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Answering Queries Using Views: A SurveyAlon Y. HalevyDepartment of Computer S
ien
e and EngineeringUniversity of WashingtonSeattle, WA, 98195alon�
s.washington.eduAddress(es) of author(s) should be givenAbstra
t The problem of answering queries using views is to �nd eÆ
ient methods of answering a queryusing a set of previously de�ned materialized views over the database, rather than a

essing the databaserelations. The problem has re
ently re
eived signi�
ant attention be
ause of its relevan
e to a wide variety ofdata management problems. In query optimization, �nding a rewriting of a query using a set of materializedviews 
an yield a more eÆ
ient query exe
ution plan. To support the separation of the logi
al and physi
alviews of data, a storage s
hema 
an be des
ribed using views over the logi
al s
hema. As a result, �nding aquery exe
ution plan that a

esses the storage amounts to solving the problem of answering queries usingviews. Finally, the problem arises in data integration systems, where data sour
es 
an be des
ribed aspre
omputed views over a mediated s
hema. This arti
le surveys the state of the art on the problem ofanswering queries using views, and synthesizes the disparate works into a 
oherent framework. We des
ribethe di�erent appli
ations of the problem, the algorithms proposed to solve it and the relevant theoreti
alresults.1 Introdu
tionThe problem of answering queries using views (a.k.a. rewriting queries using views) has re
ently re
eivedsigni�
ant attention be
ause of its relevan
e to a wide variety of data management problems: query optimiza-tion, maintenan
e of physi
al data independen
e, data integration and data warehouse design. Informallyspeaking, the problem is the following. Suppose we are given a query Q over a database s
hema, and a setof view de�nitions V1; : : : ; Vn over the same s
hema. Is it possible to answer the query Q using only theanswers to the views V1; : : : ; Vn? Alternatively, what is the maximal set of tuples in the answer of Q that we
an obtain from the views? If we 
an a

ess both the views and the database relations, what is the 
heapestquery exe
ution plan for answering Q?The �rst 
lass of appli
ations in whi
h we en
ounter the problem of answering queries using views isquery optimization and database design. In the 
ontext of query optimization, 
omputing a query usingpreviously materialized views 
an speed up query pro
essing be
ause part of the 
omputation ne
essary forthe query may have already been done while 
omputing the views. Su
h savings are espe
ially signi�
ant inde
ision support appli
ations when the views and queries 
ontain grouping and aggregation. Furthermore, insome 
ases, 
ertain indi
es 
an be modeled as pre
omputed views (e.g., join indi
es [Val87℄),1 and de
idingwhi
h indi
es to use requires a solution to the query rewriting problem. In the 
ontext of database design,view de�nitions provide a me
hanism for supporting the independen
e of the physi
al view of the data andits logi
al view. This independen
e enables us to modify the storage s
hema of the data (i.e., the physi
alview) without 
hanging its logi
al s
hema, and to model more 
omplex types of indi
es. Hen
e, several1 Stri
tly speaking, to model join indi
es we need to extend the logi
al model to refer to row IDs.
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ribe the storage s
hema as a set of views over the logi
al s
hema [YL87,TSI96,Flo96℄. Giventhese des
riptions of the storage, the problem of 
omputing a query exe
ution plan (whi
h, of 
ourse, musta

ess the physi
al storage) involves �guring out how to use the views to answer the query.A se
ond 
lass of appli
ations in whi
h our problem arises is data integration. Data integration systemsprovide a uniform query interfa
e to a multitude of autonomous data sour
es, whi
h may reside within anenterprise or on the World-Wide Web. Data integration systems free the user from having to lo
ate sour
esrelevant to a query, intera
t with ea
h one in isolation, and manually 
ombine data from multiple sour
es.Users of data integration systems do not pose queries in terms of the s
hemas in whi
h the data is stored,but rather in terms of a mediated s
hema. The mediated s
hema is a set of relations that is designed fora spe
i�
 data integration appli
ation, and 
ontains the salient aspe
ts of the domain under 
onsideration.The tuples of the mediated s
hema relations are not a
tually stored in the data integration system. Instead,the system in
ludes a set of sour
e des
riptions that provide semanti
 mappings between the relations in thesour
e s
hemas and the relations in the mediated s
hema.The data integration systems des
ribed in [LRO96b,DG97b,KW96,LKG99℄ follow an approa
h in whi
hthe 
ontents of the sour
es are des
ribed as views over the mediated s
hema. As a result, the problem ofreformulating a user query, posed over the mediated s
hema, into a query that refers dire
tly to the sour
es
hemas be
omes the problem of answering queries using views. In a sense, the data integration 
ontext 
anbe viewed as an extreme 
ase of the need to maintain physi
al data independen
e, where the logi
al andphysi
al layout of the data sour
es has been de�ned in advan
e. The solutions to the problem of answeringqueries using views di�er in this 
ontext be
ause the number of views (i.e., sour
es) tends to be mu
h larger,and the sour
es need not 
ontain the 
omplete extensions of the views.In the area of data warehouse design we need to 
hoose a set of views (and indexes on the views) tomaterialize in the warehouse [HRU96,TS97,YKL97,GHRU97,ACN00,CG00℄. Similarly, in web-site design,the performan
e of a web site 
an be signi�
antly improved by 
hoosing a set of views to materialize [FLSY99℄.In both of these problems, the �rst step in determining the utility of a 
hoi
e of views is to ensure that theviews are suÆ
ient for answering the queries we expe
t to re
eive over the data warehouse or the web site.This problem, again, translates into the view rewriting problem.Finally, answering queries using views plays a key role in developing methods for semanti
 data 
a
hingin 
lient-server systems [DFJ+96,KB96,CR94,ACPS96℄. In these works, the data 
a
hed at the 
lient ismodeled semanti
ally as a set of queries, rather than at the physi
al level as a set of data pages or tuples.Hen
e, de
iding whi
h data needs to be shipped from the server in order to answer a given query requiresan analysis of whi
h parts of the query 
an be answered by the 
a
hed views.The many appli
ations of the problem of answering queries using views has spurred a 
urry of resear
h,ranging from theoreti
al foundations to algorithm design and implementation in several 
ommer
ial systems.This arti
le surveys the 
urrent state of the art in this area, and 
lassi�es the works into a 
oherent frameworkbased on a set of dimensions along whi
h the treatments of the problem di�er.The treatments of the problem di�er mainly depending on whether they are 
on
erned with query op-timization and database design or with data integration. In the 
ase of query optimization and databasedesign, the fo
us has been on produ
ing a query exe
ution plan that involves the views, and hen
e the e�orthas been on extending query optimizers to a

ommodate the presen
e of views. In this 
ontext, it is ne
essarythat rewriting of the query using the views be an equivalent rewriting in order for the query exe
ution planto be 
orre
t. It is important to note that some of the views in
luded in the query plan may not 
ontributeto the logi
al 
orre
tness of the plan, but only to redu
ing the plan's 
ost.In the data integration 
ontext, the fo
us has been on translating queries formulated in terms of amediated s
hema into queries formulated in terms of data sour
es. Hen
e, the output of the algorithm isa query expression, rather than a query exe
ution plan. Be
ause the data sour
es may not entirely 
overthe domain, we sometimes need to settle for a 
ontained query rewriting, rather than an equivalent one. A
ontained query rewriting provides a subset of the answer to the query, but perhaps not the entire answer.In addition, the works on data integration distinguished between the 
ase in whi
h the individual views are
omplete (i.e., 
ontain all the tuples in their de�nition) and the 
ase where they may be in
omplete (as is
ommon when modeling autonomous data sour
es). Furthermore, the works on data integration distinguishedthe translation problem from the more general problem of �nding all the answers to a query given the datain the sour
es, and showed that the two problems di�er in interesting ways.



Answering Queries Using Views: A Survey 3The survey is organized as follows. Se
tion 2 presents in more detail the appli
ations motivating the studyof the problem and the dimensions along whi
h we 
an study the problem. Se
tion 3 de�nes the problemformally. As a basis for the dis
ussion of the di�erent algorithms, Se
tion 4 provides an intuitive explanationof the 
onditions under whi
h a view 
an be used to answer a query. Se
tion 5 des
ribes how materializedviews have been in
orporated into query optimization. Se
tion 6 des
ribes algorithms for answering queriesusing views that were developed in the 
ontext of data integration. Se
tion 7 surveys some theoreti
al issues
on
erning the problem of answering queries using views, and Se
tion 8 dis
usses several extensions to thealgorithms in Se
tions 5 and 6 to a

ommodate queries over obje
t-oriented databases and queries witha

ess-pattern limitations. Finally, Se
tion 9 
on
ludes, and outlines some of the open problems in this area.We note that this survey is not 
on
erned with the 
losely related problems of in
remental mainte-nan
e of materialized views, whi
h is surveyed in [GM99b℄, sele
tion of whi
h views to maintain in adata warehouse [HRU96,TS97,GHRU97,Gup97b,YKL97,GM99
,CG00,CHS01℄ or automated sele
tion ofindexes [CN98b,CN98a℄.2 Motivation and Illustrative ExamplesBefore beginning the detailed te
hni
al dis
ussion, we motivate the problem of answering queries usingviews through some of its appli
ations. In parti
ular, this se
tion serves to illustrate the wide and seeminglydisparate range of appli
ations of the problem. We end the se
tion by 
lassifying the di�erent works on thetopi
 into a taxonomy.We use the following familiar university s
hema in our examples throughout the paper. We assume thatprofessors and students and departments are uniquely identi�ed by their names, and 
ourses are uniquelyidenti�ed by their numbers. The Registered relation des
ribes the students' registration in 
lasses, while theMajor relation des
ribes in whi
h department a parti
ular student is majoring (we assume for simpli
ity thatevery department has a single major program).Prof(name, area)Course(
-number, title)Tea
hes(prof, 
-number, quarter, evaluation)Registered(student, 
-number, quarter)Major(student, dept)WorksIn(prof, dept)Advises(prof, student).2.1 Query OptimizationThe �rst and most obvious motivation for 
onsidering the problem of answering queries using views is forquery optimization. If part of the 
omputation needed to answer a query has already been performed in
omputing a materialized view, then we 
an use the view to speed up the 
omputation of the query.Consider the following query, asking for students and 
ourse titles for students who registered in Ph.D-level 
lasses taught by professors in the Database area (in our example university graduate level 
lasses havenumbers of 400 and above, and Ph.D-level 
ourses numbers of 500 and above):sele
t Registered.student, Course.titlefrom Tea
hes, Prof, Registered, Coursewhere Prof.name=Tea
hes.prof and Tea
hes.
-number=Registered.
-number andTea
hes.quarter=Registered.quarter and Registered.
-number=Course.
-number andCourse.
-number � 500 and Prof.area="DB".Suppose we have the following materialized view, 
ontaining the registration re
ords of graduate level
ourses and above.
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reate view Graduate assele
t Registered.student, Course.title, Course.
-number, Registered.quarterfrom Registered, Coursewhere Registered.
-number=Course.
-number and Course.
-number � 400.The view Graduate 
an be used in the 
omputation of the above query as follows:sele
t Graduate.student, Graduate.titlefrom Tea
hes, Prof, Graduatewhere Prof.name=Tea
hes.prof andTea
hes.
-number=Graduate.
-number and Tea
hes.quarter=Graduate.quarter andGraduate.
-number � 500 and Prof.area="DB".The resulting evaluation will be 
heaper be
ause the view Graduate has already performed the join betweenRegistered and Course, and has already pruned the non-graduate 
ourses (the 
ourses that a
tually a

ountfor most of the a
tivity going on in a typi
al university). It is important to note that the view Graduate isuseful for answering the query even though it does not synta
ti
ally mat
h any of the subparts of the query.Even if a view has already 
omputed part of the query, it is not ne
essarily the 
ase that using the viewwill lead to a more eÆ
ient evaluation plan, espe
ially 
onsidering the indexes available on the databaserelations and on the views. For example, suppose the relations Course and Registered have indexes on the
-number attribute. In this 
ase, if the view Graduate does not have any indexes, then evaluating the querydire
tly from the database relations may be 
heaper. Hen
e, the 
hallenge is not only to dete
t when a viewis logi
ally usable for answering a query, but also to make a judi
ious 
ost-based de
ision on when to use theavailable views.2.2 Maintaining Physi
al Data Independen
eSeveral works on answering queries using views were inspired by the goal of maintaining physi
al dataindependen
e in relational and obje
t-oriented databases [YL87,TSI96,Flo96℄. One of the prin
iples un-derlying modern database systems is the separation between the logi
al view of the data (e.g., as tableswith their named attributes) and the physi
al view of the data (i.e., how it is laid out on disk). With theex
eption of horizontal or verti
al partitioning of relations into multiple �les, relational database systemsare still largely based on a 1-1 
orresponden
e between relations in the s
hema and �les in whi
h they arestored. In obje
t-oriented systems, maintaining the separation is ne
essary be
ause the logi
al s
hema 
on-tains signi�
ant redundan
y, and does not 
orrespond to a good physi
al layout. Maintaining physi
al dataindependen
e be
omes more 
ru
ial in appli
ations where the logi
al model is introdu
ed as an intermedi-ate level after the physi
al representation has already been determined. This is 
ommon in appli
ations ofsemi-stru
tured data [Bun97,Abi97,FLM98℄, storage of XML data in relational databases [FK99,SGT+99,DFS99,TIHW01℄, and in data integration. In fa
t, the STORED System [DFS99℄ stores XML do
uments ina relational database, and uses views to des
ribe the mapping from XML into relations in the database. Insome sense, data integration, dis
ussed in the next se
tion, is an extreme 
ase where there is a separationbetween the logi
al view of the data and its physi
al view.To maintain physi
al data independen
e, several authors proposed to use views as a me
hanism fordes
ribing the storage of the data. In parti
ular, [TSI96℄ des
ribed the storage of the data using GMAPs(generalized multi-level a

