
Improv: Flexible Data Provenance for Relational Databases

Nicholas Hunt Peter Hornyack
{nhunt,pjh}@cs.washington.edu

1. INTRODUCTION
Curated databases, which consist of data extracted from

original sources, printed articles, and other databases, are a
valuable source of data for scientists. However, as curated
databases aggregate information from multiple sources, the
origin of the data elements can be lost. Because of this, cu-
rated databases often provide support for data annotations,
which are pieces of extra information added to elements by
the human curators in the data extraction and collection
process, containing miscellaneous data such as the original
data source. However, manually recording the origin of each
data element is a tedious and error-prone task. Ideally, the
system would provide an automated way to track data prove-
nance, or the movement of a data element from its origin to
its final place of use.

To help address this problem, we have implemented a
mechanism for automating provenance tracking for relational
databases. Our system is based upon the Annotation Man-
agement System (AMS) described by Bhagwat et al. [4],
which uses annotations to track the origin of data elements
in a database. In addition to implementing one of the an-
notation propagation algorithms used in this previous work,
we have also added support for propagating annotations to
joined and aggregate values. Our implementation, called Im-
prov, operates by transparently transforming SQL queries
submitted by users to perform the annotation propagation,
without requiring changes to the database implementation
itself. This design allows our system to be easily integrated
into any application, regardless of the underlying database
engine. It is this feature that gives our system its name: the
Invisible Mechanism for Provenance.

Prior work has explored several aspects of data prove-
nance, including different annotation models for tracking dif-
ferent types of provenance; where-provenance, why-provenance
and how-provenance are examples. Buneman et al. [5] pro-
vides an overview of these areas. Briefly, for a particular
tuple found in a view or the output of a query, where-
provenance allows the database user to determine the base
table that contains that tuple; why-provenance tells the user
all of the tuples in the database that “contributed to” the
output tuple; and how-provenance allows the user to recon-
struct a query equivalent to the one that produced the out-
put. For Improv, we chose to track why-provenance, because
it is generally more informative than where-provenance, while
being simpler to implement than how-provenance.

RDBMS
User

App

Improv

1 2

3

Figure 1: The provenance mechanism sits transpar-
ently between the RDBMS and the user applica-
tion. Unmodified SQL queries from application (1)
get translated to annotation-propagating SQL (2);
the RDBMS executes this transformed query and
returns the results directly to the application (3).

2. DESIGN

2.1 Design Goals
When designing Improv, we had several goals in mind:

1. Provenance should be tracked at the cell (attribute)
level.

2. Provenance annotations should be propagated auto-
matically, without any special consideration from the
SQL user.

3. The system should expose to applications the same
SQL interface that they are used to.

4. The system should be flexible enough to be integrated
with any relational database.

The first decision we made was the granularity at which
to track data provenance. Some of the possible choices in-
clude the relation level, tuple level, or individual cell level.
We decided Improv would track provenance at the granular-
ity of individual cells, since it provides the most complete
provenance information. As an example of where prove-
nance information can be lost if tracking were performed
at the relation or tuple level, consider a simple join of two
input relations: with table or tuple level annotations, the
precise information regarding which attributes came from
which tables would be lost. Although the storage overhead
for cell annotations is greater than for tuple or table annota-
tions, prior work suggests that such fine-grained annotation
tracking is not prohibitively expensive [4].

Design goals 2 and 3 stem from the desire to create a
system that is transparent to the database user. In other
words, applications or users do not need to be aware that
annotations are being tracked by the system; they should be



able to query the database using the same queries that they
have used in the past, and the data returned by our sys-
tem should not require special parsing or handling to deal
with annotations. However, some applications may be in-
terested in analyzing the provenance information, and thus
there must be a way for a provenance-aware application to
retrieve the annotations for the data as well.

