
Bloom Filters in Distributed Query Execution

CSE 544 Project
Paraschos Koutris

University of Washington

1. INTRODUCTION
The MapReduce framework [5] has emerged as a success-

ful parallel computation model in large-scale data analyt-
ics, mostly due to its simple interface and its scalability
over thousands of nodes. However, while various primi-
tives, such as aggregations, are performed efficiently in this
framework, more complicated relational algebra operations
such as joins and multiway joins are still implemented in a
naive way. Since MapReduce provides a simple and easily
programmable framework for massive parallelism, handling
join computations efficiently is crucial for many applications.
Some ideas in this direction have already been proposed [1]
and studied. Following this trend, the purpose of this project
is to consider a restricted class of optimizations for parallel
computing which use the notion of bloom filters, with the
goal of reducing the communication cost for multiway joins.

A join in a MapReduce environment is usually imple-
mented with a distributed Hash-Join algorithm. Let us
consider the natural join R(x, y) 1 S(x, z) between relations
R and S. The algorithm is equipped with a hash function,
which maps values from the database domain to servers.
Each of the tuples in R and S are sent to a server according
to the hash value of the common x-attribute. After the map-
ping, tuples with the same value in the common attribute
will end up in the same server; hence, each server can now
locally match the tuples from the hashed partitions of R and
S. Multiway joins are implemented in a naive way, that is,
using consecutive MapReduce jobs.

At this point, it is natural to ask whether there are ways
to improve the performance of the above algorithm in terms
of the communication cost. As an example, let us consider
the case of joining two relations R,S where the matched
values are few and the records are relatively large. The naive
Hash-Join algorithm sends blindly all the tuples to some
server, when we could have potentially filtered a fraction of
tuples through efficient preprocessing. One way to achieve
this is to deploy is a standard technique in distributed query
processing, which is based on semi-join reductions [2]: we
project R on the x-attribute, send it to semi-join with S
and then send only the remaining tuples to join with R. It
turns out, that, instead of sending the projection of R, we
can send a hashmap of R, or even better, a probabilistic
structure called bloom filter. In this project, we will push
this idea even further, exploring the situations where it is
advantageous to use a bloom filter and how we can utilize it
in the best way.

Structure. The structure of this project is as follows. We
will first present bloom filters and define the distributed
model of computation we will use, which is more general
than MapReduce. Subsequently, we will discuss how bloom
filters can be computed efficiently in a distributed way and
then present and analyze bloom-filter based optimizations
for simple and more complex join operations. Last, we will
discuss various issues that occur and present some ideas for
follow-up work.

Related Work. Bloom filters were first presented and used
for efficient distributed join computation in [4] and [6], as
part of thr R∗ optimizer. The algorithm the authors propose
is called BloomJoin and its purpose was to reduce commu-
nication cost as data is transfered. BloomJoin proved to be
more efficient in reducing cost and improving performance
than any other technique, e.g. semijoins. However, the set-
ting is different from what we explore, since they assume
that tables R and S are placed in different servers, but not
partitioned. This allows a simpler and more efficient compu-
tation of the bloom filter. In this project, we extend the al-
gorithm to work in a massively parallel environment, where
the relations are shredded into fragments located in different
servers.

Furthermore, there has been work on how to deploy bloom
filters when computing more complicated multiway joins [7,
10]. In this case, the authors also assume no partitioning of
the relations into fragments placed in different servers.

2. PRELIMINARIES
In this section, we first introduce bloom filters and de-

scribe their parameters in detail. Next, we present the model
under which distributed computations will be studied.

2.1 Bloom Filters
Bloom filters, introduced in [3], are probabilistic data struc-

tures used for testing membership in a set. A bloom filter,
in its simplest form, is essentially a bit array, equipped with
k hash functions. Each hash function maps a value to some
bit of the filter. More specifically, a bit is set to one iff some
value hashes in that position, else it is zero. In order to check
membership of an element, we look at the k positions where
the value is hashed and answer positively only if all k bits
are set to 1. This strategy allows false positives, but never
false negatives.