ess paths), expressed over the 
on
eptual model of the database.To illustrate, 
onsider the entity-relationship model of a slightly extended university domain shown inFigure 1. Figure 2 shows GMAPs expressing the di�erent storage stru
tures for this data.A GMAP des
ribes the physi
al organization and indexes of the storage stru
ture. The �rst 
lause of theGMAP (the as 
lause) des
ribes the a
tual data stru
ture used to store a set of tuples (e.g., a B+-tree, hashindex, et
.) The remaining 
lauses des
ribe the 
ontent of the stru
ture, mu
h like a view de�nition. Thegiven and sele
t 
lauses des
ribe the available attributes, where the given 
lause des
ribes the attributes onwhi
h the stru
ture is indexed. The de�nition of the view, given in the where 
lause uses in�x notation overthe 
on
eptual model.In our example, the GMAP G1 stores a set of pairs 
ontaining students and the departments in whi
hthey major, and these pairs are indexed by a B+-tree on attribute Student.name. The GMAP G2 stores an
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Fig. 1 An Entity/Relationship diagram for the university domain. Note that quarter is an attribute of the relation-ships registered and tea
hes.def gmap G1 as b+-tree by def gmap G2 as b+-tree bygiven Student.name given Student.namesele
t Department sele
t Course.
-numberwhere Student major Department. where Student registered Course.def gmap G3 as b+-tree bygiven Course.
-numbersele
t Departmentwhere Student registered Course and Student major Department.Fig. 2 GMAPs for the university domain.index from the names of students to the numbers of the 
ourses in whi
h they are registered. The GMAPG3 stores an index from 
ourse numbers to departments whose majors are enrolled in the 
ourse. As shownin [TSI96℄, using GMAPs it is possible to express a large family of data stru
tures, in
luding se
ondaryindexes on relations, nested indexes, 
olle
tion based indexes and stru
tures implementing �eld repli
ation.Given that the data is stored in the stru
tures des
ribed by the GMAPs, the question that arises is howto use these stru
tures to answer queries. Sin
e the logi
al 
ontent of the GMAPs are des
ribed by views,answering a query amounts to �nding a way of rewriting the query using these views. If there are multipleways of answering the query using the views, we would like to �nd the 
heapest one. Note that in 
ontrastto the query optimization 
ontext, we must use the views to answer a given query, be
ause all the data isstored in the GMAPs,Consider the following query in our domain, whi
h asks for names of students registered for Ph.D-level
ourses and the departments in whi
h these students are majoring.sele
t Student.name, Departmentwhere Student registered Course and Student major Department and Course.
-number�500.The query 
an be answered in two ways. First, sin
e Student.name uniquely identi�es a student, we 
antake the join of G1 and G2, and then apply a sele
tion Course.
-number�500, and a proje
tion on Stu-dent.name and Department. A se
ond solution would be to join G3 with G2 and sele
t Course.
-number�500.In fa
t, this solution may even be more eÆ
ient be
ause G3 has an index on the 
ourse number and thereforethe intermediate joins may be mu
h smaller.2.3 Data IntegrationMu
h of the re
ent work on answering queries using views has been spurred be
ause of its appli
abilityto data integration systems. A data integration system (a.k.a. a mediator system [Wie92℄) provides a uni-form query interfa
e to a multitude of autonomous heterogeneous data sour
es. Prime examples of data
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ations in
lude enterprise integration, querying multiple sour
es on the World-Wide Web,and integration of data from distributed s
ienti�
 experiments. The sour
es in su
h an appli
ation may betraditional databases, lega
y systems, or even stru
tured �les. The goal of a data integration system is tofree the user from having to �nd the data sour
es relevant to a query, intera
t with ea
h sour
e in isolation,and manually 
ombine data from the di�erent sour
es.To provide a uniform interfa
e, a data integration system exposes to the user a mediated s
hema. Amediated s
hema is a set of virtual relations, in the sense that they are not a
tually stored anywhere. Themediated s
hema is designed manually for a parti
ular data integration appli
ation. To be able to answerqueries, the system must also 
ontain a set of sour
e des
riptions. A des
ription of a data sour
e spe
i�es the
ontents of the sour
e, the attributes that 
an be found in the sour
e, and the 
onstraints on the 
ontentsof the sour
e.One of the approa
hes for spe
ifying sour
e des
riptions, whi
h has been adopted in several systems([LRO96b,KW96,FW97,DG97b,LKG99℄), is to des
ribe the 
ontents of a data sour
e as a view over the me-diated s
hema. This approa
h fa
ilitates the addition of new data sour
es and the spe
i�
ation of 
onstraintson 
ontents of sour
es (see [Ull97,FLM98,Lev00℄ for a 
omparison of di�erent approa
hes for spe
ifyingsour
e des
riptions).In order to answer a query, a data integration system needs to translate a query formulated on themediated s
hema into one that refers dire
tly to the s
hemas in the data sour
es. Sin
e the 
ontents of thedata sour
es are des
ribed as views, the translation problem amounts to �nding a way to answer a queryusing a set of views.We illustrate the problem with the following example, where the mediated s
hema exposed to the user isour university s
hema, ex
ept that the relations Tea
hes and Course have an additional attribute identifyingthe university at whi
h a 
ourse is being taught:Tea
hes(prof, 
-number, quarter, evaluation, univ)Course(
-number, title, univ)Suppose we have the following two data sour
es. The �rst sour
e provides a listing of all the 
ourses titled\Database Systems" taught anywhere and their instru
tors. This sour
e 
an be des
ribed by the followingview de�nition:
reate view DB-
ourses assele
t Course.title, Tea
hes.prof, Course.
-number, Course.univfrom Tea
hes, Coursewhere Tea
hes.
-number=Course.
-number and Tea
hes.univ=Course.univ andCourse.title=\Database Systems".The se
ond sour
e lists Ph.D level 
ourses being taught at the University of Washington (UW), and isdes
ribed by the following view de�nition:
reate view UW-phd-
ourses assele
t Course.title, Tea
hes.prof, Course.
-number, Course.univfrom Tea
hes, Coursewhere Tea
hes.
-number=Course.
-number andCourse.univ=\UW" and Tea
hes.univ=\UW" and Course.
-number�500.If we were to ask the data integration system who tea
hes 
ourses titled \Database Systems" at UW, itwould be able to answer the query by applying a sele
tion on the sour
e DB-
ourses:sele
t proffrom DB-
ourseswhere univ=\UW".On the other hand, suppose we ask for all the graduate-level 
ourses (not just in databases) being o�eredat UW. Given that only these two sour
es are available, the data integration system 
annot �nd all tuplesin the answer to the query. Instead, the system 
an attempt to �nd the maximal set of tuples in the answerthat are available from the sour
es. In parti
ular, the system 
an obtain graduate database 
ourses at UWfrom the DB-
ourses sour
e, and the Ph.D level 
ourses at UW from the UW-Phd-
ourses sour
e. Hen
e, thefollowing query provides the maximal set of answers that 
an be obtained from the two sour
es:
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t title, 
-numberfrom DB-
ourseswhere univ=\UW" and 
-number�400UNIONsele
t title, 
-numberfrom UW-phd-
ourses.Note that 
ourses that are not Ph.D-level 
ourses or database 
ourses will not be returned as answers.Whereas in the 
ontexts of query optimization and maintaining physi
al data independen
e the fo
us is on�nding a query expression that is equivalent to the original query, here we attempt to �nd a query expressionthat provides the maximal answers from the views. We formalize both of these notions in Se
tion 3.Other appli
ations: Before pro
eeding, we also note that the problem of answering queries using views arisesin the design of data warehouses (e.g., [HRU96,TS97,GHRU97,YKL97℄) and in semanti
 data 
a
hing. Indata warehouse design, when we 
hoose a set of views to materialize in a data warehouse, we need to 
he
kthat we will be able to answer all the required queries over the warehouse using only these views. In the
ontext of semanti
 data 
a
hing (e.g., [DFJ+96,KB96,CR94,ACPS96℄) we need to 
he
k whether the 
a
hedresults of a previously 
omputed query 
an be used for a new query, or whether the 
lient needs to requestadditional data from the server. In [FLSY99,YFIV00℄ it is shown that pre
omputing views 
an signi�
antlyspeed up the response time from web sites, whi
h again raises the question of view sele
tion.2.4 A taxonomy of the �eldAs illustrated by the examples, there are several dimensions along whi
h we 
an 
lassify the treatments of theproblem of answering queries using views. In this se
tion we des
ribe a taxonomy for 
lassifying the di�erentworks on this problem, and highlight the main di�eren
es between the problem treatments. Figure 3 showsthe taxonomy and some of the representative works belonging to ea
h of its 
lasses.Answering queries using views���������� XXXXXXXXXXCost-based rewriting(query optimization and physi
al data independen
e) Logi
al rewriting(data integration)������� XXXXXXX ������� XXXXXXXSystem-R style Query answering algorithms(
omplete or in
omplete sour
es)Transformational approa
hes Rewriting algorithms[YL87,LMSS95℄[Qia96,LRO96b℄[DG97a,PL00℄ [AD98,GM99a,CGLV00a℄[FRV96,BDD+98℄[DPT99,ZCL+00,GL01℄[CKPS95,TSI96,PH01℄Fig. 3 A taxonomy of work on answering queries using views. The main distin
tion is between works on queryoptimization and maintenan
e of physi
al data independen
e and works 
onsidering logi
al rewritings, mostly in the
ontext of data integration. The works on query optimization have 
onsidered both System-R style algorithms andtransformation-based algorithms. The works on data integration 
onsidered algorithms that s
ale to a large numberof views, and the question of �nding all the answers to the query, given the view extensions.The most signi�
ant distin
tion between the di�erent works is whether their goal is data integration orwhether it is query optimization and maintenan
e of physi
al data independen
e. The key di�eren
e betweenthese two 
lasses of works is the output of the algorithm for answering queries using views. In the former 
ase,given a query Q, and a set of views V , the goal of the algorithm is to produ
e an expression Q0 that referen
esthe views and is either equivalent to or 
ontained in Q. In the latter 
ase, the algorithm must go further
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e a (hopefully optimal) query exe
ution plan for answering Q using the views (and possibly thedatabase relations). Here the rewriting must be an equivalent to Q in order to ensure the 
orre
tness of theplan.The similarity between these two bodies of work is that they are 
on
erned with the 
ore issue of whethera rewriting of a query is equivalent to or 
ontained in the query. However, while logi
al 
orre
tness suÆ
esfor the data integration 
ontext, it does not in the query optimization 
ontext where we also need to �nd the
heapest plan using the views. The 
ompli
ation arises be
ause the optimization algorithms need to 
onsiderviews that do not 
ontribute to the logi
al 
orre
tness of the rewriting, but do redu
e the 
ost of the resultingplan. Hen
e, while the reasoning underlying the algorithms in the data integration 
ontext is mostly logi
al,in the query optimization 
ase it is both logi
al and 
ost-based. On the other hand, an aspe
t stressed inthe data integration 
ontext is the importan
e of dealing with a large number of views, whi
h 
orrespond todata sour
es. In the 
ontext of query optimization it is generally assumed (not always!) that the number ofviews is roughly 
omparable to the size of the s
hema.Extension Relevant worksGrouping and aggregation [GHQ95,SDJL96,CNS99,GRT99,ZCL+00,GT00℄ (Se
tion 5.3)Bag semanti
s [CKPS95,ZCL+00℄ (Se
tion 5.3)OQL [FRV96,DPT99℄ (Se
tion 8.1)Multi-blo
k queries [ZCL+00℄ (Se
tion 5.2)Integrity 
onstraints [DL97,Gry98,ZCL+00,DPT99℄ (Se
tion 7.2)A

ess-pattern limitations [RSU95,KW96,DL97℄ (Se
tion 8.2)Unions in the views [AGK99,Dus98℄ (Se
tion 8.3)Queries over semi-stru
tured data [CGLV99,PV99℄ (Se
tion 8.3)Hierar
hies in Des
ription Logi
s [BLR97,CGL99℄ (Se
tion 8.3)Languages for querying s
hema [Mil98℄ (Se
tion 8.3)Table 1 Extensions to query and view languagesThe works on query optimization 
an be 
lassi�ed into System-R style optimizers and transformationaloptimizers. The initial works in
orporated views into System-R style join enumeration, while later works thatattempt to deal with a more extended subset of SQL realized that the power of rewriting rules is requiredin order to in
orporate views.The main line of work on data integration attempted to develop algorithms for answering queries usingviews that s
ale up to a large number of views2. A se
ond line of work started 
onsidering di�erent propertiesof the data sour
es. For example, it was shown that if data sour
es are assumed to be 
omplete (i.e., theyin
lude all the tuples that satisfy their de�nition), then the problem of answering queries using views be
omes
omputationally harder. Intuitively, the reason for the added 
omplexity is that when sour
es are 
omplete,we 
an also infer negative information as a result of a query to the sour
e. This led to asking the following morebasi
 question: given a query Q, a set of views V and their extensions, what is the 
omplexity of �nding themaximal set of tuples in the answer to Q from V .3 This work established an interesting 
onne
tion betweenthe problem of answering queries using views and query answering in 
onditional tables [IL84℄. In theseworks, a major fa
tor a�e
ting the 
omplexity of the problem is whether the view extensions are assumedto be 
omplete or not (when they are 
omplete, the 
omplexity is higher). Note that in the 
ontext of queryoptimization, the views are always assumed to be 
omplete.A separate dimension for 
lassifying the di�erent works is the spe
i�
 language used for expressing viewsand queries. Mu
h of the early work on the problem fo
used on sele
t-proje
t-join queries, but, as shown inTable 1, many extensions have been 
onsidered as well. The works on query optimization have 
onsidered2 Stri
tly speaking, the motivation for the work of [YL87℄ was the maintenan
e of physi
al data independen
e, buttheir algorithm has more similarities with the data integration algorithms.3 Some authors refer to the distin
tion between the two problems as the rewriting problem versus the queryanswering problem.