Finally, the purpose of goal 4 is to ensure that our im-
plementation is as usable as possible, without requiring the
installation of a custom or modified database system. We
wanted to ease the burden of deploying our provenance mech-
anism as much as possible. We decided to implement Im-
prov as a wrapper around an existing RDBMS, as shown in
Figure 1. Ideally, Improv would expose to the user or appli-
cation the same interface provided by the original database.
This design makes Improv “invisible” to both the user and
the database.

2.2 Annotation Management System
To meet these design goals, we chose to base our system on

the Annotation Management System, an early implementa-
tion of a system for tracking where-provenance [4]. AMS has
several useful properties, but also some limitations. How-
ever, because AMS tracks provenance annotations at the
cell granularity, it satisfies the first of our design goals. In
Improv we adjust the format of the annotations and the op-
erations that merge them together to track why-provenance,
rather than where-provenance.

AMS takes as input its own“pSQL”query language, which
consists of the Select-Project-Join-Union subset of SQL (con-
junctive queries with union) with an additional clause, PROP-
AGATE, that explicitly specifies how annotations should be
propagated through the system. AMS works by storing a
column of annotations along with each normal data column
in a table; pSQL queries are then “translated” into standard
SQL queries that propagate the annotations at the same
time that the query is evaluated. Because this translation
and propagation is hidden from the user, it fits our goal of
automatically propagating annotations within the database.

2.2.1 Limitations of AMS
One downside of the AMS design is that equivalent SQL

queries can produce slightly different annotation outputs.
To address this issue, AMS uses two different algorithms
for propagating annotations: a default algorithm that ig-
nores the issue, and a default-all algorithm that propa-
gates annotations in a way that captures all possible equiv-
alent queries. Improv currently only supports the default

algorithm, because it is simpler to implement and because
it is not clear that users always require the semantics of
default-all. However, default as described in AMS does
not support annotation propagation for joins, so we add this
support in Improv.

Update and delete operations are not cleanly compatible
with the AMS approach of propagating annotations con-
currently with query execution, so AMS does not support
these operations, and neither does Improv. This results
in an “append-only” database model, which matches some
databases that are used today [2].

Another limitation of AMS is the lack of support for ag-
gregates and bag semantics. One of the key features of our
implementation is the support for aggregation operators that
we have added (see Section 3.1). Our system currently does

not support bag semantics, but Section 3.5 describes one
possible way that bag semantics could be added.

3. IMPLEMENTATION
Improv is implemented as a wrapper around a conven-

tional relational database management system. We have
implemented Improv in Java and provide a simple API that
application programmers can use to connect to database
servers and execute SQL queries. We are currently using
PostgreSQL as the backing database, but because Improv
uses a JDBC interface for database communication, any
database backend supported by JDBC is also supported by
Improv.

Referring again to Figure 1, Improv intercepts all queries
sent to the database by applications or database users and
transforms those queries into expanded SQL queries that
propagate provenance annotations. These expanded queries
are then passed to the backing RDBMS and the results are
returned to the caller; the caller can configure an Improv
setting to choose whether or not to see the annotations in
the query results. The transformation of specific query types
are described in Sections 3.3, 3.4, and 3.5 below.

3.1 Attribute Annotations
Shadow Attributes. We track data provenance for

each cell in a tuple. To support these annotations, we allo-
cate shadow attributes for each attribute in a relation. That
is, for every attribute x in a relation, there is a correspond-
ing attribute xa that tracks the provenance for x. Initially
creating these shadow attributes is discussed in detail in
Section 3.3.

For our purposes, we are interested in collecting sets of
annotations. When two or more tuples contribute to the
value of a cell in a relation, that cell’s annotations should be
the union of all the annotation sets for the contributing cells.
Most database engines do not provide a set type, however,
and thus we represent sets as a simple comma-separated list
of set elements, stored in a standard TEXT column type.