Given a set S, we will denote by BF (S) the bloom filter of
S. Assuming that we want to achieve a probability of false
positives bounded by p, what is the minimum size of BF (S)?

The exact formula for the optimal value is difficult to handle;
for our purposes, we will use the approximation that we
need mp = − ln p/(ln 2)2 bits per element of S, that is −|S| ·
ln p/(ln 2)2 bits in total. In practice, the approximation is
very precise, as it captures the asymptotic cost of the bloom
filter.

c

0 0 0 0 01 1 1 1 10 11

is a in the set? is d in the set?

a b

Figure 1: A bloom filter for the set S = {a, b, c} and
3 hash functions. Asking for element d is a case of a
false positive.

The advantages of using a bloom filter can be summarized
as follows.

• Space efficiency : the size of the bloom filter is linear to
the size of the set and does not depend on the universe
from where S takes its values.

• Fast construction: constructing a bloom filter is very
fast, since it requires a single scan of the data.

• Efficient membership testing : checking the member-
ship of an element in S requires only computing k
hash functions (where k is usually a small constant)
and accessing k bits.

Naturally, there exists a tradeoff for all these advantages:
the answer we get is probabilistic. However, we can regulate
the probability of failure p in a flexible way. Many variants of
bloom filters that have been proposed [8, 9] can achieve even
better space utilization and stricter probabilistic guarantees.
However, for the purposes of this project, it is sufficient to
examine the applicability of bloom filters in their simplest
form.

2.2 The Model
In our model, the data resides in several servers and is par-

titioned horizontally. Every relation R will be partitioned
to fragments R1, . . . , RP of equal size, where P is the num-
ber of processing units available. In general, we assume that
the partition is performed in an arbitrary way, but we will
also study how a regular partition may help improving the
algorithms we propose.

We also assume that the servers can communicate by send-
ing tuples and information to any other server. We define
a communication step as any number of communications
which can be performed in parallel, without any synchro-
nization barrier.

Throughout this project, we will make the standard as-
sumption that the tuples are uniformly distributed within
a relation, i.e. there is no skew. The main cost measure
will be the communication cost, which consists of the total
number of bits exchanged by the servers during the execu-
tion of the algorithm. We will also refer to the number of
communication steps that an algorithm uses.

Let us also introduce some more useful parameters. For
any relation R(x, . . .), let r = |R|. We also define by vx(R)

the number of distinct values of the x-attribute at relation
R. Moreover, let bR be the bits of the records in R and
bx the number of bits for the key x. Finally, given a join
R 1 S, we need to express the selectivity of S on R, which
is the number of tuples of R that actually participate in the
join. We denote this parameter by αSR. We will often use
aSR = 0.1 as a typical value.

3. COMPUTING BLOOM FILTERS OF DIS-
TRIBUTED RELATIONS

Before tackling the problem of utilizing bloom filters for
distributed computations, we will deal with a somewhat in-
dependent problem. Suppose that we want to compute the
bloom filter of a relation R(x, . . .) on the attribute x, where
the relation is horizontally partitioned across P servers, as
in our setting. To make things simpler, we will initially as-
sume that each x-value appears only once in the relation.
The goal is to store the bloom filter at a distant server with
minimum communication, while achieving an error proba-
bility at most p.

We first propose and analyze two simple algorithms for
this task, which we then subsume to a more generic algo-
rithm.

Algorithm BloomOr. Each partition Ri computes a bloom
filter BF (Ri) for its own x-values, but |BF (Ri)| = mp · r,
which corresponds to the size of a bloom filter for the whole
relation R. After collecting the various bloom filters in the
target server, we union them by a bit-wise OR operation,
i.e. BF (R) =

W
i BF (Ri). Clearly, the union of the bloom

filters is exactly the bloom filter for relation R, thus we get
a probability of error equal to p. The communication cost
will be COR = mp · P · r bits.