Answering Queries Using Views: A Survey 9extensions of interest to SQL engines, su
h as grouping and aggregation and the presen
e of 
ertain integrity
onstraints on the database relations. For obvious reasons, these works have also 
onsidered the impli
ationsof bag semanti
s on the rewriting problem. The data integration works have 
onsidered extensions su
has a

ess-pattern limitation to the views, re
ursive queries, path expressions in the queries, and integrity
onstraints expressed in des
ription logi
s.3 Problem De�nitionIn this se
tion we de�ne the basi
 terminology used throughout this paper. We de�ne the 
on
epts of query
ontainment and query equivalen
e that provide a semanti
 basis for 
omparing between queries and theirrewritings, and then de�ne the problem of answering queries using views. Finally, we de�ne the problem ofextra
ting all the answers to a query from a set of views (referred to as the set of 
ertain answers).The bulk of our dis
ussion will fo
us on the 
lass of sele
t-proje
t-join queries on relational databases.A view is a named query. It is said to be materialized if its results are stored in the database. A databaseinstan
e is an assignment of an extension (i.e., a set of tuples) to ea
h of the relations in the database.We assume the reader is familiar with the basi
 elements of SQL. We will distinguish between queries thatinvolve arithmeti
 
omparison predi
ates (e.g., �; <; 6=) and those that do not. Our dis
ussion of answeringqueries using views in the 
ontext of data integration systems will require 
onsidering re
ursive datalogqueries. We re
all the basi
 
on
epts of datalog in Se
tion 6.In our dis
ussion, we denote the result of 
omputing the query Q over the database D by Q(D). We oftenrefer to queries that referen
e named views (e.g., in query rewritings). In that 
ase, Q(D) refers to the resultof 
omputing Q after the views have been 
omputed from D.3.1 Containment and Equivalen
eThe notions of query 
ontainment and query equivalen
e enable 
omparison between di�erent reformulationsof queries. They will be used when we test the 
orre
tness of a rewriting of a query in terms of a set of views.In the de�nitions below we assume the answers to queries are sets of tuples. The de�nitions 
an be extendedin a straightforward fashion to bag semanti
s. In the 
ontext of our dis
ussion it is important to note thatthe de�nitions below also apply to queries that may referen
e named views.De�nition 1 Query 
ontainment and equivalen
e: A query Q1 is said to be 
ontained in a query Q2, denotedby Q1 v Q2, if for all database instan
es D, the set of tuples 
omputed for Q1 is a subset of those 
omputedfor Q2, i.e., Q1(D) � Q2(D). The two queries are said to be equivalent if Q1 v Q2 and Q2 v Q1.The problems of query 
ontainment and equivalen
e have been studied extensively in the literature andshould be a topi
 of a spe
ialized survey. Some of the 
ases whi
h are most relevant to our dis
ussionin
lude: 
ontainment of sele
t-proje
t-join queries and unions thereof [CM77,SY81℄, queries with arithmeti

omparison predi
ates [Klu88,LS93,ZO93,KMT98℄, re
ursive queries [Shm93,Sag88,LS93,CV92,CV94℄, andqueries with bag semanti
s [CV93℄3.2 Rewriting of a Query Using ViewsGiven a query Q and a set of view de�nitions V1; : : : ; Vm, a rewriting of the query using the views is a queryexpression Q0 that refers only to the views V1; : : : ; Vm.4 In SQL, a query refers only to the views if all therelations mentioned in the from 
lauses are views. In pra
ti
e, we may also be interested in rewritings that
an also refer to the database relations. Con
eptually, rewritings that refer to the database relations do notintrodu
e new diÆ
ulties, be
ause we 
an always simulate the previous 
ase by inventing views that mirrorpre
isely the database tables.As we saw in Se
tion 2, we need to distinguish between two types of query rewritings: equivalent rewritingsand maximally-
ontained rewritings. For query optimization and maintaining physi
al data independen
e we
onsider equivalent rewritings.4 Note that rewritings that refer only to the views were 
alled 
omplete rewritings in [LMSS95℄.



10 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleDe�nition 2 Equivalent rewritings: Let Q be a query and V = fV1; : : : ; Vmg be a set of view de�nitions. Thequery Q0 is an equivalent rewriting of Q using V if:{ Q0 refers only to the views in V, and{ Q0 is equivalent to Q.In the 
ontext of data integration, we often need to 
onsider maximally-
ontained rewritings. Unlike the 
aseof equivalent rewritings, the maximally-
ontained rewriting may di�er depending on the query language we
onsider for the rewriting. Hen
e, the following de�nition depends on a parti
ular query language:De�nition 3 Maximally-
ontained rewritings: Let Q be a query, V = fV1; : : : ; Vmg be a set of view de�ni-tions, and L be a query language. The query Q0 is a maximally-
ontained rewriting of Q using V w.r.t. Lif:{ Q0 is a query in L that refers only to the views in V,{ Q0 is 
ontained in Q, and{ there is no rewriting Q1 2 L, su
h that Q0 v Q1 v Q and Q1 is not equivalent to Q0.When a rewriting Q0 is 
ontained in Q but is not a maximally-
ontained rewriting we refer to it as a
ontained rewriting. Note that the above de�nitions are independent of the parti
ular query language we
onsider. Furthermore, we note that algorithms for query 
ontainment and equivalen
e provide methodsfor testing whether a 
andidate rewriting of a query is an equivalent or 
ontained rewriting. However, bythemselves, these algorithms do not provide a solution to the problem of answering queries using views.A more fundamental question we 
an 
onsider is how to �nd all the possible answers to the query, givena set of view de�nitions and their extensions. Finding a rewriting of the query using the views and thenevaluating the rewriting over the views is 
learly one 
andidate algorithm. If the rewriting is equivalent to thequery, then we are guaranteed to �nd all the possible answers. However, as we see in Se
tion 7, a maximally-
ontained rewriting of a query using a set of views does not always provide all the possible answers that 
anbe obtained from the views. Intuitively, the reason for this is that a rewriting is maximally-
ontained onlyw.r.t. a spe
i�
 query language, and hen
e there may sometimes be a query in a more expressive languagethat may provide more answers.The problem of �nding all the answers to a query given a set of views is formalized below by the notionof 
ertain answers, originally introdu
ed in [AD98℄. In the de�nition, we distinguish the 
ase in whi
h theview extensions are assumed to be 
omplete (
losed-world assumption) from the 
ase in whi
h the views maybe partial (open-world).De�nition 4 Certain answers: Let Q be a query and V = fV1; : : : ; Vmg be a set of view de�nitions overthe database s
hema R1; : : : ; Rn. Let the sets of tuples v1; : : : ; vm be extensions of the views V1; : : : ; Vm,respe
tively.The tuple a is a 
ertain answer to the query Q under the 
losed-world assumption given v1; : : : ; vm ifa 2 Q(D) for all database instan
es D su
h that Vi(D) = vi for every i, 1 � i � m.The tuple a is a 
ertain answer to the query Q under the open-world assumption given v1; : : : ; vm ifa 2 Q(D) for all database instan
es D su
h that Vi(D) � vi for every i, 1 � i � m.The intuition behind the de�nition of 
ertain answers is the following. The extensions of a set of viewsdo not de�ne a unique database instan
e. Hen
e, given the extensions of the views we have only partialinformation about the real state of the database. A tuple is a 
ertain answer of the query Q if it is ananswer for any of the possible database instan
es that are 
onsistent with the given extensions of the views.Se
tion 7.3 
onsiders the 
omplexity of �nding 
ertain answers.Example 1 As a very simple example, 
onsider a database s
hema R(A;B) that in
ludes a single relationwith two attributes. Suppose the view V1 is de�ned to be the proje
tion of R on A, while V2 is de�ned to bethe proje
tion of R on B, and suppose that our query Q is to retrieve all of the relation R.Suppose we are given that the extension of V1 in
ludes the single tuple (
1), and that the extension of V2in
ludes the single tuple (
2),Under the 
losed-world assumption, we 
an infer that the tuple (
1; 
2) must be in the relation R, andhen
e it is a 
ertain answer to Q. However, under the open-world assumption, sin
e V1 and V2 are notne
essarily 
omplete, the tuple (
1; 
2) need not be in R. For example, R may 
ontain the tuples (
1; d) and(e; 
2) for some 
onstants d and e. Hen
e, (
1; 
2) is not a 
ertain answer to Q. 2



Answering Queries Using Views: A Survey 114 When is a View Usable for a QueryThe 
ommon theme a
ross all of the works on answering queries using views is that they all have to dealwith the fundamental question of when a view is usable to answer a query. Hen
e, before des
ribing thea
tual algorithms for answering queries using views it is instru
tive to examine a few examples and gain anintuition for the 
onditions under whi
h a view is usable for answering a query, and in what ways a viewmay be useful. In this se
tion we 
onsider sele
t-proje
t-join queries under set semanti
s. Note that in some
ases a view may be usable in maximally-
ontained rewritings but not in equivalent rewritings.Informally, a view 
an be useful for a query if the set of relations it mentions overlaps with that of thequery, and it sele
ts some of the attributes sele
ted by the query. Moreover, if the query applies predi
atesto attributes that it has in 
ommon with the view, then the view must apply either equivalent or logi
allyweaker predi
ates in order to be part of an equivalent rewriting. If the view applies a logi
ally strongerpredi
ate, it may be part of a 
ontained rewriting.Consider the following query, asking for the triplets of professors, students, and tea
hing quarters, wherethe student is advised by the professor, and has taken a 
lass taught by the professor during the winter of1998 or later.sele
t Advises.prof, Advises.student, Registered.quarterfrom Registered, Tea
hes, Adviseswhere Registered.
-number=Tea
hes.
-number and Registered.quarter=Tea
hes.quarter andAdvises.prof=Tea
hes.prof and Advises.student=Registered.student andRegistered.quarter � "winter98".The following view V1 is usable be
ause it applies the same join 
onditions to the relations Registered andTea
hes. Hen
e, we 
an use V1 to answer the query by joining it with the relation Advises. Furthermore, V1sele
ts the attributes Registered.student, Registered.quarter and Tea
hes.prof that are needed for the join withthe relation Advises and for the sele
t 
lause of the query. Finally, V1 applies a predi
ate Registered.quarter >"winter97" whi
h is weaker than the predi
ate Registered.quarter � "winter98" in the query. However, sin
eV1 sele
ts the attribute Registered.quarter, the stronger predi
ate 
an be applied as part of the rewriting.
reate view V1 assele
t Registered.student, Tea
hes.prof, Registered.quarterfrom Registered, Tea
heswhere Registered.
-number=Tea
hes.
-number and Registered.quarter=Tea
hes.quarter andRegistered.quarter > "winter97".The views shown in Figure 4 illustrate how minor modi�
ations to V1 
hange their usability in answeringthe query. The view V2 is similar to V1, ex
ept that it does not sele
t the attribute Tea
hes.prof, whi
h isneeded for the join with the relation Advises and in the sele
t 
lause of the query. Hen
e, to use V2 in therewriting, we would need to join V2 with the Tea
hes relation again (in addition to a join with Advises). Still,if the join of the relations Registered and Tea
hes is very sele
tive, then employing V2 may a
tually result ina more eÆ
ient query exe
ution plan.The view V3 does not apply the ne
essary equi-join predi
ate between Registered.quarter and Tea
hes.quarter.Sin
e the attributes Tea
hes.quarter and Registered.quarter are not sele
ted by V3, the join predi
ate 
annotbe applied in the rewriting, and therefore there is little to gain by using V3. The view V4 
onsiders only theprofessors who have at least one area of resear
h. Hen
e, the view applies an additional 
ondition that doesnot exist in the query, and 
annot be used in an equivalent rewriting unless we allow union and negationin the rewriting language. However, if we have an integrity 
onstraint stating that every professor has atleast one area of resear
h, then an optimizer should be able to realize that V4 is usable. Finally, view V5applies a stronger predi
ate than in the query (Registered.quarter > "winter99"), and is therefore usable fora 
ontained rewriting, but not for an equivalent rewriting of the query.To summarize, the following 
onditions need to hold in order for a sele
t-proje
t-join view V to be usablein an equivalent rewriting of a query Q. The intuitive 
onditions below 
an be made formal in the 
ontextof a spe
i�
 query language and/or available integrity 
onstraints (see e.g., [YL87,LMSS95℄).
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reate view V2 as 
reate view V3 assele
t Registered.student, Registered.quarter sele
t Registered.student, Tea
hes.prof, Registered.quarterfrom Registered, Tea
hes from Registered, Tea
heswhere Registered.
-number=Tea
hes.
-number where Registered.
-number=Tea
hes.
-numberand Registered.quarter=Tea
hes.quarter and Registered.quarter � "winter98".and Registered.quarter � "winter98".
reate view V4 as 
reate view V5 assele
t Registered.student, Registered.quarter, sele
t Registered.student, Tea
hes.prof, Registered.quarterTea
hes.proffrom Registered, Tea
hes, Advises, Area from Registered, Tea
heswhere Registered.
-number=Tea
hes.
-number where Registered.
-number=Tea
hes.
-numberand Registered.quarter=Tea
hes.quarter and Registered.quarter=Tea
hes.quarterand Tea
hes.prof=Advises.prof and Registered.quarter > "winter99".and Tea
hes.prof=Area.nameand Registered.quarter � "winter98"Fig. 4 Examples of unusable views.1. There must be a mapping  from the o

urren
es of tables mentioned in the from 
lause of V to thosementioned in the from 
lause of Q, mapping every table name to itself. In the 
ase of bag semanti
s,  must be a 1-1 mapping, whereas for set semanti
s,  
an be a many-to-1 mapping.2. V must either apply the join and sele
tion predi
ates in Q on the attributes of the tables in the domainof  , or must apply to them a logi
ally weaker sele
tion, and sele
t the attributes on whi
h predi
atesneed to still be applied.3. V must not proje
t out any attributes of the tables in the domain of  that are needed in the sele
tion ofQ, unless these attributes 
an be re
overed from another view (or from the original table if it's available).Finally, we note that the introdu
tion of bag semanti
s introdu
es additional subtleties. In parti
ular, wemust ensure that the multipli
ity of answers required in the query are not lost in the views (e.g., by the useof distin
t), and are not in
reased (e.g., by the introdu
tion of additional joins).5 In
orporating Materialized Views into Query OptimizationThis se
tion des
ribes the di�erent approa
hes to in
orporating materialized views into query optimization.The fo
us of these algorithms is to judi
iously de
ide when to use views to answer a query. The output ofthe algorithm is an exe
ution plan for the query. The approa
hes di�er depending on whi
h phase of queryoptimization was modi�ed to 
onsider materialized views. Se
tion 5.1 des
ribes algorithms based on SystemR-style optimization, where materialized views are 
onsidered during the join enumeration phase [CKPS95,TSI96℄. Se
tion 5.2 des
ribes works based on transformational optimizers [ZCL+00,DPT99,PDST00,GL01℄.There, the key idea is that repla
ing a query subexpression by a view is yet another transformation employedby the optimizer. Se
tion 5.3 dis
usses some of the issues that arise when rewriting algorithms are extendedto 
onsider grouping and aggregation. These extensions are key to in
orporating materialized views intode
ision support appli
ations.5.1 System-R style optimizationIn this se
tion we 
onsider sele
t-proje
t-join queries and dis
uss the 
hanges that need to be made to ajoin enumeration algorithm to in
orporate materialized views. To illustrate the 
hanges to a System R-styleoptimizer we �rst brie
y re
all the prin
iples underlying System-R optimization [SAC+79℄. System-R takesa bottom-up approa
h to building query exe
ution plans. In the �rst phase, it 
onstru
ts plans of size 1, i.e.,
hooses the best a

ess paths to every table mentioned in the query. In phase n, the algorithm 
onsidersplans of size n, by 
ombining pairs of plans obtained in the previous phases (Note that if the algorithm is
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onsidering only left-deep plans, it will try to 
ombine plans of size n� 1 with plans of size 1. Otherwise, itwill 
onsider 
ombining plans of size k with plans of size n�k.) The algorithm terminates after 
onstru
tingplans that 
over all the relations in the query.Intuitively, the eÆ
ien
y of System-R stems from the fa
t that it partitions query exe
ution plans intoequivalen
e 
lasses, and only 
onsiders a single exe
ution plan for every equivalen
e 
lass. Two plans are inthe same equivalen
e 
lass if they (1) 
over the same set of relations in the query (and therefore are also ofthe same size), and (2) produ
e the answers in the same interesting order. In the pro
ess of building plans,two plans are 
ombined only if they 
over disjoint subsets of the relations mentioned in the query.In our 
ontext, the query optimizer builds query exe
ution plans by a