Annotation aggregation. For our implementation of
annotation propagation, we frequently require the use of an
SQL aggregate function that performs a set union over a
collection of tuples. Because PostgreSQL does not support
such an aggregate by default, we implemented our own user-
defined function, setunion, that performs this required op-
eration. Using a user-defined function may limit our porta-
bility to other database engines, although most RDBMS to-
day provide this support.

Because our annotation sets are represented as a list of set
members, setunion is implemented by iterating over each
tuple annotation list in the aggregate, and maintaining an
in-memory hash table of the unique values seen so far in
any annotation set. This hash-table can then be iterated to
produce the union in O(n) time, where n is the number of
tuples in the relation being aggregated, and in O(m) space,
where m is the number of unique values in the attribute
being aggregated.

3.2 SQL Parsing
Parsing the SQL expressions in Improv is handled by the

open-source SQL parser ZQL [1]. Although ZQL supports
most common SQL constructs, it has a number of limita-
tions. For instance, ZQL is unable to understand nested



-- Before transformation

CREATE TABLE cust (

id INTEGER,

name VARCHAR(32));

-- After provenance transformation

CREATE TABLE cust (

id INTEGER,

id_a TEXT, -- Provenance for id

name VARCHAR(32),

name_a TEXT); -- Provenance for name

Figure 2: Transforming a CREATE statement. Each
column gets a new annotation column to track the
provenance tags.

queries in the FROM clause of an SQL SELECT statement, and
Improv inherits this limitation. Also, ZQL is unable to parse
CREATE statements, but we were able to extend the parser
to support these.

3.3 CREATE Statements
When a user creates a new relation using a CREATE state-

ment, Improv needs to transparently create the shadow at-
tributes described above to contain the provenance annota-
tions. Creating these additional shadow attributes is done
by iterating over each of the columns specified in the orig-
inal CREATE, and for each column, appending an additional
attribute to the schema. The name of this new attribute is
the same as the original, with an additional suffix of “ a” to
designate it as an annotation. We assume for simplicity that
these new column names do not conflict with column names
already present in the user’s original input query.

As an example of a CREATE transformation, Figure 2 shows
the creation of a simple customer table cust containing a
customer ID and name. Our transformation includes the
same two attributes as the original query, but also includes
the shadow attributes for holding provenance information.

3.4 INSERT Statements
Insertion into a database is performed with an INSERT

statement, indicating the values to insert and the columns
to insert them into. Transformation of INSERT statements
is performed similarly to the CREATE statements discussed
above: Improv will iterate over the values specified in the
original query, and construct a new query identical to the
first with additional values specified for the annotation at-
tributes. Figure 3 shows the result of a transformation of a
query inserting a new record into the cust relation defined
above.

-- Before transformation

INSERT INTO cust (id, name)

VALUES (10, ’Joe’);

-- After provenance transformation

-- ann1 and ann2 are defined in the main text

INSERT INTO cust (id, id_a, name, name_a)

VALUES (10, ann1, ’Joe’, ann2);

Figure 3: Transforming an INSERT statement. The
query is modified to include initial values for the
corresponding shadow attributes.

The initial annotations assigned to cells in the database
are globally unique values. Currently, the annotations are
strings consisting of the username of the user who is inserting
the value, the name of the table the value is being inserted
into, and an integer making the entire annotation unique.
For instance, if the user nhunt were to insert a new value
into the cust relation, an annotation for the id column could
be nhunt:cust:152. The values ann1 and ann2 in Figure 3
would be similar to this previous example.

An alternate implementation might just be concerned about
which database users contribute to a value, and thus might
opt for just including the username. With just the user-
name annotations, it would be possible to determine which
users have contributed data that affected the value of the
cell under investigation, but precise information about ex-
actly what data contributed to its value would be lost. We
chose our scheme to provide the maximum level of detail,
but this choice can easily be configured based on the needs
of the application.

3.5 SELECT Statements
SELECT statements are the workhorse of our annotation

propagation algorithm. Our goal is to transform SELECT

statements such that each output column has a correspond-
ing annotation column that contains the union of the anno-
tations for every column in the relation that contributed to
each cell’s output value.