Algorithm BloomConcat. In this algorithm, each parti-
tion computes a bloom filter BF ′(Ri) such that |BF ′(Ri)| =
mp′ ·r/P , that is, the size corresponds to the size of the par-
tition and not to |R|. After collecting the bloom filters in
the target server, the algorithm concatenates the P small
boom filters into a single one, i.e. BF ′(R) =

L
i BF

′(Ri).
In order to check the existence of a value in this filter, we
must check every one of the P bloom filters; we answer neg-
atively only if all filters answer so. This implies that we
must carefully decrease the value of p′ such that the final
probability of error is again equal to p.

More precisely, we have to set the probability of failure p′

for an individual server such that p = 1−(1−p′)P , or equiv-

alently p′ = 1− (1− p)1/P . Thus, the total communication
for algorithm B is CB = mp′ · P · r/P = mp′ · r.

Comparing the two algorithms, we can observe that algo-
rithm BloomConcat is superior in terms of communication
demands, since mp′ < mp ·P . However, there is a trade-off,
since using algorithm BloomConcat increases the look-up
cost when checking for membership in the bloom filter. More
precisely, the look-up time for algorithm BloomConcat in-
creases linearly to P , while it remains constant forBloomOr.
We will examine these algorithms in more detail by moving
to a more general setting, which captures both algorithms
as special cases.

Algorithm BloomHyb. This algorithm is essentially a hy-
brid of BloomOr and BloomConcat and takes as input a

parameter k = 1, . . . , P , which defines a partition of the
P servers into k equal-size groups (each group has P/k
servers). Each server computes a bloom filter BF k(Ri) of
its own partition, with size |BF k(Ri)| = (mpk · r)/k. The
bloom filters are then transmitted and collected by the tar-
get server. For each group g, we compute the bit-wise or:
BFg =

W
i∈g BF

k(Ri). The final bloom filter is the concate-

nation of all the “group” filters, that is, BF (R) =
L

g BFg.
It is easy to see that algorithm BloomHyb captures algo-

rithm BloomOr when k = 1, and algorithm BloomConcat
when k = P . It now remains to compute the communication
cost, in order to guarantee a probability p of false positives.
The total cost will be Ck = mpk · r · (P/k). Moreover, we
must ensure that p = 1−(1−pk)k. Consequently, we obtain
the following formula:

Ck = − ln(1− (1− p)1/k) · r · P
k · (ln 2)2

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

number of groups k

bi
ts

 p
er

 tu
pl

e
se

nt

p = 0.01
p = 0.1
p = 0.4

Figure 2: A plot of Ck/r as a function of k for 100
servers and 3 different values of p: 0.01, 0.1, 0.4

In figure 2, we observe a significant improvement in com-
munication cost for relatively small values of k, for which
values the look-up cost does not grow much either. The
improvement in communication by increasing k even more
would be negligible compared to the deterioration we would
obtain in terms of access time.

In figure 3, we fix k and P and observe the relation of Ck/r
(which corresponds to bits communicated per tuple) to p.
Notice that getting very good probabilities gets substantially
more expensive as we move closer to 0.

Can we give a rule of thumb for a reasonable value of
parameter k? Since the tradeoff is between communication
cost and processing time, the best value for k will depend
on the parameters of the system. However, we notice that
1− (1− p)1/k ≈ p/k, when p is very small. Then we obtain
that the cost changes as (ln(k)− ln(p))/k. This implies that
increasing from k = 1 to k = 10, we will get a decrease in
communication cost in the order of 10% of the initial cost (we
ignore the logarithmic factor). Moving further down to 5%
of the initial cost would mean that k = 20, hence doubling
the access cost while sightly reducing communication. To
sum up, a value of k to the range of 10 to 20 would be
reasonable for most cases.