essing a set of views, ratherthan a set of database relations. Hen
e, in addition to the meta-data that the query optimizer has aboutthe materialized views (e.g., statisti
s, indexes) the optimizer is also given as input the query expressionsde�ning the views. Re
all that a database relation 
an always be modeled as a view as well.We illustrate the 
hanges to the join enumeration algorithm with an example that in
ludes the followingviews:
reate view V1 assele
t student, deptfrom Major.
reate view V2 assele
t Registered.student, Registered.
-numberfrom Registered, Coursewhere Registered.
-number=Course.
-numberand Course.title LIKE '%theory%'.
reate view V3 assele
t Major.dept, Registered.
-numberfrom Registered, Majorwhere Registered.student=Major.student and Registered.
-number�500.Suppose the query below asks for all of the students attending Ph.D level 
lasses with 'theory' in theirtitle, and the departments in whi
h the students are majoring.sele
t Registered.student, Major.deptfrom Registered, Major, Coursewhere Registered.student=Major.student and Registered.
-number=Course.
-number andCourse.
-number�500 and Course.title LIKE '%theory%'.We now des
ribe the additional issues that the optimizer needs to 
onsider in the presen
e of materializedviews. Figure 5 shows a side-by-side 
omparison of the steps of a traditional optimizer vs. one that exploitsmaterialized views. The algorithm des
ribed below is a slight modi�
ation of the GMAP algorithm [TSI96℄.The algorithm des
ribed in [CKPS95℄ uses the same prin
iples, but, as we explain later, with several di�er-en
es.A. In the �rst iteration the algorithm needs to de
ide whi
h views are relevant to the query. A view is relevantif it is usable in answering the query (illustrated by the 
onditions in Se
tion 4). The 
orresponding stepin a traditional optimizer is trivial: a relation is relevant to the query if it is mentioned in the from 
lause.In our example, the algorithm will determine that all three views are relevant to the query, be
ause ea
hof them mentions the relations in the query and applies some of the same join predi
ates as in the query.Therefore, the algorithm 
hooses the best a

ess path to ea
h of the views, depending on the existing indexstru
tures and sele
tion predi
ates in the query.B. Sin
e the query exe
ution plans involve joins over views, rather than joins over database relations, plans
an no longer be neatly partitioned into equivalen
e 
lasses whi
h 
an be explored in in
reasing size. Thisobservation implies several 
hanges to the traditional algorithm:
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ution plans of the queryfrom 
omplete exe
ution plans. The enumeration of the possible join orders terminates when thereare no more unexplored partial plans. In 
ontrast, in the traditional setting the algorithm terminatesafter 
onsidering the equivalen
e 
lasses that in
lude all the relations in the query.2. Pruning of plans: a traditional optimizer 
ompares between pairs of plans within one equivalen
e
lass and saves only the 
heapest one for ea
h 
lass. In our 
ontext, the query optimizer needs to
ompare between any pair of plans generated thus far. A plan p is pruned if there is another plan p0that (1) is 
heaper than p and, (2) has greater or equal 
ontribution to the query than p. Informally,a plan p0 
ontributes more to the query than the plan p if it 
overs more of the relations in the queryand sele
ts more of the ne
essary attributes.3. Combining partial plans: in the traditional setting, when two partial plans are 
ombined, the joinpredi
ates that involve both plans are expli
it in the query, and the enumeration algorithm need only
onsider the most eÆ
ient way to apply these predi
ates. However, in our 
ase, it may not be obviousa priori whi
h join predi
ate will yield a 
orre
t rewriting of the query, sin
e we are joining viewsrather than database relations dire
tly. Hen
e, the enumeration algorithm needs to 
onsider severalalternative join predi
ates. Fortunately, in pra
ti
e, the number of join predi
ates that need to be
onsidered 
an be signi�
antly pruned using meta-data about the s
hema. For example, there is nopoint in trying to join a string attribute with a numeri
 one. Furthermore, in some 
ases we 
anuse knowledge of integrity 
onstraints and the stru
ture of the query to redu
e the number of joinpredi
ates we 
onsider. Finally, after 
onsidering all the possible join predi
ates, the optimizer alsoneeds to 
he
k whether the resulting plan is still a partial solution to the query.In our example, the algorithm will 
onsider in the se
ond iteration all possible methods to join pairsof plans produ
ed in the �rst iteration. The algorithm will save the 
heapest plan for ea
h of the two-wayjoins, assuming the result is still a partial or 
omplete solution to the query. The algorithm will 
onsider thefollowing 
ombinations (in this dis
ussion we ignore the 
hoi
e of inner versus outer input to the join):{ the join of V1 and V2 on the attribute student: This join produ
es a partial result to the query. Thereare two ways to extend this join to 
omplete exe
ution plan. The �rst is to apply an additional sele
tionon the 
-number attribute and a proje
tion on student and dept. The se
ond, whi
h is explored in thesubsequent iteration, is to join the result with V3. Hen
e, the algorithm produ
es one 
omplete exe
utionplan and keeps V1 1 V2 for the subsequent iterations.In prin
iple, as explained in bullet 3 above, the algorithm should also 
onsider joining V1 and V2 onother attributes (e.g., V1.student=V2.
-number), but in this 
ase, a simple semanti
 analysis shows thatsu
h a join will not yield a partial solution.{ the joins of V1 with V3 (on dept) and of V2 with V3 (on 
-number): These two joins produ
e partialsolutions to the query, but only if set semanti
s are 
onsidered (otherwise, the resulting rewriting will havemultiple o

urren
es of the Major (or Registered) relation, whereas the query has only one o

urren
e).In the third iteration, the algorithm tries to join the plans for the partial solutions from the se
onditeration with a plan from the �rst iteration. One of the plans the algorithm will 
onsider is the one in whi
hthe result of joining V2 and V3 is then joined with V1. Even though this plan may seem redundant 
omparedto V1 1 V2, it may be 
heaper depending on the available indexes on the views, be
ause it enables pruningthe (possibly larger) set of students based on the sele
tive 
ourse number.Variations on the above prin
iples are presented in [TSI94,TSI96℄ and [CKPS95℄. The algorithm in [TSI96℄attempts to reformulate a query on a logi
al s
hema to refer dire
tly to GMAPs storing the data (seeSe
tion 2). They 
onsider sele
t-proje
t-join queries with set semanti
s. To test whether a solution is 
omplete(i.e., whether it is equivalent to the original query) they use an eÆ
ient and suÆ
ient query-equivalen
e
ondition that also makes use of some in
lusion and fun
tional dependen
ies.The goal of the algorithm des
ribed in [CKPS95℄ is to make use of materialized views in query evaluation.They 
onsider sele
t-proje
t-join queries with bag semanti
s and whi
h may also in
lude arithmeti
 
om-parison predi
ates. Under bag semanti
s, the ways in whi
h views may be 
ombined to answer a query aremore limited. This is due to the fa
t that two queries are equivalent if and only if there is a bi-dire
tional 1-1mapping between the two queries, whi
h maps the join predi
ates of one query to those of the other [CV93℄.Hen
e, if we ignore the arithmeti
 
omparison operators, a view is usable only if it is isomorphi
 to a subset



Answering Queries Using Views: A Survey 15Conventional optimizer Optimizer using viewsIteration 1 Iteration 1a) �nd all possible a

ess paths. a1) Find all views that are relevant to the query.a2) Distinguish between partial and 
omplete solutionsto the query.b) Compare their 
ost and keep the least b) Compare all pairs of views. If one has neither greaterexpensive. 
ontribution nor a lower 
ost than the other, prune it.
) If the query has one relation, stop. 
) If there are no partial solutions, stop.Iteration 2 Iteration 2For ea
h query join:a) Consider joining the relevant a

ess paths a1) Consider joining all partial solutions found in thefound in the previous iteration using all previous iteration using all possible equi-join methods andpossible join methods. trying all possible subsets of join predi
ates.a2) Distinguish between 
omplete and partial solutions.b) Compare the 
ost of the resulting join b) If any newly generated solution is either not relevantplans and keep the least expensive. to the query, or dominated by another, prune it.
) If the query has only 2 relations, stop. 
) If there are no partial solutions, stop.Iteration 3 Iteration 3: : : : : :Fig. 5 A 
omparison of a traditional query optimizer with one that exploits materialized views.of the query. An additional di�eren
e between [TSI96℄ and [CKPS95℄ is that the latter sear
hes the spa
eof join orderings in a top-down fashion, 
ompared to the bottom-up fashion in [TSI96℄. However, sin
e thealgorithms 
onsider di�erent semanti
s, their sear
h spa
es are in
omparable. Both [TSI96℄ and [CKPS95℄present experimental results that examine the 
ost of 
onsidering materialized views in query optimization.5.2 Transformational and other approa
hes to view rewritingIn this se
tion we des
ribe several works that in
orporate view rewriting as transformations. The 
ommontheme in these works is that repla
ing some part of a query with a view is 
onsidered as another transforma-tion available to the optimizer. This approa
h is ne
essary when (1) the entire optimizer is transformational(e.g, in [GL01℄), and (2) in the logi
al rewriting phase of a System-R style optimizer that is 
onsidering more
omplex SQL queries (as in [ZCL+00℄).In [GL01℄ the authors des
ribe an algorithm for rewriting queries using views that is implemented in thetransformational optimizer of Mi
rosoft SQL Server. In the algorithm, view mat
hing is added as anothertransformation rule in the optimizer. The transformation rule is invoked on sele
t-proje
t-join-group-by(SPJG) expressions, and it attempts to repla
e the SPJG expression by a single view. The authors des
ribein detail the 
onditions under whi
h a sub-query is repla
ed by a view. The key novelty in this work is the�lter-tree, a 
lever index stru
ture that makes it possible to eÆ
iently �lter the set of views that are relevantto a parti
ular SPJG expression. The index is 
omposed of several sub-indexes, ea
h of whi
h is built ona parti
ular property of the views (e.g., the set of tables in the view, the set of output 
olumns, grouping
olumns). The sub-indexes are 
ombined in a hierar
hi
al fashion into the �lter tree, where ea
h level in thetree further partitions the views a

ording to another property. The authors des
ribe a set of experimentsthat shows that their algorithm adds relatively little to the optimization time, even in the presen
e of 1000views.In [ZCL+00℄ the authors des
ribe how view rewriting is in
orporated into the query rewrite phase of theIBM DB2 UDB optimizer. Their algorithm operates on the Query Graph Model (QGM) representation ofa query [HFLP89℄, whi
h de
omposes the query into multiple QGM boxes, ea
h 
orresponding to a sele
t-proje
t-join blo
k. The algorithm attempts to mat
h pairs of QGM boxes in the views with those in the query.The algorithm navigates the QGM in a bottom up fashion, starting from the leaf boxes. A mat
h between abox in the query and in the view 
an be either (1) exa
t, meaning that the two boxes represent equivalentqueries, or (2) may require a 
ompensation. A 
ompensation represents a set of additional operations thatneed to be performed on a box of the view in order to obtain an equivalent result to a box in the query. The
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onsiders a pair of boxes only after the mat
h algorithm has been applied to every possible pair oftheir 
hildren. Therefore, the mat
h (and 
orresponding 
ompensation) 
an be determined without lookinginto the subtrees of their 
hildren. The algorithm terminates when it �nds a mat
h between the root of theview and some box in the QGM of the query. The authors show that by 
onsidering rewritings at the QGMlevel, they are able to extend previous algorithms to handle SQL queries and views with multiple blo
ks,while previous algorithms 
onsidered only single blo
k queries. As we point out in the next se
tion, theiralgorithm also extends previous work to handle more 
omplex types of grouping and aggregation.In [DPT99℄ the authors use a transformational approa
h to uniformly in
orporate the use materializedviews, spe
ialized indexes and semanti
 integrity 
onstraints. All of these are represented as 
onstraints.Their pro
edure involves two phases, ea
h involving a di�erent set of transformations. In the �rst phase,the 
hase, the query is expanded to in
lude any other stru
ture (e.g,. materialized view or a

ess stru
ture)that is relevant to the query, resulting in a universal query plan. In the se
ond phase, the ba
k-
hase, theoptimizer tries to remove stru
tures (and hen
e joins) from the universal plan, in order to obtain a plan ofminimal 
ost. The 
hase pro
edure is based on a generalization of the standard 
hase pro
edure to handlepath 
onjun
tive queries [PT99℄, thereby enabling the algorithm to handle 
ertain forms of obje
t-orientedqueries. In [PDST00℄ the authors des
ribe an implementation of the framework and experiments that proveits feasibility, fo
using on methods for speeding up the ba
k-
hase phase.In [BDD+98℄ the authors des
ribe a limited use of transformation rules to in
orporate view rewritingalgorithm into the Ora
le 8i DBMS. The algorithm works in two phases. In the �rst phase, the algorithmapplies a set of rewrite rules that attempt to repla
e parts of the query with referen
es to existing materializedviews. The rewrite rules 
onsider the 
ases in whi
h views satisfy the 
onditions des
ribed in Se
tion 4, andalso 
onsider 
ommon integrity 
onstraints en
ountered in pra
ti
e, su
h as fun
tional dependen
ies andforeign key 
onstraints. The result of the rewrite phase is a query that refers to the views. In the se
ondphase, the algorithm 
ompares the estimated 
ost of two plans: the 
ost of the result of the �rst phase, andthe 
ost of the best plan found by the optimizer that does not 
onsider the use of materialized views. Theoptimizer 
hooses to exe
ute the 
heaper of these two plans. The main advantage of this approa
h is its easeof implementation, sin
e the 
apability of using views is added to the optimizer without 
hanging the joinenumeration module. On the other hand, the algorithm 
onsiders the 
ost of only one possible rewriting ofthe query using the views, and hen
e may miss the 
heapest use of the materialized views.Finally, in [ALU01℄ the authors 
onsider using views for query optimization from a di�erent angle. They
onsider the problem of �nding the rewriting of the query with minimal 
ost under three spe
i�
 
ost models:(1) minimizing the number of views in the rewriting (hen
e the number of joins), (2) redu
ing the size of theintermediate relations 
omputed during the rewriting, and (3) redu
ing the size of intermediate relations whilealso dropping irrelevant attributes as the 
omputation pro
eeds. The te
hniques underlying the CoreCoveralgorithm des
ribed in [ALU01℄ are 
loser in spirit to those used in the MiniCon Algorithm [PL00℄ des
ribedin Se
tion 6.4.5.3 Queries with grouping and AggregationIn de
ision support appli
ations, when queries 
ontain grouping and aggregation, there is even more of anopportunity to obtain signi�
ant speedups by reusing the results of materialized views. However, the presen
eof grouping and aggregation in the queries or the views introdu
es several new diÆ
ulties to the problem ofanswering queries using views. The �rst diÆ
ulty that arises is dealing with aggregated 
olumns. Re
all thatfor a view to be usable by a query, it must not proje
t out an attribute that is needed in the query (and isnot otherwise re
overable). When a view performs an aggregation on an attribute, we lose some informationabout the attribute, and in a sense partially proje
ting it out. If the query requires the same or a 
oarsergrouping than performed in the view, and the aggregated 
olumn is either available or 
an be re
onstru
tedfrom other attributes, then the view is still usable for the query. The se
ond diÆ
ulty arises due to theloss of multipli
ity of values on attributes on whi
h grouping is performed. When we group on an attributeA, we lose the multipli
ity of the attribute in the data, thereby losing the ability to perform subsequentsum, 
ounting or averaging operations. In some 
ases, it may be possible to re
over the multipli
ity usingadditional information.