Consider, for example, the simple SELECT statement in
Figure 4. Before applying our transformation algorithm,
the query simply projects the id and name attributes from
the cust relation. Thus, in addition to the id and name at-
tributes, our transformed query must also project the corre-
sponding annotation columns. These additional projections
can be seen in the inner query of the transformed statement.

-- Before transformation

SELECT id, name FROM cust c;

-- After provenance transformation

SELECT id, name,

setunion(id_a) AS id_a,

setunion(name_a) AS name_a

FROM ((SELECT c.id, c.name,

c.id_a AS id_a,

c.name_a AS name_a

FROM cust c)

) AS psqlResult GROUP BY id, name

Figure 4: Transforming a simple SELECT statement.
The inner query in the FROM clause projects the an-
notations and the outer SELECT aggregates all anno-
tations for the project attributes.

In this example, each output attribute only gets data from
a single input attribute, and thus the output annotations are
a simple projection of the input annotations. For queries
that combine data from two or more columns in the input
relations, the annotations for all contributing cells must be
reflected in the final annotation of the output relation. As a
more complex example to illustrate this, consider the simple
equijoin operation shown in Figure 5, where the cust and
sales relations are joined on the customer id.

The first sub-query in the FROM clause projects the desired
application-visible attributes for the id, name and price, in



-- Before transformation

SELECT c.id, c.name, s.price

FROM cust c, sales s

WHERE c.id = s.cid;

-- After provenance transformation

SELECT id, name, price,

setunion(id_a) AS id_a,

setunion(name_a) AS name_a,

setunion(price_a) AS price_a

FROM ((SELECT c.id, c.name, s.price,

s.price_a AS price_a,

c.name_a AS name_a,

-- Project annotations from c

c.id_a AS id_a

FROM cust c, sales s

WHERE (c.id = s.cid))

UNION

(SELECT c.id, c.name, s.price,

NULL AS price_a,

NULL AS name_a,

-- Project annotations from s

s.cid_a AS id_a

FROM cust c, sales s

WHERE (c.id = s.cid))

) AS psqlResult GROUP BY id, name, price

Figure 5: Transforming an equijoin SELECT state-
ment. The annotations for both the s.cid and c.id

attributes are projected to the final id attribute in
the output relation.

addition to the annotations for these attributes. However,
because the id in the output relation is the result of an
equijoin with the cid attribute of the sales relation, the
second query of the inner union projects the annotations
for s.cid to the output annotations for id as well. The
outer query will then group by the attributes projected by
the original query, and aggregate the annotation columns
using setunion, the custom set aggregator described in Sec-
tion 3.1.

Because of the GROUP BY in the transformed query, our
current implementation does not support the bag semantics
of standard SQL. For instance, projecting a non-key column
can produce duplicates in standard SQL, but our system
would eliminate duplicates as a result of the grouping. Al-
though not examined in detail for this project, we could
continue to support bag semantics by adding a “multiplic-
ity” annotation to the tuples, indicating the number of times
this tuple would have appeared in unmodified SQL.

3.5.1 Aggregates and Duplicate Elimination
Aggregate functions (such as MIN, COUNT, AVG, etc.), and

duplicate elimination are handled in our system by prop-
agating the annotations of all cells involved in the aggre-
gate (or the duplicate tuples) to the corresponding annota-
tion attribute of the output relation. For example, in the
query SELECT SUM(price) AS sum FROM sales, the output
relation would have two attributes: one for sum and one for
the annotations for sum. The sum attribute would contain
the sum of all values in the price column and the annotation
attribute would be the union of all the annotations of those
cells.

4. EVALUATION
We evaluate our system both objectively and subjectively.

Our objective evaluation aims to determine Improv’s perfor-
mance overhead and scalability for different types of database
queries. Our subjective analysis will provide a brief retro-
spective on our experiences using the system.