We have so far considered only the case where each key-
value appears only once. We will next study how to adapt
our results in the case that an x-attribute assumes a specific

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
20

40

60

80

100

120

140

160

180

200

probability p

bi
ts

 p
er

 tu
pl

e
se

nt

k = 10
k = 30
k = 20

Figure 3: A plot of Ck/r as a function of p for 100
servers and k = 10, 20, 30

value multiple times. More specifically, since we assume a re-
lation with uniformly distributed values over the domain, we
will assume that the multiplicity of each x-value is bounded
by some parameter d. Let us first examine how this changes
the bloom filter construction for the easy case of algorithm
BloomOr. In this case, we can restrict the size of BFx(R)
to r/d. This means that the communication cost drops to
C′OR = mp · P · r/d.

How does this affect the generic algorithm BloomHyb?
Notice that when we have k > 1 groups, it may be the case
that each group contains only one tuple from each value (and
all the other are in the other group). Without knowing more
information about the distribution of the data, we have to
be conservative and thus we can not reduce the size of the
bloom filters as in algorithm BloomOr. Hence, the perfor-
mance for k = 1 improves as d grows, while the performance
for strategies with k > 1 stays the same.

However, if we add the extra assumption that the relation
is uniformly distributed among the servers, we can claim
that each of the k groups holds d/k tuples from a particular
x-value. This means that we can reduce the size of the bloom
filters. Then, we have that C′k = Ck/min{1, d/k}. Although
the increase in performance deteriorates as k increases (and
is the same when k > d), we are still able to exploit the fact
that x-values appear multiple times even for strategies with
k > 1.

4. JOIN COMPUTATION
In this section, we will study the use of bloom filters for

computing the natural join R(x, y) 1 S(x, z). Before we
present the algorithm using bloom filters, we will present
the standard algorithm (Hash-Join) and compute its cost.

Hash-Join. The Hash-Join algorithm sends each tuple of
R,S to a specific server, according to the hash value of the x-
attribute. Then, the tuples are probed for matching locally.
The total communication cost is C = r · bR + s · bS . The
communication cost for R is C(R) = r · bR.

Bloom-Join. The concept of using bloom filters to mini-
mize communication is based on the semi-join technique.
The idea is that, instead of transmitting all of R, we filter
a percentage of R-tuples using a lightweight data structure

which conveys useful information about S. In many cases,
a large fraction of tuples from R will be rejected without
being hashed. We use bloom filters as this data structure
(whereas semi-joins use the projection of R to the key x).

More specifically, in order to filter R we perform the fol-
lowing steps: we send the bloom filter BFx(S) to R, then
we filter the tuples of R with BFx(S) and last we hash the
remaining tuples. Notice that we can execute the same strat-
egy symmetrically for S. A strong advantage is that we can
reason on the efficiency of filtering R or S, both of them or
none of them, by examining independently the savings on
the communication cost for each relation.

We have not yet described how the first step works, that
is, how the algorithm computes and sends BFx(S) to every
server. This is not a trivial task, since the relation is parti-
tioned. For this, we can explore several different strategies.

Strategy A. We compute BFx(S) at some server s, by us-
ing algorithm BloomOr. We then broadcast the result-
ing bloom filter to every server. Although this strategy is
communication-efficient, the computation of the bloom filter
at a central server forms a bottleneck for our algorithm.

Strategy B. In order to overcome the bottleneck of the first
strategy, we have to compute BFx(S) using some strategy
in parallel for all P servers (e.g. algorithm BloomOr). This
increases the communication cost by a factor of P . We can
potentially mitigate this increase by using the hybrid algo-
rithm presented in the previous section.