Answering Queries Using Views: A Survey 17The following simple example illustrates some of the subtleties that arise in the presen
e of grouping andaggregation. To make this example slightly more appealing, we assume the quarter attribute of the relationTea
hes is repla
ed by a year attribute (and hen
e, there are likely to be several o�erings of the same 
ourseduring an a
ademi
 year). Suppose we have the following view available, whi
h 
onsiders all the graduatelevel 
ourses, and for every pair of 
ourse and year, gives the maximal 
ourse evaluation for that 
ourse inthe given year, and the number of times the 
ourse was o�ered.
reate view V assele
t 
-number, year, Max(evaluation) as maxeval, Count(�) as o�eringsfrom Tea
heswhere 
-number � 400groupBy 
-number, year.The following query 
onsiders only Ph.D-level 
ourses, and asks for the maximal evaluation obtained forany 
ourse during a given year, and the number of di�erent 
ourse o�erings during that year.sele
t year, 
ount(�), Max(evaluation)from Tea
heswhere 
-number � 500groupBy year.The following rewriting uses the view V to answer our query.sele
t year, sum(o�erings), Max(maxeval)from Vwhere 
-number � 500groupBy year.There are a 
ouple of points to note about the rewriting. First, even though the view performed anaggregation on the attribute evaluation, we 
ould still use the view in the query, be
ause the groupings inthe query (on year) are more 
oarse than those in the view (on year and 
-number). Thus, the answer tothe query 
an be obtained by 
oales
ing groups from the view. Se
ond, sin
e the view groups the answersby 
-number and thereby loses the multipli
ity of ea
h 
ourse, we would have ordinarily not been able touse the view to 
ompute the number of 
ourse o�erings per year. However, sin
e the view also 
omputedthe attribute o�erings, there was still enough information in the view to re
over the total number of 
ourseo�erings per year, by summing the o�erings per 
ourse.Several works 
onsidered the problem of answering queries using views in the presen
e of grouping andaggregation. One approa
h 
onsidered involved a set of transformations in the query rewrite phase [GHQ95℄.In this approa
h, the algorithm performs synta
ti
 transformations on the query until it is possible to identifya subexpression of the query that is identi
al to the view, and hen
e substitute the view for the subexpression.However, as the authors point out, the purely synta
ti
 nature of this approa
h is a limiting fa
tor in itsappli
ability.A more semanti
 approa
h is proposed in [SDJL96℄. The authors des
ribe the 
onditions required fora view to be usable for answering a query in the presen
e of grouping and aggregation, and a rewritingalgorithm that in
orporates these 
onditions. That paper 
onsiders the 
ases in whi
h the views and/or thequeries 
ontain grouping and aggregation. It is interesting to note that when the view 
ontains grouping andaggregation but the query does not, then unless the query removes dupli
ates in the sele
t 
lause, the view
annot be used to answer a query. Another important point to re
all about this 
ontext is that be
ause ofthe bag semanti
s a view will be usable to answer a query only if there is an isomorphism between the viewand a subset of the query [CV93℄. The work des
ribed in [ZCL+00℄ extends the treatment of grouping andaggregation to 
onsider multi-blo
k queries and to multi-dimensional aggregation fun
tions su
h as 
ube,roll-up and grouping sets [GBLP98℄.Several works [CNS99,GRT99,GT00℄ 
onsider the formal aspe
ts of answering queries using views inthe presen
e of grouping and aggregation. They present 
ases in whi
h it 
an be shown that a rewritingalgorithm is 
omplete, in the sense that it will �nd a rewriting if one exists. Their algorithms are based oninsights into the problem of query 
ontainment for queries with grouping and aggregation.



18 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleAn interesting issue that has not re
eived attention to date is extending the notion of maximally-
ontainedrewritings to the presen
e of grouping and aggregation. In parti
ular, one 
an imagine a notion of maximally-
ontained plans in whi
h the answers provide the best possible bounds on the aggregated 
olumns.56 Answering Queries Using Views for Data IntegrationThe previous se
tion fo
used on extending query optimizers to a

ommodate the use of views. They weredesigned to handle 
ases where the number of views is relatively small (i.e., 
omparable to the size of thedatabase s
hema), and 
ases where we require an equivalent rewriting of the query. In addition, for the mostpart, these algorithms did not 
onsider 
ases in whi
h the resulting rewriting may 
ontain a union over theviews.In 
ontrast, the 
ontext of data integration requires that we 
onsider a large number of views, sin
e ea
hdata sour
e is being des
ribed by one or more views. In addition, the view de�nitions 
ontain many 
omplexpredi
ates, whose goal is to express �ne-grained distin
tions between the 
ontents of di�erent data sour
es.As shown in Se
tion 2, we will often not be able to �nd an equivalent rewriting of the query using thesour
e views, and the best we 
an do is �nd the maximally-
ontained rewriting of the query. The maximally-
ontained rewriting will often involve a union of several queries over the sour
es. Furthermore, in the 
ontextof data integration it is often assumed that the views are not 
omplete, i.e., they may only 
ontain a subsetof the tuples satisfying their de�nition.In this se
tion we des
ribe algorithms for answering queries using views that were developed spe
i�
allyfor the 
ontext of data integration. These algorithms are the bu
ket algorithm developed in the 
ontext of theInformation Manifold system [LRO96b℄ and later studied in [GM99a℄, the inverse-rules algorithm [Qia96,DGL00℄ whi
h was implemented in the InfoMaster system [DG97b℄, and the MiniCon algorithm [PL00,PH01℄. It should be noted that unlike the algorithms des
ribed in the previous se
tion, the output of thesealgorithms is not a query exe
ution plan, but rather a query referring to the view relations.6.1 Datalog notationFor this and the next se
tion, it is ne
essary to revert to datalog notation and terminology. Hen
e, below weprovide a brief reminder of datalog notation and of 
onjun
tive queries [Ull89,AHV95℄.Conjun
tive queries are able to express sele
t-proje
t-join queries. A 
onjun
tive query has the form:q( �X) :� r1( �X1); : : : ; rn( �Xn)where q, and r1; : : : ; rn are predi
ate names. The predi
ate names r1; : : : ; rn refer to database relations. Theatom q( �X) is 
alled the head of the query, and refers to the answer relation. The atoms r1( �X1); : : : ; rn( �Xn)are the subgoals in the body of the query. The tuples �X; �X1; : : : ; �Xn 
ontain either variables or 
onstants.We require that the query be safe, i.e., that �X � �X1 [ : : : [ �Xn (that is, every variable that appears in thehead must also appear in the body).Queries may also 
ontain subgoals whose predi
ates are arithmeti
 
omparisons <;�;=; 6=. In this 
ase,we require that if a variable X appears in a subgoal of a 
omparison predi
ate, then X must also appear inan ordinary subgoal. We refer to the subgoals of 
omparison predi
ates of a query Q by C(Q).As an example of expressing an SQL query in datalog, 
onsider the following SQL query asking for thestudents (and their advisors) who took 
ourses from their advisors after the winter of 1998:sele
t Advises.prof, Advises.studentfrom Registered, Tea
hes, Adviseswhere Registered.
-number=Tea
hes.
-number and Registered.quarter=Tea
hes.quarter andAdvises.prof=Tea
hes.prof and Advises.student=Registered.student andRegistered.quarter > "winter98".In the notation of 
onjun
tive queries, the above query would be expressed as follows:5 I thank an anonymous reviewer for suggesting this problem.



Answering Queries Using Views: A Survey 19q(prof, student) :-Registered(student, 
-number, quarter), Tea
hes(prof, 
-number, quarter),Advises(prof, student), quarter > "winter98".Note that when using 
onjun
tive queries, join predi
ates of SQL are expressed by multiple o

urren
esof the same variable in di�erent subgoals of the body (e.g., the variables quarter, 
-number, prof, and studentabove). Unions 
an be expressed in this notation by allowing a set of 
onjun
tive queries with the same headpredi
ate.A datalog query is a set of rules, ea
h having the same form as a 
onjun
tive query, ex
ept that predi
atesin the body do not have to refer to database relations. In a datalog query we distinguish EDB (extensionaldatabase) predi
ates that refer to the database relations from the IDB (intensional database) predi
ates thatrefer to intermediate 
omputed relations. Hen
e, in the rules, EDB predi
ates appear only in the bodies,whereas the IDB predi
ates may appear anywhere. We assume that every datalog query has a distinguishedIDB predi
ate 
alled the query predi
ate, referring to the relation of the result.A predi
ate p in a datalog program is said to depend on a predi
ate q if q appears in one of the ruleswhose head is p. The datalog program is said to be re
ursive if there is a 
y
le in the dependen
y graph ofpredi
ates. It is important to re
all that if a datalog program is not re
ursive, then it 
an be equivalentlyrewritten as a union of 
onjun
tive queries, though possibly with an exponential blowup in the size of thequery. As we see in Se
tion 7.2, 
ertain 
ases may require rewritings that are re
ursive datalog queries.The input to a datalog query Q 
onsists of a database D storing extensions of all EDB predi
ates in Q.Given su
h a database D, the answer to Q, denoted by Q(D), is the least �xpoint model of Q and D, whi
h
an be 
omputed as follows. We apply the rules of the program in an arbitrary order, starting with emptyextensions for the IDB relations. An appli
ation of a rule may derive new tuples for the relation denoted bythe predi
ate in the head of the rule. We apply the rules until we 
annot derive any new tuples. The outputQ(D) is the set of tuples 
omputed for the query predi
ate. Note that sin
e the number of tuples that 
an be
omputed for ea
h relation is �nite and monotoni
ally in
reasing, the evaluation is guaranteed to terminate.Finally, we say that a datalog query refers only to views if instead of EDB predi
ates we have predi
atesreferring to views (but we still allow arithmeti
 
omparison predi
ates and IDB predi
ates).6.2 The Bu
ket AlgorithmThe goal of the bu
ket algorithm is to reformulate a user query that is posed on a mediated (virtual) s
hemainto a query that refers dire
tly to the available data sour
es. Both the query and the sour
es are des
ribedby 
onjun
tive queries that may in
lude atoms of arithmeti
 
omparison predi
ates (hereafter referred tosimply as predi
ates). As we explain in Se
tion 7, the number of possible rewritings of the query using theviews is exponential in the size of the query. Hen
e, the main idea underlying the bu
ket algorithm is thatthe number of query rewritings that need to be 
onsidered 
an be drasti
ally redu
ed if we �rst 
onsiderea
h subgoal in the query in isolation, and determine whi
h views may be relevant to ea
h subgoal.Given a query Q, the bu
ket algorithm pro
eeds in two steps. In the �rst step, the algorithm 
reates abu
ket for ea
h subgoal in Q that is not in C(Q), 
ontaining the views (i.e., data sour
es) that are relevantto answering the parti
ular subgoal. More formally, to de
ide whether the view V should be in the bu
ketof a subgoal g, we 
onsider ea
h of the subgoals g1 in V and do the following:a. 
he
k whether there is a uni�er � for g and g1, i.e., � is a variable mapping su
h that �(g) = �(g1). Ifthere is no uni�er, we pro
eed to the next subgoal.b. given the uni�er �, we 
he
k whether the view and the query would be 
ompatible after the uni�er isapplied. Hen
e, we apply �h(V ) to the query and to the view, where �h(V ) is the same as � but its domaindoes not in
lude the existential variables in V (sin
e only the head variables of V are part of a rewriting).Then we 
he
k two 
onditions: (1) that the predi
ates in Q and in V are mutually satis�able, i.e.,�h(V )(C(Q))^�h(V )(C(V )) is satis�able, and (2) that � treats the head variables o

urring in g 
orre
tly,i.e., if X is a head variable that appears in position i of the subgoal g, then the variable appearing inposition i of g1 must be a head variable of V .If the above 
onditions are satis�ed, then we insert the atom �(head(V )) into the bu
ket of g. Note thata subgoal g may unify with more than one subgoal in a view V , and in that 
ase the bu
ket of g will 
ontainmultiple o

urren
es of V .
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ond step, the bu
ket algorithm �nds a set of 
onjun
tive query rewritings, ea
h of them being a
onjun
tive query that in
ludes one 
onjun
t from every bu
ket. Ea
h of these 
onjun
tive query rewritingsrepresents one way of obtaining part of the answer to Q from the views. The result of the bu
ket algorithmis de�ned to be the union of the 
onjun
tive query rewritings (sin
e ea
h of the rewritings may 
ontributedi�erent tuples). Given a 
onjun
tion, 
onstru
ted from a single element from every bu
ket, it is a 
onjun
tivequery rewriting if either (1) the 
onjun
tion is 
ontained in the query Q, or (2) it is possible to add atomsof 
omparison predi
ates su
h that the resulting 
onjun
tion is 
ontained in Q.Example 2 Consider the following viewsV1(student,
-number,quarter,title) :- Registered(student,
-number,quarter), Course(
-number,title),
-number�500, quarter�Aut98.V2(student,prof,
-number,quarter) :- Registered(student,
-number,quarter),Tea
hes(prof,
-number,quarter)V3(student,
-number) :- Registered(student,
-number,quarter), quarter � Aut94.V4(prof,
-number,title,quarter) :- Registered(student,
-number,quarter), Course(
-number,title),Tea
hes(prof,
-number,quarter), quarter�Aut97.Suppose our query is:q(S,C,P) :- Tea
hes(P,C,Q), Registered(S,C,Q), Course(C,T), C�300, Q�Aut95.In the �rst step the algorithm 
reates a bu
ket for ea
h of the relational subgoals in the query in turn.The resulting 
ontents of the bu
kets are shown in Table 2. The bu
ket of Tea
hes(P,C,Q) in
ludes views V2and V4, sin
e the following mapping uni�es the subgoal in the query with the 
orresponding Tea
hes subgoalin the views (thereby satisfying 
ondition (a) above):f P ! prof, C ! 
-number, Q ! quarter g.Note that ea
h view head in a bu
ket only in
ludes variables in the domain of the mapping. Fresh variables(primed) are used for the other head variables of the view.The bu
ket of the subgoal Registered(S,C,Q) 
ontains the views V1 and V2, sin
e the following mappinguni�es the subgoal in the query with the 
orresponding Registered subgoal in the views:f S ! student, C ! 
-number, Q ! quarter g.Tea
hes(P,C,Q) Registered(S,C,Q) Course(C,T)V2(S',P,C,Q) V1(S,C,Q,T') V1(S',C,Q',T)V4(P,C,T',Q) V2(S,P',C,Q) V4(P',C,T,Q')Table 2 Contents of the bu
kets. The primed variables are those that are not in the domain of the unifying mapping.The view V3 is not in
luded in the bu
ket of Registered(S,C,Q) be
ause after applying the uni�
ationmapping, the predi
ates Q � Aut95 and Q � Aut94 are mutually in
onsistent. The view V4 is not in
ludedin the bu
ket of Registered(S,C,Q) be
ause the variable student is not in the head of V4, while S is in thehead of the query.Next, 
onsider the bu
ket of the subgoal Course(C,T). The views V1 and V4 will be in
luded in the bu
ketbe
ause of the mappingf C ! 
-number, T ! title g.In the se
ond step of the algorithm, we 
ombine elements from the bu
kets. In our example, we startwith a rewriting that in
ludes the top elements of ea
h bu
ket, i.e.,q'(S,C,P) :- V2(S',P,C,Q), V1(S,C,Q,T'), V1(S', C, Q', T).
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an be 
he
ked, this rewriting 
an be simpli�ed by equating the variables S and S', and Q and Q',and then removing the third subgoal, resulting withq'(S,C,P) :- V2(S',P,C,Q), V1(S,C,Q,T').Another possibility that the bu
ket algorithm would explore is:q'(S,C,P) :- V4(P, C, T', Q), V1(S,C,Q,T'), V4(P', C, T, Q').However, this rewriting would be dismissed be
ause the quarters given in V1 are disjoint from those givenin V4. In this 
ase, the views V1 and V4 are relevant to the query when they are 
onsidered in isolation, but,if joined, would yield the empty answer.Finally, the algorithm would also produ
e the rewritingq'(S,C,P) :- V2(S,P,C,Q), V4(P, C, T', Q).Hen
e, the result of the bu
ket algorithm is the union of two 
onjun
tive queries, one obtains answersby joining V1 and V2, and the other by joining V2 and V4. The reader should note that in this example,as often happens in the data integration 
ontext, the algorithm produ
ed a maximally-
ontained rewritingof the query using the views, and not an equivalent rewriting. In fa
t, when the query does not 
ontainarithmeti
 