4.1 Methodology
Our performance evaluation was performed on a 4 core In-

tel Xeon server with 2 GB of RAM. All of the experiments
were executed 5 times, discarding the minimum and max-
imum times, and the mean and 95% confidence interval of
the remaining three trials is presented in the data below. We
tried to minimize the amount of background processes run-
ning on the system, but because our test server is a shared
system, there was inevitably noise introduced in our results
by other users on the system. However, given the execution
time of our tests and the relatively tight grouping of the in-
dividual trials, we feel this noise is minimal and thus did not
have a significant effect on our results. Both the database
server and the client were run on the same machine to reduce
the perturbation of our results due to network latency.

4.1.1 System Configurations
To evaluate our system, we fixed a set of four different

types of SQL queries, and measured the time required to ex-
ecute those queries under four different configurations. The
configurations shown in the results are:

Native SQL Queries with Unannotated Tables This
provides a baseline for how the SQL query performs
on the unmodified database. The tables do not con-
tain the shadow annotation columns, and the queries
do not propagate provenance.

Native SQL Queries with Annotated Tables The ta-
bles contain the shadow attributes for annotations, but
the queries are not translated by Improv and thus do
not propagate the annotations to the output.

Improv Queries with NULL Propagation Tables have
annotations and all queries are translated to propa-
gate annotations; however, the custom setunion an-
notation aggregation function is replaced with a NULL
aggregator.

Improv Queries with Full Propagation This is the full
implementation of our provenance mechanism. All re-
lations have shadow attributes for annotations and all
queries are correctly translated to propagate the an-
notations to the output, as described in the preceding
sections.

This set of configurations was chosen to isolate various
components of our implementation to help understand where
some of the system overheads come from. Comparing the
first and second configurations allows us to determine the
performance overhead due to just the presence of the prove-
nance annotations in the base tables. Comparing the sec-
ond and third configurations will show how much additional
overhead is introduced by executing the transformed query
that performs the annotation propagation; as shown in Fig-
ure 5, this transformed query is often significantly more
complex than the original query. Finally, comparing the
third and fourth configurations shows the overhead of our



SELECT ndb_no, nutr_val, min_val, max_val

FROM nut_data

WHERE nutr_val > 0.5;

(a) Simple selection/projection query used for evaluation

SELECT f.ndb_no, f.shrt_desc, n.nutrdesc, n.nutr_val

FROM nutrients n, foods f

WHERE n.ndb_no = f.ndb_no;

(b) Join query used for evaluation

SELECT nutr_no, COUNT(nutr_val) AS c,

SUM(nutr_val) AS s

FROM nutrients

GROUP BY nutr_no;

(c) Aggregate query with few bins, many elements per bin

SELECT nutr_val, COUNT(nutr_no) AS c,

MIN(nutr_no) AS m

FROM nutrients

GROUP BY nutr_val;

(d) Aggregate query with many bins, few elements per bin

Figure 6: SQL queries used to evaluate Improv

setunion aggregate operator and the cost of maintaining
the annotation sets.

4.1.2 Query Types
For each of the system configurations given in the previous

section we evaluate four different SQL queries and measure
the time required to perform the operation as a function of
database size. The four queries were chosen to evaluate our
system under a variety of workloads. The queries chosen
were as follows:

Simple Selection/Projection. The query for selection
and projection simply projects a set of attributes for tuples
matching a particular selection criterion in a single relation;
it is shown in Figure 6(a). One of the projected columns is
a key, so no duplicate elimination happens with this query.

Simple Join. This query performs an equijoin on two
relations in the database and projects a set of the attributes.
Figure 6(b) shows the query used for this case.

Aggregates/Duplicate Elimination. We look at two
queries that perform aggregation and duplicate elimination.
The first query, show in Figure 6(c), groups by an attribute
that has a relatively small number of unique values; thus,
each group has a large number of elements assigned to it.
The second aggregate query, shown in Figure 6(d), groups by
an attribute with a large number of unique values, resulting
in a large number of groups and a small number of tuples
aggregated in each group.