Cost Analysis. We now analyze strategy A. Each server
si computes a bloom filter with mp · vx(S) bits, which is
then transmitted to P servers. Thus, the cost from this step
is mp · vx(S) · P . Next, we need to count the number of
bits R is going to send after performing the filtering. R will
send αSR · r tuples, since there will be αSR tuples which
participate in the join. Moreover, we have to account for
the false positives, which correspond to (1−aSR) ·p · r more
tuples for a fixed probability of error p. Thus, the total cost
charged to communicating relation R is

CBF (R) = mp · vx(S) · P + [αSR + (1− aSR) · p] · r · bR

which we need to compare with C(R) = r · bR. We will use
as a measure of the bloom filter efficiency the ratio

g(p) =
CBF (R)

C(R)
= αSR + (1−aSR) · p+

mp · vx(S) · P
r · bR

(1)

For ease of notation, define c = vx(S)·P
(1−aSR)·r·bR·ln2(2)

. Since

we can choose the value of p as we want, we pick the one
which minimizes the ratio and define the optimal ratio g =
minp g(p). We will now compute the optimal value for p.
Equivalently, we ask to minimize the function f(p) = αSR +
(1− aSR) · (p− c · ln(p)). Taking f ′(p) = 0, we obtain that
1− c/p = 0 or p = c. It is easy to see that the optimal value
for p is popt = min{c, 1}. Setting popt = 1 essentially means
that we choose not to use the bloom filter. For the values
p < 1, we now have a new expression

g = αSR + (1− aSR) · (c− c · ln c) (2)

A first observation about equation 2 is that the improvement
we have can never surpass the selectivity of relation R.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ratio v(x,S)/r

ra
tio

 g

P = 100
P = 500
P = 50

Figure 4: A plot of g as a function of the ratio vx(S)/r
(distinct values of S per tuple of R) for bR = 512,
aSR = 0.1 and P = 50, 100, 500.

By observing figure 4, one can see that when vx(S) is less
than 1/5 of |R|, the bloom join algorithm performs better
in terms of communication cost. Specifically for the cases
where the number of processors is less than 100, the bloom
join outperforms the standard Hash-Join even when the
ratio vx(S)/r = 2. Moreover, one can observe that the ratio
is not scale-invariant, that is, as P grows, the ratio grows to 1
very quickly. However, even with 500 nodes, when S is much
smaller thanR, bloom filters can still reduce communication.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

selectivity a

ra
tio

 g

0.1
0.5
1

Figure 5: A plot of g as a function of the selectivity
aSR for bR = 512, P = 100 and vx(S)/r = 0.1, 0.5, 1.

Figure 5 shows how the ratio evolves as a function of the
selectivity. First, notice that, even when the selectivity is
very small, there is a considerable amount of communica-
tion, since we have to transfer the bloom filter. Second, the
graphs are approximately linear to aSR, which means that
the algorithm can exploit the fact that the selectivity is de-
creased (although the slope changes according to the other
parameters).

Next, we briefly turn our attention to analyzing the cost
for strategy B. We use the most cost-efficient algorithm
from the previous section, that is, algorithm BloomConcat.
For this case, we can compute in a similar way that the ratio

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ratio v(x,S)/r

ra
tio

 g

Strategy B
Strategy A

Figure 6: A plot of g as a function of the the ratio
vx(S)/r for strategies A and B and parameters aSR =
0.1, P = 100, bR = 512.

g′ will be

g′ = min
p

»
αSR + (1− aSR) · p− ln(1− (1− p)1/P) · vx(S) · P

r · bR · (ln 2)2

–
(3)

In figure 6, we plot g for strategies A and B as a function
of the ratio vx(S)/r. It is easy to observe that, even though
there are points where strategy B behaves better than the
standard algorithm, the ratio moves to 1 very quickly. More-
over, strategy B incurs a much higher access cost to the
bloom filter.

Comparison to Semi-Join. Another question that occurs
is whether a semi-join strategy would be more efficient than
a distributed bloom join. In other words, what if we send
πx(S) instead of BFx(S)? For fragment i, we need to send
vi

x(S) · bx · P bits. Hence, the total extra communication
will be CSJ = P · bx ·

P
i v

i
x(S) ≥ P · bx · vx(S). We have

to compare this to (1 − aSR) · (c − c ln c). It is easy to see
that the bloom-join strategy is almost always superior to
the semi-join strategy (at least for reasonable parameters).
Furthermore, filtering the tuples with πx(S) is much slower
than using a bloom filter, since we actually need to perform
a join computation.

