
Noname manusript No.(will be inserted by the editor)
Answering Queries Using Views: A SurveyAlon Y. HalevyDepartment of Computer Siene and EngineeringUniversity of WashingtonSeattle, WA, 98195alon�s.washington.eduAddress(es) of author(s) should be givenAbstrat The problem of answering queries using views is to �nd eÆient methods of answering a queryusing a set of previously de�ned materialized views over the database, rather than aessing the databaserelations. The problem has reently reeived signi�ant attention beause of its relevane to a wide variety ofdata management problems. In query optimization, �nding a rewriting of a query using a set of materializedviews an yield a more eÆient query exeution plan. To support the separation of the logial and physialviews of data, a storage shema an be desribed using views over the logial shema. As a result, �nding aquery exeution plan that aesses the storage amounts to solving the problem of answering queries usingviews. Finally, the problem arises in data integration systems, where data soures an be desribed aspreomputed views over a mediated shema. This artile surveys the state of the art on the problem ofanswering queries using views, and synthesizes the disparate works into a oherent framework. We desribethe di�erent appliations of the problem, the algorithms proposed to solve it and the relevant theoretialresults.1 IntrodutionThe problem of answering queries using views (a.k.a. rewriting queries using views) has reently reeivedsigni�ant attention beause of its relevane to a wide variety of data management problems: query optimiza-tion, maintenane of physial data independene, data integration and data warehouse design. Informallyspeaking, the problem is the following. Suppose we are given a query Q over a database shema, and a setof view de�nitions V1; : : : ; Vn over the same shema. Is it possible to answer the query Q using only theanswers to the views V1; : : : ; Vn? Alternatively, what is the maximal set of tuples in the answer of Q that wean obtain from the views? If we an aess both the views and the database relations, what is the heapestquery exeution plan for answering Q?The �rst lass of appliations in whih we enounter the problem of answering queries using views isquery optimization and database design. In the ontext of query optimization, omputing a query usingpreviously materialized views an speed up query proessing beause part of the omputation neessary forthe query may have already been done while omputing the views. Suh savings are espeially signi�ant indeision support appliations when the views and queries ontain grouping and aggregation. Furthermore, insome ases, ertain indies an be modeled as preomputed views (e.g., join indies [Val87℄),1 and deidingwhih indies to use requires a solution to the query rewriting problem. In the ontext of database design,view de�nitions provide a mehanism for supporting the independene of the physial view of the data andits logial view. This independene enables us to modify the storage shema of the data (i.e., the physialview) without hanging its logial shema, and to model more omplex types of indies. Hene, several1 Stritly speaking, to model join indies we need to extend the logial model to refer to row IDs.



2 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleauthors desribe the storage shema as a set of views over the logial shema [YL87,TSI96,Flo96℄. Giventhese desriptions of the storage, the problem of omputing a query exeution plan (whih, of ourse, mustaess the physial storage) involves �guring out how to use the views to answer the query.A seond lass of appliations in whih our problem arises is data integration. Data integration systemsprovide a uniform query interfae to a multitude of autonomous data soures, whih may reside within anenterprise or on the World-Wide Web. Data integration systems free the user from having to loate souresrelevant to a query, interat with eah one in isolation, and manually ombine data from multiple soures.Users of data integration systems do not pose queries in terms of the shemas in whih the data is stored,but rather in terms of a mediated shema. The mediated shema is a set of relations that is designed fora spei� data integration appliation, and ontains the salient aspets of the domain under onsideration.The tuples of the mediated shema relations are not atually stored in the data integration system. Instead,the system inludes a set of soure desriptions that provide semanti mappings between the relations in thesoure shemas and the relations in the mediated shema.The data integration systems desribed in [LRO96b,DG97b,KW96,LKG99℄ follow an approah in whihthe ontents of the soures are desribed as views over the mediated shema. As a result, the problem ofreformulating a user query, posed over the mediated shema, into a query that refers diretly to the soureshemas beomes the problem of answering queries using views. In a sense, the data integration ontext anbe viewed as an extreme ase of the need to maintain physial data independene, where the logial andphysial layout of the data soures has been de�ned in advane. The solutions to the problem of answeringqueries using views di�er in this ontext beause the number of views (i.e., soures) tends to be muh larger,and the soures need not ontain the omplete extensions of the views.In the area of data warehouse design we need to hoose a set of views (and indexes on the views) tomaterialize in the warehouse [HRU96,TS97,YKL97,GHRU97,ACN00,CG00℄. Similarly, in web-site design,the performane of a web site an be signi�antly improved by hoosing a set of views to materialize [FLSY99℄.In both of these problems, the �rst step in determining the utility of a hoie of views is to ensure that theviews are suÆient for answering the queries we expet to reeive over the data warehouse or the web site.This problem, again, translates into the view rewriting problem.Finally, answering queries using views plays a key role in developing methods for semanti data ahingin lient-server systems [DFJ+96,KB96,CR94,ACPS96℄. In these works, the data ahed at the lient ismodeled semantially as a set of queries, rather than at the physial level as a set of data pages or tuples.Hene, deiding whih data needs to be shipped from the server in order to answer a given query requiresan analysis of whih parts of the query an be answered by the ahed views.The many appliations of the problem of answering queries using views has spurred a urry of researh,ranging from theoretial foundations to algorithm design and implementation in several ommerial systems.This artile surveys the urrent state of the art in this area, and lassi�es the works into a oherent frameworkbased on a set of dimensions along whih the treatments of the problem di�er.The treatments of the problem di�er mainly depending on whether they are onerned with query op-timization and database design or with data integration. In the ase of query optimization and databasedesign, the fous has been on produing a query exeution plan that involves the views, and hene the e�orthas been on extending query optimizers to aommodate the presene of views. In this ontext, it is neessarythat rewriting of the query using the views be an equivalent rewriting in order for the query exeution planto be orret. It is important to note that some of the views inluded in the query plan may not ontributeto the logial orretness of the plan, but only to reduing the plan's ost.In the data integration ontext, the fous has been on translating queries formulated in terms of amediated shema into queries formulated in terms of data soures. Hene, the output of the algorithm isa query expression, rather than a query exeution plan. Beause the data soures may not entirely overthe domain, we sometimes need to settle for a ontained query rewriting, rather than an equivalent one. Aontained query rewriting provides a subset of the answer to the query, but perhaps not the entire answer.In addition, the works on data integration distinguished between the ase in whih the individual views areomplete (i.e., ontain all the tuples in their de�nition) and the ase where they may be inomplete (as isommon when modeling autonomous data soures). Furthermore, the works on data integration distinguishedthe translation problem from the more general problem of �nding all the answers to a query given the datain the soures, and showed that the two problems di�er in interesting ways.