4.1.3 Test Data Sets
For our evaluation, we used a subset of the National Nu-

trient Database for Standard Reference [3], provided by the
USDA. The tables used in our evaluation along with the
number of tuples in each are shown in Table 1. The first

Relation No. of Tuples

food_des 7104
nut_data 555726
nutr_def 146

foods 7104
nutrients 555726

Table 1: Size of the relations used in our evaluation

group of relations are base tables provided by the data set.
The second group contains views we created on this data:
foods is a simple projection of a subset of the attributes
in food_des, whereas nutrients is a join of the nut_data

and nutr_def relations. To vary the size of the database
for our evaluation, for each of these tables we created multi-
ple smaller tables by randomly choosing a percentage of the
tuples to keep.

4.2 Experimental Results

4.2.1 Comparison of Improv to native database
The performance and scalability results are shown in Fig-

ure 7. The graphs in this figure show the wall-clock time
measured while executing each of the four evaluation queries.
Within each cluster, the different bars show the runtime for
each of the four system configurations. The different clus-
ters within a graph show the effect database size has on the
query runtime. The missing bars in Figure 7(d) for Improv
are due to the execution time being too long.

There are several points to take away from the graphs in
Figure 7. First, in all cases, comparing native PostgreSQL
with and without annotations shows that the presence of the
annotations in the databases has a small but noticeable per-
formance impact. This is likely because even though the na-
tive PostgreSQL queries that we run do not explicitly touch
the shadow annotation columns, these columns may be read
in from disk or may occupy some memory before they are
projected away in the query execution.

Comparing native PostgreSQL to Improv shows that Im-
prov introduces significant performance overhead, even when
NULL propagation is used. Improv executes simple select
and join queries about 12x more slowly than native Post-
greSQL; for queries with aggregation, Improv is more than
100x slower. For select and join queries, this performance
overhead is due almost entirely to the increased complexity
of the transformed query that propagates the annotations:
the simple select query is transformed into a query with one
subquery in the FROM clause, while the simple join query be-
comes a query with a union of two subqueries in the FROM

clause. Our timing instrumentation indicated that the time
to transform a query before it is evaluated is negligible.

Despite the large constant performance overhead that Im-
prov has for select and join queries, it does preserve scala-
bility for these queries. For the select query, the difference
in execution time for the smallest and largest database sizes
is slightly greater than one order of magnitude, for both na-
tive PostgreSQL and Improv; this is seen similarly for the
join query. However, this is not the case for the aggregate
queries, which scale worse for Improv than they do for native
PostgreSQL.

Aggregate operations perform so poorly in Improv because
of our choice of annotations. In Figures 7(c) and 7(d), com-



1	  

10	  

100	  

1000	  

10000	  

100000	  

6%	   13%	   25%	   50%	   100%	  

Ti
m
e	  
(m

s)
	  

Size	  of	  database	  

Selec3on	  on	  a	  single	  rela3on	  

Postgresql	   Postgresql,	  annotated	   Improv,	  NULL	  propaga=on	   Improv	  

(a) Simple selection and projection

1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

6%	   13%	   25%	   50%	   100%	  

Ti
m
e	  
(m

s)
	  

Size	  of	  Database	  

Join	  on	  two	  rela6ons	  

Postgresql	   Postgresql,	  annotated	   Improv,	  NULL	  propaga=on	   Improv	  

(b) Join between two relations

1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

6%	   13%	   25%	   50%	   100%	  

Ti
m
e	  
(m

s)
	  

Size	  of	  database	  

Aggregate	  with	  few	  bins	  

Postgresql	   Postgresql,	  annotated	   Improv,	  NULL	  propaga=on	   Improv	  

(c) Aggregate with few bins and many elements

1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

6%	   13%	   25%	   50%	   100%	  
Ti
m
e	  
(m

s)
	  