4.1 Hashed Relations
So far, we have considered an arbitrary horizontal parti-

tion of the data residing on the servers. As we have seen,
this implies that the bloom filter approach does not scale
well when the number of processors increases. Here, we will
investigate whether we can optimize the use of bloom fil-
ters in the case that the data is partitioned based on some
locality principle.

More specifically, we consider the case where the one re-
lation, let it be S, is partitioned according to the value of
the common attribute x. In this case, the standard strategy,
without the use of bloom filters, is to hash R according to
the x-attribute, while S does not need to be communicated.
This results in communication cost equal to CR = r · bR.

Alternatively, we can try to compute BFx(S), send it to R
and filter the R-tuples that we send. We will try to exploit
the fact that S is regularly partitioned while computing the
bloom filter. Note that each server holding Si can compute

BFx(Si) and broadcast it. Thus, after the first communica-
tion step, each server will hold BFx(Si) from every server i.
Moreover, since the partitioning of S is known, the servers
holding R know exactly which bloom filter will be used for
very tuple.

The cost analysis for this case is similar to the analysis for
the arbitrary partitioning. The cost of the bloom filter will
be
P

i mp·vx(Si)·P = mp·vx(S)·P . Hence, the total cost will
be CBF = (aSR+(1−aSR)p)r·bR+mp ·vx(S)·P . Though we
have no cost savings, we avoid the bottleneck of computing
the bloom filter in a single server before broadcasting it,
which will speed up the execution of the algorithm.

5. CONJUNCTIVE QUERIES
In the previous section, we discussed how bloom filter

techniques can be used for a join computation. We now
consider bloom filter optimizations in the case of general
conjunctive queries.

As an example, let us consider the case of a 3-way join:
R(x, y), S(y, z), T (z, w). Notice that S can be filtered with
a bloom filter BFy(R), BFz(T) or even both. Similarly, R
can be filtered with BFy(S). However, following the concept
of semi-join reducers, we can try to filter S with BFz(T),
obtain S′, and then compute BFy(S′) and send it over to
R. This strategy can potentially further increase the num-
ber of filtered tuples. Nevertheless, such a strategy adds a
considerable computation overhead, for two main reasons: it
requires two communication steps instead of one, which adds
extra synchronization cost, and it also adds significant com-
putation delay because S must wait to be filtered before its
bloom filter is computed. Hence, considering more complex
filtering strategies does not seem a viable solution. For this
reason, we will consider only optimization strategies which
can be performed in parallel in one communication step.

This simplifies the problem substantially. Turning our
attention to the general problem, let us consider a relation
R in the conjunctive query Q. This relation has common
variables (i.e. joins) with some relations S1, . . . , Sk. In order
to filter R, we can choose among a subset of {S1, . . . , Sk},
compute their bloom filters on the common variables with
R and send them over to R. This can be completed in just
one communication step, since we can compute and send the
bloom filters in parallel.

A second important observation is that we can decide
upon the bloom filter strategy we will use for R indepen-
dently of what strategy we follow for the other relations in
Q. Thus, the initial problem boils down to a much simpler
question: given a relation R and a set of joining relations
S = {S1, . . . , Sk}, which subset of S should we use to filter
R so as to minimize the communication cost?

We will first study a simplified version of the problem,
where every relation in S has similar parameters, that is,
same selectivity on R and same size and size of records.
Moreover, we will assume that tuples from R are indepen-
dently filtered by each relation. In this setting, the question
reduces to choosing the optimal number of relations for fil-
tering (since they are all identical).