omparison predi
ates (but the view de�nitions still may) the bu
ket algorithm is guaranteed toreturn the maximally-
ontained rewriting of the query using the views. 2The strength of the bu
ket algorithm is that it exploits the predi
ates in the query to prune signi�
antlythe number of 
andidate 
onjun
tive rewritings that need to be 
onsidered. Che
king whether a view shouldbelong to a bu
ket 
an be done in time polynomial in the size of the query and view de�nition when thepredi
ates involved are arithmeti
 
omparisons. Hen
e, if the data sour
es (i.e., the views) are indeed dis-tinguished by having di�erent 
omparison predi
ates, then the resulting bu
kets will be relatively small.The bu
ket algorithm also extends naturally to 
ases where the query (but not the views) is a union of
onjun
tive queries, and to other forms of predi
ates in the query su
h as 
lass hierar
hies [LRO96a℄. Fi-nally, the bu
ket algorithm also makes it possible to identify opportunities for interleaving optimization andexe
ution in a data integration system in 
ases where one of the bu
kets 
ontains an espe
ially large numberof views [LRO96a℄.The main disadvantage of the bu
ket algorithm is that the Cartesian produ
t of the bu
kets may still berather large. Furthermore, in the se
ond step the algorithm needs to perform a query 
ontainment test forevery 
andidate rewriting. The testing problem is �p2 -
omplete,6 though only in the size of the query andthe view de�nition, and hen
e quite eÆ
ient in pra
ti
e.6.3 The Inverse-rules AlgorithmLike the bu
ket algorithm, the inverse-rules algorithm was also developed in the 
ontext of a data integrationsystem [DG97b℄. The key idea underlying the algorithm is to 
onstru
t a set of rules that invert the viewde�nitions, i.e., rules that show how to 
ompute tuples for the database relations from tuples of the views. Weillustrate inverse rules with an example. Suppose we have the following view (we omit the quarter attributeof Registered for brevity in this example):V3(dept, 
-number) :- Major(student,dept), Registered(student,
-number).We 
onstru
t one inverse rule for every subgoal in the body of the view:Major(f1(dept,X), dept) :- V3(dept,X)Registered(f1(Y, 
-number), 
-number) :- V3(Y,
-number)6 For 
onjun
tive queries with no 
omparison predi
ates, query 
ontainment is in NP be
ause we only need to guessa 
ontainment mapping. Here, however, we need to guess a 
ontainment mapping for every possible ordering on thevariables in 
ontaining query.



22 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleIntuitively, the inverse rules have the following meaning. A tuple of the form (dept,
-number) in theextension of the view V3 is a witness of tuples in the relations Major and Registered. The tuple (dept,
-number) is a witness in the sense that it tells us two things:{ the relation Major 
ontains a tuple of the form (Z, dept), for some value of Z.{ the relation Registered 
ontains a tuple of the form (Z, 
-number), for the same value of Z.In order to express the information that the unknown value of Z is the same in the two atoms, we referto it using the fun
tional term f1(dept,
-number). Formally, f1 is a Skolem fun
tion (see [ABS99℄, Pg. 96)and therefore uninterpreted. Note that there may be several values of Z in the database that 
ause the tuple(dept,
-number) to be in the join of Major and Registered, but all that matters is that there exists at leastone su
h value.In general, we 
reate one fun
tion symbol for every existential variable that appears in the view de�nitions.These fun
tion symbols are used in the heads of the inverse rules.The rewriting of a query Q using the set of views V is the datalog program that in
ludes{ the inverse rules for V , and{ the query Q.As shown in [DG97a,DGL00℄, the inverse-rules algorithm returns the maximally-
ontained rewriting ofQ using V . In fa
t, the algorithm returns the maximally 
ontained query even if Q is an arbitrary re
ursivedatalog program.Example 3 Suppose a query asks for the departments in whi
h the students of the 444 
ourse are majoring,q(dept) :- Major(student,dept), Registered(student, 444)and the view V3 in
ludes the tuples:f (CS, 444), (EE, 444), (CS, 333) g.The inverse rules would 
ompute the following tuples:Registered: f (f1(CS,444), CS), (f1(EE,444), EE), (f1(CS,333), CS) gMajor: f (f1(CS,444),444), (f1(EE,444),444), (f1(CS,333),333) gApplying the query to these extensions would yield the answers CS and EE. 2In the above example we showed how fun
tional terms are generated as part of the evaluation of theinverse rules. However, the resulting rewriting 
an a
tually be rewritten in su
h a way that no fun
tionalterms appear [DG97a℄.There are several interesting similarities and di�eren
es between the bu
ket and inverse rules algorithmsthat are worth noting. In parti
ular, the step of 
omputing bu
kets is similar in spirit to that of 
omputingthe inverse rules, be
ause both of them 
ompute the views that are relevant to single atoms of the databaserelations. The di�eren
e is that the bu
ket algorithm 
omputes the relevant views by taking into 
onsiderationthe 
ontext in whi
h the atom appears in the query, while the inverse rules algorithm does not. Hen
e, if thepredi
ates in a view de�nition entail that the view 
annot provide tuples relevant to a query (be
ause theyare mutually unsatis�able with the predi
ates in the query), then the view will not end up in a bu
ket. In
ontrast, the query rewriting obtained by the inverse rules algorithm may 
ontain views that are not relevantto the query. However, the inverse rules 
an be 
omputed on
e, and be appli
able to any query. In orderto remove irrelevant views from the rewriting produ
ed by the inverse-rules algorithm we need to apply asubsequent 
onstraint propagation phase (as in [LFS97,SR92℄).A key advantage of the inverse-rules algorithm is its 
on
eptual simpli
ity and modularity. As shownin [DGL00℄, extending the algorithm to exploit fun
tional dependen
ies on the database s
hema, re
ursivequeries or the existen
e of a

ess-pattern limitations 
an be done by adding another set of rules to the inverserules. Furthermore, the algorithm produ
es the maximally-
ontained rewriting in time that is polynomial inthe size of the query and the views. Note that the algorithm does not tell us whether the maximally-
ontainedrewriting is equivalent to the original query, whi
h would 
ontradi
t the fa
t that the problem of �nding anequivalent rewriting is NP-
omplete [LMSS95℄ (see Se
tion 7).



Answering Queries Using Views: A Survey 23On the other hand, using the resulting rewriting produ
ed by the algorithm for a
tually evaluating queriesfrom the views has a signi�
ant drawba
k, sin
e it insists on re
omputing the extensions of the databaserelations. In our example, evaluating the inverse rules 
omputes tuples for Registered and Major, and thequery is then evaluated over these extensions. However, by doing that, we lose the fa
t that the view already
omputed the join that the query is requesting. Hen
e, mu
h of the 
omputational advantage of exploitingthe materialized view is lost.In order to obtain a more eÆ
ient rewriting from the inverse rules, we must unfold the inverse rules andremove redundant subgoals from the unfolded rules. Unfolding the rules turns out to be similar to (but stillslightly better than) the se
ond phase of the bu
ket algorithm, where we 
onsider the Cartesian produ
t ofthe bu
kets (see [PL00℄ for an experimental analysis).6.4 The MiniCon algorithmThe MiniCon algorithm [PL00,PH01℄ addresses the limitations of the previous algorithms. The key ideaunderlying the algorithm is a 
hange of perspe
tive: instead of building rewritings by 
ombining rewritingsfor ea
h of the query subgoals or the database relation, we 
onsider how ea
h of the variables in the query
an intera
t with the available views. The result is that the se
ond phase of the MiniCon algorithm needs to
onsider drasti
ally fewer 
ombinations of views. The following example illustrates the key idea of MiniCon.Consider the queryq(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)and the views:V1(dept) :- Major(student,dept), Registered(student, 444, quarter).V2(prof, dept, area) :- Advises(prof, student), Prof(name, area)V3(dept, 
-number) :- Major(student,dept), Registered(student, 
-number, quarter),Advises(prof, student).The bu
ket algorithm 
onsiders ea
h of the subgoals in the query in isolation, and therefore puts theview V1 into the bu
kets of Major(student, dept) and Registered(student, 444, quarter). However, a 
arefulanalysis reveals that V1 
annot possibly be useful in a rewriting of the query. The reason is that sin
e thevariable student is not in the head of the view, then in order for V1 to be useful, it must 
ontain the subgoalAdvises(prof,student) as well. Otherwise, the join on the variable S in the query 
annot be applied using theresults of V1.The MiniCon algorithm starts out like the bu
ket algorithm, 
onsidering whi
h views 
ontain subgoalsthat 
orrespond to subgoals in the query. However, on
e the algorithm �nds a partial variable mapping froma subgoal g in the query to a subgoal g1 in a view V , it 
hanges perspe
tive and looks at the variables in thequery. The algorithm 
onsiders the join predi
ates in the query (whi
h are spe
i�ed by multiple o

urren
esof the same variable) and �nds the minimal additional set of subgoals that must to be mapped to subgoalsin V , given that g will be mapped to g1. This set of subgoals and mapping information is 
alled a MiniConDes
ription (MCD), and 
an be viewed as a generalized bu
ket. Unlike bu
kets, MCDs are asso
iated withsets of subgoals in the query. In the se
ond phase, the MCDs are 
ombined to produ
e the query rewritings.In the above example, the algorithm will determine that it 
annot 
reate an MCD for V1 be
ause it
annot apply the join predi
ates in the query. When V2 is 
onsidered, the MCD will 
ontain only thesubgoal Advises(prof, student). When V3 is 
onsidered, the MCD will in
lude all of the query subgoals.The key advantage of the MiniCon algorithm is that the se
ond phase of the algorithm 
onsiders manyfewer 
ombinations of MCDs 
ompared to the Cartesian produ
t of the bu
kets or 
ompared to the numberof unfoldings of inverse rules. The work in [PL00℄ des
ribes a detailed set of experiments that shows thatthe MiniCon signi�
antly outperforms the inverse rules algorithm, whi
h in turn outperforms the bu
ketalgorithm. The paper demonstrates exa
tly how these savings are obtained in the se
ond phase of thealgorithm. Furthermore, the experiments show that the algorithm s
ales up to hundreds of views with
ommonly o

urring shapes su
h as 
hain, star and 
omplete queries (see [MGA97℄ for a des
ription of thesequery shapes). The work in [PH01℄ also explains how to exploit the key ideas of the the MiniCon algroithmto the 
ontext of query optimization with materialized views, where the 
ost of the query plan if the primary
on
ern.
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tions we dis
ussed spe
i�
 algorithms for answering queries using views. Here we 
onsiderseveral fundamental issues that 
ut a
ross all of the algorithms we have dis
ussed thus far, and whi
h havebeen studied from a more theoreti
al perspe
tive in the literature.The �rst question 
on
erns the 
ompleteness of the query rewriting algorithms. That is, given a set ofviews and a query, will the algorithm always �nd a rewriting of the query using the views if one exists?A related issue is 
hara
terizing the 
omplexity of the query rewriting problem. We dis
uss these issues inSe
tion 7.1.Completeness of a rewriting algorithm is 
hara
terized w.r.t. a spe
i�
 query language in whi
h therewritings are expressed (e.g., sele
t-proje
t-join queries, queries with union, re
ursion). For example, thereare 
ases in whi
h if we do not allow unions in the rewriting of the query, then we will not be able to �nd anequivalent rewriting of a query using a set of views. The language that we 
onsider for the rewriting is evenmore 
ru
ial when we 
onsider maximally-
ontained rewritings, be
ause the notion of maximal 
ontainmentis de�ned w.r.t. a spe
i�
 query language. As it turns out, there are several important 
ases in whi
h amaximally-
ontained rewriting of a query 
an only be found if we 
onsider re
ursive datalog rewritings.These 
ases are illustrated in Se
tion 7.2.At the limit, we would like to be able to extra
t all the 
ertain answers for a query given a set of views,whether we do it by applying a query rewriting to the extensions of the views or via an arbitrary algorithm.In Se
tion 7.3 we 
onsider the 
omplexity of �nding all the 
ertain answers, and show that even in somesimple 
ases the problem is surprisingly 
o-NP-hard in the size of the extensions of the views.7.1 Completeness and 
omplexity of �nding query rewritingsThe �rst question one 
an ask about an algorithm for rewriting queries using views is whether the algorithmis 
omplete: given a query Q and a set of views V, will the algorithm �nd a rewriting of Q using V when oneexists. The �rst answer to this question was given for the 
lass of queries and views expressed as 
onjun
tivequeries [LMSS95℄. In that paper it was shown that when the query does not 
ontain 
omparison predi
atesand has n subgoals, then there exists an equivalent 
onjun
tive rewriting of Q using V only if there is arewriting with at most n subgoals. An immediate 
orollary of the bound on the size of the rewriting is thatthe problem of �nding an equivalent rewriting of a query using a set of views is in NP, be
ause it suÆ
es toguess a rewriting and 
he
k its 
orre
tness.7The bound on the size of the rewriting also sheds some light on the algorithms des
ribed in the previousse
tions. In parti
ular, it entails that the sear
h strategy that the GMAP algorithm [TSI96℄ employs isguaranteed to be 
omplete under the 
onditions that (1) we use a sound and 
omplete algorithm for query
ontainment for testing equivalen
e of rewritings, (2) when 
ombining two subplans, the algorithm 
onsidersall possible join predi
ates on the attributes of the 
ombined subplans, and (3) we 
onsider self-joins ofthe views. These 
onditions essentially guarantee that the algorithm sear
hes through all rewritings whosesize is bounded by the size of the query. It is important to emphasize that the rewriting of the query thatprodu
es the most eÆ
ient plan for answering the query may have more 
onjun
ts that the original query.The bound of [LMSS95℄ also guarantees that the bu
ket algorithm is guaranteed to �nd the maximally-
ontained rewriting of the query when the query does not 
ontain arithmeti
 