Size	  of	  database	  

Aggregate	  with	  many	  bins	  

Postgresql	   Postgresql,	  annotated	   Improv,	  NULL	  propaga=on	   Improv	  

(d) Aggregate with many bins and few elements

Figure 7: Performance and scalability results for each of the query types and system configurations. Both
axes use a logarithmic scale.

paring the execution times of Improv with NULL annotation
propagation and Improv with full propagation shows the
cost of using our setunion operator to keep sets of strings
for the annotations. As the database size increases, both
the number of “bins” for the values to be grouped by and the
number of tuples in each bin grows; computing an aggregate
means that all of the annotations for the cells of the tuples in
a bin must be unioned together with setunion. Our choice
to use TEXT attributes for the annotations, and our resulting
implementation of setunion that involves string concatena-
tion and hash table manipulations in Perl, makes unioning
together all of these annotations a very expensive operation
which does not scale linearly with the size of the database.
The difference between Figure 7(c) and Figure 7(d) suggests
that there is some fixed cost for computing the setunion for
each bin (perhaps for constructing and traversing a hash
table) that is independent of the number of annotations in
that bin, which causes the number of bins to be a greater
factor in performance cost than the number of annotations
in each bin.

These results clearly show that by improving the way that
Improv tracks annotations, our system could see significant
performance improvements for queries with extensive group-
ing or duplicate elimination. An alternate implementation
might keep a separate one-to-many relation containing the
annotations for the cells: each cell in the database would be
assigned a globally unique integer identifier, and this identi-

fier can be used to look up the annotations in the annotation
relation. This would replace the expensive string operations
with the standard insertion operations that are highly opti-
mized.

4.2.2 Performance across query types
Figure 8 shows a direct comparison of the runtimes for

the different types of fully annotated queries with Improv,
as the size of the database grows. As expected, the simple
selection query is by far the most performant since no an-
notations need to be merged to satisfy the query. The join
is the second fastest and the two aggregate queries perform
significantly worse. The aggregation with many bins very
quickly becomes impractical to compute.

4.3 Usability Evaluation
Our system was designed to allow the user to determine

which cells in a relational database contributed to the cur-
rent value of a particular cell, and to do this in a transparent
way. From this perspective, we feel our system works well.
Users can submit queries, and the results are all annotated
with the provenance tags, and the tags provide enough infor-
mation to the user to determine the source. Figure 9 shows
an example of the annotation returned by Improv for a cell
that was used to join two relations. It is clear that the cell
with this annotation has its current value because of data
inserted into the database from two different users, sue and



0	  

100	  

200	  

300	  

400	  

500	  

600	  

700	  

800	  

900	  

0%	   10%	   20%	   30%	   40%	   50%	   60%	   70%	   80%	   90%	   100%	  

Ti
m
e	  
(s
)	  

Database	  Size	  

Comparison	  of	  query	  types	  for	  Improv	  

Select	   Join	   Aggregate	  (few	  bins)	   Aggregate	  (many	  bins)	  

Figure 8: Comparison of overheads for different
query types with fixed database size and full an-
notation propagation.

pjh, and that the data came from two different relations,
food and nutrition.

sue:foods:5244,pjh:nutrition:1989

Figure 9: Example annotation for a cell used to join
two relations.

While the join annotations are fairly easy for the user to
understand, we have found the annotations for aggregates
to be slightly more cumbersome. Consider the annotation
in Figure 10, which is the annotation for a cell that is the
aggregate of 8 tuples.

pjh:nutrition:7705,pjh:nutrition:5925,

pjh:nutrition:6317,pjh:nutrition:2079,

pjh:nutrition:7993,pjh:nutrition:21,

pjh:nutrition:9457,pjh:nutrition:2080

Figure 10: Example annotation for an aggregate cell.