Let us now compute the total communication cost when
we choose i relations (i = 0, . . . , k) for filtering R. First, the
communication cost for sending only the bloom filters will
be i ·mp · P · vx(S). In order to compute the tuples we will
eventually send, we will interpret the fact that a tuple is sent
as a probabilistic event which depends on the randomness

of the bloom filter and the selectivity aSR. Denote by Bj

the event that a tuple is “accepted” by the j-th bloom filter.
Moreover, notice that a tuple will be sent only in the case it is
accepted by all the filters. This implies that the probability
that a tuple t is sent will be

p(t) = Pr[∧jBj] =
Y

j

Pr[Bj] = (aSR + (1− aSR) · p)i

where p is the probability of error we choose for the bloom
filters. Interpreting the probability as the fraction of tuples

which will be sent, and denoting c = vx(S)·P
r·bR·ln2(2)

, we conclude

that the ratio g(i, p) for a strategy of i filters is

g(i, p) = (aSR + (1− aSR) · p)i − i · c · ln p (4)

Moreover, we have the constraint 0 ≤ p ≤ 1. We now want
to compute the optimum value of p for a given i. This can be
done easily, since the derivative of g(i, p) is a polynomial and
its root gives the optimum value popt. For the purposes of
this project, we will only plot how g(i) behaves as a function
of i for different values of c and different values of aSR.

As we can see in figure 7, it is always better in terms of
communication to use more relations to filter R. However,
the gain observed is not significant compared to what we
obtain using only one relation for filtering.

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of relations i

ra
tio

 g

c = 0.04
c = 0.1
c = 0.4

Figure 7: A plot of g(i) for aSR = 0.1 and different
values of c.

In figure 8, we can observe a more advantageous use of
multiple bloom filters; when the selectivity factor becomes
larger, using more bloom filters drops the communication
cost significantly more.

Finally, let us drop the simplifying assumption that all
candidate relations for filtering are identical. This implies
that we can choose to construct a bloom filter for each re-
lation using a different error probability. Denote by pi the
error probability for relations Si. Notice also that setting
pi = 1 is equivalent to not using the bloom filter of rela-
tion Si. Using the same argument as before, we conclude
that the optimal ratio g is expressed as the solution of the
following optimization problem.

minimize

kY
i=1

(ai + (1− ai) · pi)−
kX

i=1

ci · ln(pi)

subject to ∀i = 1, . . . , k : 0 ≤ pi ≤ 1

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of relations i

ra
tio

 g

a = 0.1
a = 0.6
a = 0.3

Figure 8: A plot of g(i) for c = 0.04 and aSR =
0.1, 0.3, 0.6.

Thus, the optimization problem is to minimize an objec-
tive function subject to some simple linear constraints. Even
if we cannot afford to compute the optimal allocation of
probabilities, we can potentially evaluate the function over
a coarse k-dimensional grid for p1, . . . , pk and choose the
minimum value.

6. TRANSITIVE CLOSURE
In this section, we will briefly discuss how our approach

to using bloom filters may apply to a computation of the
transitive closure of a relation. We consider the following
datalog program, which describes the transitive closure T of
a graph G = (V,E)

T(x,y) :- E(x,y).

T(x,y) :- T(x,z), E(z,y).

In the case that E is small enough, we could broadcast
E to every server and then compute in a server s only the
paths that start from a node that is hashed to server s. In
the case that E is large, we have to partition G across the
servers. In order to do the partitioning, we hash the tuples
from E according to their first attribute. The computation is
performed in an iterative way and each server is responsible
for joining only the tuples in T such that their endpoint
hashes on this server. This means that, as a new tuple is
produced, it must be redistributed to the right server. More
concretely, when a server produces a new tuple (a, b), this
tuple must be sent to the server h(b). There, the new tuple
will be checked to see if it has already been generated by
some previous iteration. If not, it will be joined with the
edges that reside in the server.