omparison predi
ates (but theviews may), and that we 
onsider unions of 
onjun
tive queries as the language for the rewriting.In [LMSS95℄ it is also shown that the problem of �nding a rewriting is NP-hard for two independentreasons: (1) the number of possible ways to map a single view into the query, and (2) the number of ways to
ombine the mappings of di�erent views into the query.In [RSU95℄ the authors extend the bound on the size of the rewriting to the 
ase where the views
ontain a

ess-pattern limitations (dis
ussed in detail in Se
tion 8.2). In [CR97℄ the authors exploit the 
lose
onne
tion between the 
ontainment and rewriting problems, and show several polynomial-time 
ases of therewriting problems, 
orresponding to analogous 
ases for the problem of query 
ontainment.7 Note that 
he
king the 
orre
tness of a rewriting is NP-
omplete; however, the guess of a rewriting 
an be extendedto a guess for 
ontainment mappings showing the equivalen
e of the rewriting and of the query.
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ursive rewritingsAs noted earlier, in 
ases where we 
annot �nd an equivalent rewriting of the query using a set of views,we 
onsider the problem of �nding maximally-
ontained rewritings. Our hope is that when we apply themaximally-
ontained rewriting to the extensions of the views, we will obtain the set of all 
ertain answers tothe query (De�nition 4). Interestingly, there are several 
ontexts where in order to a
hieve this goal we needto 
onsider re
ursive datalog rewritings of the query [DGL00℄. We re
all that a datalog rewriting is a datalogprogram in whi
h the base (EDB) predi
ates are the view relations, and there are additional intermediateIDB relations. Ex
ept for the obvious 
ase in whi
h the query is re
ursive [DG97a℄, other 
ases in
lude: whenwe exploit the presen
e of fun
tional dependen
ies on the database relations or when there are a

ess-patternlimitations on the extensions of the views [DL97℄ (see Se
tion 8.2 for a more detailed dis
ussion), when views
ontain unions [Afr00℄ (though even re
ursion does not always suÆ
e here), and the 
ase where additionalsemanti
 information about 
lass hierar
hies on obje
ts is expressed using des
ription logi
s [BLR97℄. Weillustrate the 
ase of fun
tional dependen
ies below.Example 4 To illustrate the need for re
ursive rewritings in the presen
e of fun
tional dependen
ies, wetemporarily venture into the domain of airline 
ights. Suppose we have the following database relations
hedule(Airline,Flight no,Date,Pilot,Air
raft)whi
h stores tuples des
ribing the pilot that is s
heduled for a 
ertain 
ight, and the air
raft that is used forthis 
ight. Assume we have the following fun
tional dependen
ies on the relations in the mediated s
hemaPilot ! Airline andAir
raft ! Airlineexpressing the 
onstraints that pilots work for only one airline, and that there is no joint ownership ofair
rafts between airlines. Suppose we have the following view available, whi
h proje
ts the date, pilot andair
raft attributes from the database relation:v(D,P,C) :- s
hedule(A,N,D,P,C)The view v re
ords on whi
h date whi
h pilot 
ies whi
h air
raft. Now 
onsider a query asking for pilotsthat work for the same airline as Mike (expressed as the following self join on the attribute Airline of thes
hedule relation):q(P) :- s
hedule(A,N,D,`mike',C), s
hedule(A,N',D',P,C')The view v doesn't re
ord the airlines that pilots work for, and therefore, deriving answers to the above queryrequires using the fun
tional dependen
ies in subtle ways. For example, if both Mike and Ann are known tohave 
own air
raft #111, then, sin
e ea
h air
raft belongs to a single airline, and every pilot 
ies for only oneairline, Ann must work for the same airline as Mike. Moreover, if, in addition, Ann is known to have 
ownair
raft #222, and John has 
own air
raft #222 then the same line of reasoning leads us to 
on
lude thatAnn and John work for the same airline. In general, for any value of n, the following 
onjun
tive rewritingis a 
ontained rewriting:qn(P ) :� v(D1;mike; C1); v(D2; P2; C1); v(D3; P2; C2); v(D4; P3; C2); : : : ;v(D2n�2; Pn; Cn�1); v(D2n�1; Pn; Cn); v(D2n; P; Cn)Moreover, for ea
h n, qn(P ) may provide answers that were not given by qi for i < n, be
ause one 
analways build an extension of the view v that requires n steps of 
haining in order to �nd answers to the query.The 
on
lusion is that we 
annot �nd a maximally-
ontained rewriting of this query using the views if weonly 
onsider non-re
ursive rewritings. Instead, the maximally-
ontained rewriting is the following datalogprogram:relevantPilot(\mike").relevantAirCraft(C) :- v(D, \mike", C).relevantAirCraft(C) :- v(D,P,C), relevantPilot(P).relevantPilot(P) :- relevantPilot(P1), relevantAirCraft(C), v(D1, P1, C), v(D2, P, C).



26 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleIn the program above, the relation relevantPilot will in
lude the set of pilots who work for the same airlineas Mike, and the relation relevantAirCraft will in
lude the air
raft 
own by relevant pilots. Note that thefourth rule is mutually re
ursive with the de�nition of relevantAirCraft. 2In [DL97,DGL00℄ it is shown how to augment the inverse-rules algorithm to in
orporate fun
tionaldependen
ies. The key element of that algorithm is to add a set of rules that simulate the appli
ation of aChase algorithm [MMS79℄ on the atoms of the database relations.7.3 Finding the 
ertain answersA di�erent perspe
tive on the problem of answering queries using views is the following. Given a set ofmaterialized views and the 
orresponding view de�nitions, we obtain some in
omplete information about the
ontents of the database. More spe
i�
ally, the views de�ne a set of possible underlying databases D. Givena query Q over the database and a tuple t, there are a few possibilities: (1) t would be an answer to Q forevery database in D, (2) t is an answer to Q for some database in D, or (3) t is not an answer to Q for anydatabase in D. The notion of 
ertain answers, (see De�nition 4) formalizes 
ase (1).If Q0 is an equivalent rewriting of a query Q using the set of views V , then it will always produ
e thesame result as Q, independent of the state of the database or of the views. In parti
ular, this means that Q0will always produ
e all the 
ertain answers to Q for any possible database.When Q0 is a maximally-
ontained rewriting of Q using the views V it may produ
e only a subset of theanswers of Q for a given state of the database. The maximality of Q0 is de�ned only w.r.t. the other possiblerewritings in a parti
ular query language L that we 
onsider for Q0. Hen
e, the question that remains is howto �nd all the 
ertain answers, whether we do it by applying some rewritten query to the views or by someother algorithm.The question of �nding all the 
ertain answers is 
onsidered in detail in [AD98,GM99a℄. In their analy-sis they distinguish the 
ase of the open-world assumption from that of the 
losed-world assumption. Withthe 
losed-world assumption, the extensions of the views are assumed to 
ontain all the tuples that wouldresult from applying the view de�nition to the database. Under the open-world assumption, the extensionsof the views may be missing tuples. The open-world assumption is espe
ially appropriate in data integrationappli
ations, where the views des
ribe sour
es that may be in
omplete (see [EGW97,Lev96,Dus97℄ for treat-ments of 
omplete sour
es in the data integration 
ontext). The 
losed-world assumption is appropriate forthe 
ontext of query optimization and maintaining physi
al data independen
e, where views have a
tuallybeen 
omputed from existing database relations.Under the open-world assumption, [AD98℄ show that in many pra
ti
al 
ases, �nding all the 
ertainanswers 
an be done in polynomial time. However, the problem be
omes 
o-NP-hard (in the size of the viewextensions!) as soon as we allow union in the language for de�ning the views, or allow the predi
ate 6= in thelanguage de�ning the query.Under the 
losed-world assumption the situation is even worse. Even when both the views and the queryare de�ned by 
onjun
tive queries without 
omparison predi
ates, the problem of �nding all 
ertain answersis already 
o-NP-hard. The following example is the 
rux of the proof of the 
o-NP-hardness result [AD98℄.Example 5 The following example shows a redu
tion of the problem of graph 3-
olorability to the problem of�nding all the 
ertain answers. Suppose the relation edge(X,Y) en
odes the edges of a graph, and the relation
olor(X,Z) en
odes whi
h 
olor Z is atta
hed to the nodes of the graph. Consider the following three views:V1(X) :- 
olor(X,Y)V2(Y) :- 
olor(X,Y)V3(X,Y) :- edge(X,Y)where the extension of V1 is the set of nodes in a graph, the extension of V2 is the set fred, green, blueg,and the extension of V3 is the set of edges in the graph. Consider the following query:q(
) :- edge(X,Y), 
olor(X,Z), 
olor(Y,Z)In [AD98℄ it is shown that 
 is a 
ertain answer to q if and only if the graph en
oded by edge is notthree-
olorable. Hen
e, they show that the problem of �nding all 
ertain answers is 
o-NP-hard. 2
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ertain answers provides an interesting perspe
tive on formalisms for dataintegration. Intuitively, the result entails that when we use views to des
ribe the 
ontents of data sour
es,even if we only use 
onjun
tive queries to des
ribe the sour
es, the 
omplexity of �nding all the answers toa query from the set of sour
es is 
o-NP-hard. In 
ontrast, using a formalism in whi
h the relations of themediated s
hema are des
ribed by views over the sour
e relations (as in [GMPQ+97℄), the 
omplexity of�nding all the answers is always polynomial. Hen
e, this result hints that the former formalism has a greaterexpressive power as a formalism for data integration.It is also interesting to note the 
onne
tion established in [AD98℄ between the problem of �nding all 
ertainanswers and 
omputation with 
onditional tables [IL84℄. As the authors show, the partial information aboutthe database that is available from a set of views 
an be en
oded as a 
onditional table using the formalismstudied in [IL84℄, providing a formalization to the intuition starting out this se
tion.The work in [GM99a℄ also 
onsiders the 
ase where the views may either be in
omplete, 
omplete, or
ontain tuples that don't satisfy the view de�nition (referred to as in
orre
t tuples). It is shown that without
omparison predi
ates in the views or the query, when either all the views are 
omplete or all of them may
ontain in
orre
t tuples, �nding all 
ertain answers 
an be done in polynomial time in the size of the viewextensions. In other 
ases, the problem is 
o-NP-hard. The work in [MM01℄ 
onsider the query answeringproblem in 
ases where we may have bounds on the soundness and/or 
ompleteness of the views.Finally, [MLF00℄ 
onsiders the problem of relative query 
ontainment, i.e., whether the set of 
ertainanswers of a query Q1 is always 
ontained in the set of 
ertain answers of a query Q2. The paper shows thatfor the 
onjun
tive queries and views with no 
omparison predi
ates the problem is �p2 -
omplete, and thatthe problem is still de
idable in the presen
e of a

ess pattern limitations.8 Extensions to the Query LanguageIn this se
tion we survey the algorithms for answering queries using views in the 
ontext of several importantextensions to the query languages 
onsidered thus far. We 
onsider extensions for Obje
t Query Language(OQL) [FRV96,Flo96,DPT99℄, and views with a

ess pattern limitations [RSU95,KW96,DL97℄.8.1 Obje
t Query LanguageIn [FRV96,Flo96℄ the authors studied the problem of answering queries using views in the 
ontext of queryingobje
t-oriented databases, and have in
orporated their algorithm into the Flora OQL optimizer. In obje
t-oriented databases the 
orresponden
e between the logi
al model of the data and the physi
al model is evenless dire
t than in relational systems. Hen
e, as argued in [Flo96℄, it is imperative for a query optimizer forobje
t-oriented database be based on the notion of physi
al data independen
e.Answering queries using views in the 
ontext of obje
t-oriented systems introdu
es two key diÆ
ulties.First, �nding rewritings often requires that we exploit some semanti
 information about the 
lass hierar
hyand about the attributes of 
lasses. Se
ond, OQL does not make a 
lean distin
tion between the sele
t,from and where 
lauses as in SQL. Sele
t 
lauses may 
ontain arbitrary expressions, and the where 
lausesalso allow path navigation.The algorithm for answering queries using views des
ribed in [Flo96℄ operates in two phases. In the �rstphase the algorithm rewrites the query into a 
anoni
al form, thereby addressing the la
k of distin
tionbetween the sele
t, from and where 
lauses. As an example, in this phase, navigational expressions areremoved from the where 
lause by introdu
ing new variables and terms in the from 
lause.In the se
ond phase, the algorithm exploits semanti
 knowledge about the 
lass hierar
hy in order to�nd a subexpression of the query that is mat
hed by one of the views. When su
h a mat
h is found, thesubexpression in the query is repla
ed by a referen
e to the view and appropriate 
onditions are added inorder to 
onserve the equivalen
e to the query.We illustrate the main novelties of the algorithm with the following example from [Flo96℄, using a Fren
hversion of our university domain. Here we have the 
lass Universities, with sub
lass Fran
e.Universities andthe 
lass City. The �rst two 
lasses have the attributes students, PhDstudents (a sub-attribute of students),professors and adjun
ts.