Because we aggregate all annotations of cells involved in
the union, the length of the annotation will grow linearly
with the number of cells being aggregated. While the anno-
tation allows the user to determine exactly what cells con-
tributed to the aggregate value, the length of the annotation
may make it difficult to understand. This example may be
a case where a less precise annotation may be more mean-
ingful. For example, maybe for aggregates the annotation
can be identify the attribute being aggregated, rather than
the individual cell in every tuple. Although less precise,
this may be more useful for a user trying to understand the
output of our system.

5. RELATED WORK
Prior to AMS, other work had described where- and why-

provenance and proposed some mechanisms for tracking it.
Buneman, Khanna, and Tan [6] introduced the concept of
where-provenance as distinct from why-provenance, and pre-
sented a method where, given a query and a database, a
“reverse query” can be generated that determines the prove-
nance for a single output tuple. This reverse query technique
was also demonstrated by Cui, Widom and Wiener [7] for

tracking why-provenance. However, if provenance informa-
tion is desired for a large set of output tuples, a large number
of these reverse queries must be generated and evaluated, so
AMS and Improv take the approach of propagating annota-
tions within the database on every query and view creation.

Green et al. [8] showed that when annotated relations
are expressed as a commutative semiring, a positive closed
algebra exists that propagates the annotations across se-
quences of relational operations. Annotating input tuples
with unique ids and using a simple union operator in the
algebra expresses why-provenance: the set of input tuples
that contributed to an output tuple. Furthermore, how-
provenance can be expressed by using sum and product
operators, rather than union, and by using polynomials as
symbolic representations of semirings. How-provenance is a
superset of why-provenance that describes (unlike a set) all
of the possible ways that an output tuple could have been
constructed from the input tuples. Other types of annota-
tions and operators on commutative semirings can express
other properties of relations, such as bag semantics; Improv
could be adapted to propagate these other types of annota-
tions in order to track other useful information instead of
(or perhaps in addition to) why-provenance.

6. CONCLUSIONS
Improv improves upon the AMS default algorithm for

propagating annotations by adding support for join and ag-
gregate operations. Our system succeeds in tracking the
why-provenance of each cell in the database, although we
find that why-provenance may not represent exactly the in-
formation that a user desires for certain operations, such as
aggregation. The performance overhead of Improv for track-
ing provenance is significant. We find that much of the per-
formance cost could be eliminated by optimizing parts of our
implementation, particularly the annotation format and the
operator used to merge annotations together. Improv suc-
ceeds in remaining“invisible”to database clients and servers,
requiring only the addition of a custom aggregator function
to the database server in our current implementation.

7. REFERENCES
[1] ZQL: a Java SQL Parser, September 2010.

http://zql.sourceforge.net/.

[2] SQLShare: Database-as-a-Service for Researchers, February
2011. http://escience.washington.edu/sqlshare.

[3] USDA National Nutrient Database for Standard Reference,
March 2011.
http://www.ars.usda.gov/Services/docs.htm?docid=8964.

[4] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew Tan, and
Gaurav Vijayvargiya. An annotation management system for
relational databases. In Mario A. Nascimento, M. Tamer Özsu,
Donald Kossmann, Renée J. Miller, José A. Blakeley, and
K. Bernhard Schiefer, editors, VLDB, pages 900–911. Morgan
Kaufmann, 2004.

[5] Peter Buneman, James Cheney, Wang Chiew Tan, and Stijn
Vansummeren. Curated databases. In Maurizio Lenzerini and
Domenico Lembo, editors, PODS, pages 1–12. ACM, 2008.

[6] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why
and where: A characterization of data provenance. In Jan Van
den Bussche and Victor Vianu, editors, ICDT, volume 1973 of
Lecture Notes in Computer Science, pages 316–330. Springer,
2001.

[7] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the
lineage of view data in a warehousing environment. ACM Trans.
Database Syst., 25(2):179–227, 2000.

[8] Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance semirings. In Leonid Libkin, editor, PODS, pages
31–40. ACM, 2007.