Bloom filters can be useful to reducing the communication
during the redistributing step. First, we compute the bloom
filter BFy(E). This bloom filter essentially tries to capture
all vertices that have no outgoing edges. The bloom filter is
then distributed to every server. Now, when a new tuple is
computed, before we redistribute it, we filter it through the
bloom filter and transmit it only if it is not filtered. Intu-
itively, before sending the new tuple (a, b), we ask whether
the vertex b has any outgoing edges. If the case is such, we
do not need to send (a, b) at all.

In the case where the graph G has many nodes with no
outgoing edges, using a bloom filter can potentially decrease

the communication. Moreover, since bloom filters are com-
puted and distributed once, the extra cost is amortized over
the execution time and is negligible.

7. LESSONS LEARNED
In this section, we will briefly summarize the important

points in the course of studying bloom filters.

• Applying bloom filters in our distributed setting de-
creased communication cost for many configurations
of parameters, for both simple joins and more compli-
cated conjunctive queries (figures 4, 5, 8).

• The fact that we set the error probabilities of the
bloom filters to our will proved a powerful tool, for
example in section 5.

• The application of bloom filters does not scale well as
the processors increase (figure 4). This implies that,
as P gets larger, standard techniques may be more
efficient than bloom filters. The main reason for this
is that the bloom filter is broadcast to every server.

• We were unable to deploy the full reducer logic, since
that would lead to a considerable overhead in prepro-
cessing time (see section 5). Hence, we are restricted
in filtering only with neighboring relations in the hy-
pergraph, which may result to hanging tuples.

• Our approach measures only the advantage in com-
munication cost. Creating the filters and synchroniz-
ing their transmission are also costs that we have not
taken into account during this approach.

8. FUTURE WORK
The application of bloom filters in distributed query com-

putation seems a very promising idea. As we have seen,
the communication cost can be significantly reduced. How-
ever, it is not clear how the extra overhead for computing
and sending bloom filters influences the processing time. It
would be interesting to study the results over a practical
implementation of bloom filters.

Furthermore, in section 7, we briefly discussed how bloom
filters may help in computing the transitive closure of a re-
lation. It would also be interesting to try a theoretical and
experimental evaluation of this idea for this kind of compu-
tation. Finally, how could we apply bloom filters in more
general recursive programs, such as datalog programs?

9. REFERENCES
[1] Afrati, F. N., and Ullman, J. D. Optimizing joins

in a map-reduce environment. In EDBT (2010),
pp. 99–110.

[2] Bernstein, P. A., and Chiu, D.-M. W. Using
semi-joins to solve relational queries. J. ACM 28, 1
(1981), 25–40.

[3] Bloom, B. H. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM 13, 7 (1970),
422–426.

[4] Bratbergsengen, K. Hashing methods and
relational algebra operations. In VLDB (1984),
pp. 323–333.

[5] Dean, J., and Ghemawat, S. Mapreduce: Simplified
data processing on large clusters. In OSDI (2004),
pp. 137–150.

[6] Mackert, L. F., and Lohman, G. M. R* optimizer
validation and performance evaluation for distributed
queries. In VLDB (1986), pp. 149–159.

[7] Michael, L., Nejdl, W., Papapetrou, O., and
Siberski, W. Improving distributed join efficiency
with extended bloom filter operations. In AINA
(2007), pp. 187–194.

[8] Pagh, A., Pagh, R., and Rao, S. S. An optimal
bloom filter replacement. In Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete
algorithms (Philadelphia, PA, USA, 2005), SODA ’05,
Society for Industrial and Applied Mathematics,
pp. 823–829.

[9] Putze, F., Sanders, P., and Singler, J. Cache-,
hash-, and space-efficient bloom filters. J. Exp.
Algorithmics 14 (January 2010), 4:4.4–4:4.18.

[10] Ramesh, S., Papapetrou, O., and Siberski, W.
Optimizing distributed joins with bloom filters. In
ICDCIT (2008), pp. 145–156.

