj + IT(p − Pj),(IH)

which contradicts our condition. Thus we get that IT(p) ≤
OT(p) for p = Pk+1 − ε.

We now use this to show that the validity in the rest of the
interval follows. Consider any Pk < p ′ ≤ Pk+1, Note p ′ < p.
Thus OT(p ′) ≤ OT(p) = IT(p) = Tk = IT(p ′). Thus the
structure is valid for all P ′, pk < p ′ ≤ Pk+1, which completes
the proof.
This proves that these conditions are sufficient to ensure va-
lidity of the pricing structure. The necessity part is obvious-
clearly if any of the conditions doesn’t hold, then that gives
us a way to arbitrage the structure. Thus we can derive an
algorithm to check for validity of the structure by just check-
ing these conditions. To check the kth level we need to O(k)
time. Thus to check for all n levels we require O(n2) time.

A.2 Some Original Pricing Structures in Azure DataMarket

Datasets from Windows Azure Marketplace Datamarket
Company Dataset Transaction

limit
Price level

Wolfrom Alpha
LLC

Facts 5000 $0.00

Alteryx LLC
Consumer
Expenditure
Data

Unlimited $238.80
150 $178.80
100 $154.80
50 $118.80
25 $94.80
10 $58.80

CDYNE Corpo-
ration

National Death
Index

1000000 $396.00

Dun &
Bradstreet

Business
Lookup

10000 $1,800.00
5000 $900.00
2000 $360.00
1000 $180.00

Dun & Brad-
street

Corporate Link-
age

1000 $4,920.00

Dun & Brad-
street

Enterprise Risk
Management

64 $4,920.00

StrikeIron
Sales and Use
Tax Rates
Complete

50000 $3,300.00
10000 $900.00
1000 $150.00

Wolters Kluwer CCH CorpSys-
tem Sales Tax
Rates

50000 $333.00

PracticeFusion Medical Re-
search Data

Unlimited $0.00

United Nations UNAIDS Unlimited $0.00
United Nations WHO Data Unlimited $0.00

Alteryx LLC
Geography
Search Service
with Geocoding

Unlimited $1,194.00
250000 $954.00
100000 $714.00
75000 $594.00
50000 $474.00
20000 $354.00
10000 $234.00

StrikeIron US Address
Verification

100000 $1,368.00
25000 $504.00
5000 $150.00

GTW Holdings Singapore
Points of Inter-
est

Unlimited $0.00

United Nations World Tourism
Organization
Statistics -
Database &
Yearbook

Unlimited $0.00

Zillow Inc Home Valua-
tion

30000 $0.00

Zillow Inc Mortgage Infor-
mation

30000 $0.00

STATS LLC MLB game-by-
game

Unlimited $9.54

STATS LLC MLB live scores Unlimited $21.54

STATS LLC MLB
year-to-date

500 $120.00
100 $24.00
50 $12.00

Govt. of USA Data.gov Unlimited $0.00

ESRI

2010 Key US
Demographics
by ZIP code,
place, county

150 $49.95
100 $39.95
50 $24.95
25 $19.95
10 $9.95

Weather
Central LLC

Super
MicroCast
Forecast Data

1000000 $2,400.00
100000 $600.00
10000 $120.00
2500 $0.00

Weather
Central LLC

Weather
Imagery

1000000 $2,400.00
100000 $600.00
10000 $120.00
2500 $0.00

AWS
Convergence
Technologies

Historical
Observations

2000 $120.00
500 $36.00
100 $12.00



A.3 Arbitrage-free Pricing For Invalid Datasets from Azure
DataMarket

Datasets from Windows Azure Marketplace Datamarket
Company Dataset Arbitrage-free Pricing 1 Arbitrage-free Pricing 2

Keeping Trans-
action limit
fixed

Corrected Price
level

Corrected
Transaction
limit

Keeping Price
level fixed

Alteryx LLC
Consumer
Expenditure
Data

Unlimited $238.80 Unlimited $238.80
150 $178.80 150 $178.80
100 $154.80 100 $154.80
50 $118.80 50 $118.80
25 $94.80 25 $94.80
10 $60 0 $58

Dun &
Bradstreet

Business
Lookup

10000 $1,800.00 10000 $1,800.00
5000 $900.00 5000 $900.00
2000 $900.00 0 $360.00
1000 $900.00 0 $180.00

StrikeIron
Sales and Use
Tax Rates
Complete

50000 $3,300.00 50000 $3,300.00
10000 $1,650.00 0 $900.00
1000 $1,650.00 0 $150.00

Alteryx LLC
Geography
Search Service
with Geocoding

Unlimited $1,194.00 Unlimited $1,194.00
250000 $954.00 250000 $954.00
100000 $714.00 100000 $714.00
75000 $594.00 75000 $594.00
50000 $474.00 50000 $474.00
20000 $354.00 20000 $354.00
10000 $240.00 0 $234.00

StrikeIron US Address
Verification

100000 $1,368.00 100000 $1,368.00
25000 $684.00 0 $504.00
5000 $684.00 0 $150.00

STATS LLC MLB
year-to-date

500 $120.00 500 $120.00
100 $62.88 0 $24.00
50 $57.12 0 $12.00

ESRI

2010 Key US
Demographics
by ZIP code,
place, county

150 $49.95 150 $49.95
100 $39.95 100 $39.95
50 $24.95 50 $24.95
25 $19.95 25 $19.95
10 $15 0 $9.95

Weather
Central LLC

Super
MicroCast
Forecast Data

1000000 $2,400.00 1000000 $2,400.00
100000 $1,200.00 0 $600.00
10000 $1,200.00 0 $120.00
2500 $1,200.00 0 $0.00

Weather
Central LLC

Weather
Imagery

1000000 $2,400.00 1000000 $2,400.00
100000 $1,200.00 0 $600.00
10000 $1,200.00 0 $120.00
2500 $1,200.00 0 $0.00

AWS
Convergence
Technologies

Historical
Observations

2000 $120.00 2000 $120.00
500 $60.00 0 $36.00
100 $60.00 0 $12.00

*The Unlimited transaction value was approximated as 10000000 dur-
ing evaluation.