28 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleExample 6 Suppose we have the following view asking for students who are at least as old as their professors,and who study in universities in small 
ities. Below we use the notation of OQL. Note that the sele
t 
lauseof OQL de�nes the re
ord stru
ture of the result. Also note the use of path expressions { for example, y inx.students means that the variable y will be bound to ea
h of the students of the obje
t to whi
h x will bebound.
reate view V1 assele
t distin
t [A:=x.name, B:=y.identi�er, C:=z℄from x in Universities, y in x.students, z in union(x.professors, x.adjun
ts)where x.
ity.kind="small" and y.age � z.age.Suppose a query asks for Ph.D students in Fren
h universities who have the same age as their professors,and study in small town universities:sele
t distin
t [D:=u.name, E:=v.name, F:=t.name℄from u in Fran
e.Universities, v in u.PhDstudents, t in u.professorswhere u.
ity.kind="small" and v.age=t.age.In the �rst step, the algorithm will transform the query and the view into their normal form. The resultingexpression for the query would be: (note that the variable w was added to the query in order to eliminatethe navigation term from the where 
lause)sele
t distin
t [D:=u.name, E:=v.name, F:=t.name℄from u in Fran
e.Universities, w in City, v in u.PhDstudents, t in u.professorswhere w.kind="small" and v.age=t.age and u.
ity=w.In the next step, the algorithm will note the following properties of the s
hema:1. The 
olle
tion Fran
e.Universities is in
luded in the 
olle
tion Universities,2. The 
olle
tion denoted by the expression u.PhDstudents is in
luded in the 
olle
tion denoted by x.students.This in
lusion follows from the �rst in
lusion and the fa
t that PhD students are a subset of students.3. The 
olle
tion u.professors is in
luded in the 
olle
tion union(x.professors, x.adjun
ts).Putting these three in
lusions together, the algorithm determines that the view 
an be used to answerthe query, be
ause the sele
tions in the view are less restri
tive than those in the query. The rewriting of thequery using the view is the following:sele
t distin
t [D:=a.A, E:=a.B.name, F:=t.name℄from a in V1, u in Fran
e.Universities, v in u.PhDstudents, t in u.professorswhere u.
ity.kind="small" and v.age=t.age andu.name=a.A and v.name=a.B and t=a.C.Note that the role of the view is only to restri
t the possible bindings of the variables used in the query.In parti
ular, the query still has to restri
t the universities to only the Fren
h ones, the students to onlythe Ph.Ds, and the range of the variable t to 
over only professors. In this 
ase, the evaluation of the queryusing the view is likely to be more eÆ
ient than 
omputing the query only from the 
lass extents. 2As noted in Se
tion 5.2, the algorithm des
ribed in [DPT99,PDST00℄ also 
onsiders 
ertain types ofqueries over obje
t-oriented data.8.2 A

ess Pattern LimitationsIn the 
ontext of data integration, where data sour
es are modeled as views, we may have limitations onthe possible a

ess paths to the data. For example, when querying the Internet Movie Database, we 
annotsimply ask for all the tuples in the database. Instead, we must supply one of several inputs, (e.g., a
tor nameor dire
tor), and obtain the set of movies in whi
h they are involved.We 
an model limited a

ess paths by atta
hing a set of adornments to every data sour
e. If a sour
e ismodeled by a view with n attributes, then an adornment 
onsists of a string of length n, 
omposed of the



Answering Queries Using Views: A Survey 29letters b and f . The meaning of the letter b in an adornment is that the sour
e must be given values for theattribute in that position. The meaning of the letter f in an adornment is that the sour
e doesn't have tobe given a value for the attribute in that position. For example, an adornment bf for a view V (A;B) meansthat tuples of V 
an be obtained only by providing values for the attributes A.Several works have 
onsidered the problem of answering queries using views when the views are alsoasso
iated with adornments des
ribing limited a

ess patterns. In [RSU95℄ it is shown that the bound givenin [LMSS95℄ on the length of a possible rewriting does not hold anymore. To illustrate, 
onsider the followingexample, where the binary relation Cites stores pairs of papers X;Y , where X 
ites Y . Suppose we have thefollowing views with their asso
iated adornments:CitationDBbf (X,Y) :- Cites(X,Y)CitingPapersf (X) :- Cites(X,Y)and suppose we have the following query asking for all the papers 
iting paper #001:Q(X) :- Cites(X,001)The bound given in [LMSS95℄ would require that if there exists a rewriting, then there is one with atmost one atom, the size of the query. However, the only possible rewriting in this 
ase is:q(X) :- CitingPapers(X), CitationDB(X,001).[RSU95℄ shows that in the presen
e of a

ess-pattern limitations it is suÆ
ient to 
onsider a slightlylarger bound on the size of the rewriting: n+ v, where n is the number of subgoals in the query and v is thenumber of variables in the query. Hen
e, the problem of �nding an equivalent rewriting of the query using aset of views is still NP-
omplete.The situation be
omes more 
ompli
ated when we 
onsider maximally-
ontained rewritings. As the fol-lowing example given in [KW96℄ shows, there may be no bound on the size of a rewriting. In the followingexample, the relation DBpapers denotes the set of papers in the database �eld, and the relation AwardPapersstores papers that have re
eived awards (in databases or any other �eld). The following views are available:DBSour
ef (X) :- DBpapers(X)CitationDBbf (X,Y) :- Cites(X,Y)AwardDBb(X) :- AwardPaper(X)The �rst sour
e provides all the papers in databases, and has no a

ess-pattern limitations. The se
ondsour
e, when given a paper, will return all the papers that are 
ited by it. The third sour
e, when given apaper, returns whether the paper is an award winner or not.The query asks for all the papers that won awards:Q(X) :- AwardPaper(X).Sin
e the view AwardDB requires its input to be bound, we 
annot query it dire
tly. One way to getsolutions to the query is to obtain the set of all database papers from the view DBSour
e, and perform adependent join with the view AwardDB. Another way would be to begin by retrieving the papers in DBSour
e,join the result with the view CitationDB to obtain all papers 
ited by papers in DBSour
e, and then join theresult with the view AwardDB. As the rewritings below show, we 
an follow any length of 
itation 
hainsbeginning with papers in DBSour
e and obtain answers to the query that were possibly not obtained byshorter 
hains. Hen
e, there is no bound on the length of a rewriting of the query using the views.Q'(X) :- DBSour
e(X), AwardDB(X)Q'(X) :- DBSour
e(V), CitationDB(V,X1), : : : ; CitationDB(Xn,X), AwardDB(X).Fortunately, as shown in [DL97,DGL00℄, we 
an still �nd a �nite rewriting of the query using the views,albeit a re
ursive one. The following datalog rewriting will obtain all the possible answers from the aboveviews. The key in 
onstru
ting the program is to de�ne a new intermediate relation papers whose extensionis the set of all papers rea
hable by 
itation 
hains from papers in databases, and is de�ned by a transitive
losure over the view CitationDB.



30 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitlepapers(X) :- DBsour
e(X)papers(X) :- papers(Y), CitationDB(Y,X)Q'(X) :- papers(X), AwardDB(X).In [DL97℄ it is shown that a maximally-
ontained rewriting of the query using the views 
an always beobtained with a re
ursive rewriting. In [FW97℄ and [LKG99℄ the authors des
ribe additional optimizationsto this basi
 algorithm.8.3 Other ExtensionsSeveral authors have 
onsidered additional extensions of the query rewriting problems in various 
ontexts.We mention some of them here.Extensions to the query and s
hema language: In [AGK99,Dus98℄ the authors 
onsider the rewriting prob-lem when the views may 
ontain unions. The 
onsideration of in
lusion dependen
ies on the database relationsintrodu
es several subtleties to the query rewriting problem, whi
h are 
onsidered in [Gry98℄. In [Mil98℄, theauthor 
onsiders the query rewriting problem for a language that enables querying the s
hema and datauniformly, and hen
e, names of attributes in the data may be
ome 
onstants in the extensions of the views.In [MRP99℄ the authors show that when the s
hema 
ontains a single universal relation, answering queriesusing views and several related operations 
an be done more eÆ
iently.Semi-stru
tured data: The emergen
e of XML as a standard for sharing data on the WWW has spurredsigni�
ant interest in building systems for integrating XML data from multiple sour
es. The emerging for-malisms for modeling XML data are variations on labeled dire
ted graphs, whi
h have also been used to modelsemi-stru
tured data [Abi97,Bun97,ABS99℄. The model of labeled dire
ted graphs is espe
ially well suitedfor modeling the irregularity and the la
k of s
hema whi
h are inherent in XML data. Several languages havebeen developed for querying semi-stru
tured data and XML [AQM+97,FFLS97,BDHS96,DFF+99,CRF00℄.Several works have started 
onsidering the problem of answering queries using views when the viewsand queries are expressed in a language for querying semi-stru
tured data. There are two main diÆ
ultiesthat arise in this 
ontext. First, su
h query languages enable using regular path expressions in the query, toexpress navigational queries over data whose stru
ture is not well known a priori. Regular path expressionsessentially provide a very limited kind of re
ursion in the query language. In [CGLV99℄ the authors 
onsiderthe problem of rewriting a regular path query using a set of regular path views, and show that the problem isin 2EXPTIME (and 
he
king whether the rewriting is an equivalent one is in 2EXPSPACE). In [CGLV00a℄the authors 
onsider the problem of �nding all the 
ertain answers when queries and views are expressedusing regular path expressions, and show that the problem is 
o-NP-
omplete when data 
omplexity (i.e., sizeof the view extensions) is 
onsidered. In [CGLV00b℄ the authors extend the results of [CGLV99,CGLV00a℄to path expressions that in
lude the inverse operator, allowing both forward and ba
kward traversals in agraph.The se
ond problem that arises in the 
ontext of semi-stru
tured data stems from the ri
h restru
turing
apabilities whi
h enable the 
reation of arbitrary graphs in the output. The output graphs 
an also in
ludenodes that did not exist in the input data. In [PV99℄ the authors 
onsider the rewriting problem in the
ase where the query 
an 
reate answer trees, and queries that do not involve regular path expressions withre
ursion. For the most part, 
onsidering queries with restru
turing remains an open resear
h problem.In�nite number of views: Two works have 
onsidered the problem of answering queries using views in thepresen
e of an in�nite number of views [LRU96,VP97℄. The motivation for this seemingly 
urious problemis that when a data sour
e has the 
apability to perform lo
al pro
essing, it 
an be modeled by the (possiblyin�nite) set of views it 
an supply, rather than a single one. As a simple example, 
onsider a data sour
ethat stores a set of do
uments, and 
an answer queries of the form:q(do
) :- do
ument(do
), 
ontains(do
, w1), : : :, 
ontains(do
,wn)
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an have any number of o

urren
es of the 
ontains subgoal, ea
h with a di�erent word.To answer queries using su
h sour
es, one need not only 
hoose whi
h sour
es to query, but we must also
hoose whi
h query to send to it out of the set of possible queries it 
an answer. In [LRU96,VP97℄ it is shownthat in 
ertain important 
ases the problem of answering a query using an in�nite set of views is de
idable.Of parti
ular note is the 
ase in whi
h the set of views that a sour
e 
an answer is des
ribed by the �niteunfoldings of a datalog program.Des
ription Logi
s: Des
ription logi
s are a family of logi
s for modeling 
omplex hierar
hi
al stru
tures.A des
ription logi
 makes it possible to de�ne sets of obje
ts by spe
ifying their properties, and then toreason about the relationship between these sets (e.g., subsumption, disjointness). A des
ription logi
 alsoenables reasoning about individual obje
ts, and their membership in di�erent sets. One of the reasons thatdes
ription logi
s are useful in data management is their ability to des
ribe 
omplex models of a domainand reason about inter-s
hema relationships [CL93℄. For that reason, des
ription logi
s have been used inseveral data integration systems [AKS96,LRO96a℄. Borgida [Bor95℄ surveys the use of des
ription logi
s indata management.Several works have 
onsidered the problem of answering queries using views when des
ription logi
s areused to model the domain. In [BLR97℄ it is shown that in general, answering queries using views in this
ontext may be NP-hard, and presents 
ases in whi
h we 
an obtain a maximally-
ontained rewriting of aquery in re
ursive datalog. The 
omplexity of answering queries using views for an expressive des
riptionlogi
 (whi
h also in
ludes n-ary relations) is studied in [CGL99℄.9 Con
lusionsAs this survey has shown, the problem of answering queries using views raises a multitude of 
hallenges,ranging from theoreti
al foundations to 
onsiderations of a more pra
ti
al nature. While algorithms for an-swering queries using views are already being in
orporated into 
ommer
ial database systems (e.g., [BDD+98,ZCL+00℄), these algorithms will have even more importan
e in data integration systems and data warehousedesign. Furthermore, answering queries using views is a key te
hnique to give database systems the abilityof maintaining physi
al data independen
e.There are many issues that remain open in this realm. Although we have tou
hed upon several querylanguages and extensions thereof, many 
ases remain to be investigated. Of parti
ular note are studyingrewriting algorithms in the presen
e of a wider 
lass of integrity 
onstraints on both the database and viewrelations, and studying the e�e
t of restru
turing 
apabilities of query languages (as in OQL or languagesfor querying semistru
tured data [BDHS96,AQM+97,FFLS97,DFF+99,CRF00℄).As des
ribed in the arti
le, di�erent motivations have led to two strands of work on answering queriesusing views, one in the 
ontext of optimization and the other in the 
ontext of data integration. In part, thesedi�eren
es are due to the fa
t that in the data integration 
ontext the algorithms sear
h for a maximally-
ontained rewriting of the query and assume that the number of views is relatively large. However, as weillustrated, the prin
iples underlying the two strands are similar. Furthermore, interesting 
hallenges ariseas we try to bridge the gaps between these bodies of work. The �rst 
hallenge is to extend the work onquery optimization to handle a mu
h larger number of more 
omplex views. The se
ond 
hallenge is toextend data integration algorithms to 
hoose judi
iously the best rewritings of the query. This 
an be doneby either trying to order the a

ess to the data sour
es (as in [FKL97,DL99,NLF99℄), or to 
ombine the
hoi
e of rewritings with other adaptive aspe
ts of query pro
essing explored in data integration systems(e.g., [UFA98,IFF+99℄).The 
ontext of data warehouse design, when one tries to sele
t a set of views to materialize in thewarehouse, raises another 
hallenge. The data warehouse design problem is often treated as a problem ofsear
h through a set of warehouse 
on�gurations. In ea
h 
on�guration, we need to determine whether theworkload queries anti
ipated on the warehouse 
an be answered using the sele
ted views, and estimate the
ost of the 
on�guration. In this 
ontext it is important to be able to reuse the results of the 
omputationfrom the previous state in the sear
h spa
e. In parti
ular, this raises the 
hallenge of developing in
rementalalgorithms for answering queries using views, whi
h 
an 
ompute rewritings more eÆ
iently when only minor
hanges are made to the set of available views.
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onsidered the problem of using materialized views when they are available. I believethat the next 
hallenge is sele
ting whi
h views to materialize in the �rst pla
e. The problem of view sele
tionalso has a surprising number of potential appli
ations, su
h as query optimization, data warehousing, web-sitedesign, 
ontent distribution networks, peer-to-peer 
omputing and ubiquitous 
omputing. Even though therehas been work on this problem (e.g., [CHS01,ACN00,Gup97a,CG00,GM99
,TS97,YKL97,BPT97,GHRU97,HRU96,GHI+01℄), the resear
h is still in its infan
y. The wealth of te
hniques developed for answering queriesusing views will be very useful in this realm.A
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