Answering Queries Using Views: A Survey 3The survey is organized as follows. Setion 2 presents in more detail the appliations motivating the studyof the problem and the dimensions along whih we an study the problem. Setion 3 de�nes the problemformally. As a basis for the disussion of the di�erent algorithms, Setion 4 provides an intuitive explanationof the onditions under whih a view an be used to answer a query. Setion 5 desribes how materializedviews have been inorporated into query optimization. Setion 6 desribes algorithms for answering queriesusing views that were developed in the ontext of data integration. Setion 7 surveys some theoretial issuesonerning the problem of answering queries using views, and Setion 8 disusses several extensions to thealgorithms in Setions 5 and 6 to aommodate queries over objet-oriented databases and queries withaess-pattern limitations. Finally, Setion 9 onludes, and outlines some of the open problems in this area.We note that this survey is not onerned with the losely related problems of inremental mainte-nane of materialized views, whih is surveyed in [GM99b℄, seletion of whih views to maintain in adata warehouse [HRU96,TS97,GHRU97,Gup97b,YKL97,GM99,CG00,CHS01℄ or automated seletion ofindexes [CN98b,CN98a℄.2 Motivation and Illustrative ExamplesBefore beginning the detailed tehnial disussion, we motivate the problem of answering queries usingviews through some of its appliations. In partiular, this setion serves to illustrate the wide and seeminglydisparate range of appliations of the problem. We end the setion by lassifying the di�erent works on thetopi into a taxonomy.We use the following familiar university shema in our examples throughout the paper. We assume thatprofessors and students and departments are uniquely identi�ed by their names, and ourses are uniquelyidenti�ed by their numbers. The Registered relation desribes the students' registration in lasses, while theMajor relation desribes in whih department a partiular student is majoring (we assume for simpliity thatevery department has a single major program).Prof(name, area)Course(-number, title)Teahes(prof, -number, quarter, evaluation)Registered(student, -number, quarter)Major(student, dept)WorksIn(prof, dept)Advises(prof, student).2.1 Query OptimizationThe �rst and most obvious motivation for onsidering the problem of answering queries using views is forquery optimization. If part of the omputation needed to answer a query has already been performed inomputing a materialized view, then we an use the view to speed up the omputation of the query.Consider the following query, asking for students and ourse titles for students who registered in Ph.D-level lasses taught by professors in the Database area (in our example university graduate level lasses havenumbers of 400 and above, and Ph.D-level ourses numbers of 500 and above):selet Registered.student, Course.titlefrom Teahes, Prof, Registered, Coursewhere Prof.name=Teahes.prof and Teahes.-number=Registered.-number andTeahes.quarter=Registered.quarter and Registered.-number=Course.-number andCourse.-number � 500 and Prof.area="DB".Suppose we have the following materialized view, ontaining the registration reords of graduate levelourses and above.



4 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitlereate view Graduate asselet Registered.student, Course.title, Course.-number, Registered.quarterfrom Registered, Coursewhere Registered.-number=Course.-number and Course.-number � 400.The view Graduate an be used in the omputation of the above query as follows:selet Graduate.student, Graduate.titlefrom Teahes, Prof, Graduatewhere Prof.name=Teahes.prof andTeahes.-number=Graduate.-number and Teahes.quarter=Graduate.quarter andGraduate.-number � 500 and Prof.area="DB".The resulting evaluation will be heaper beause the view Graduate has already performed the join betweenRegistered and Course, and has already pruned the non-graduate ourses (the ourses that atually aountfor most of the ativity going on in a typial university). It is important to note that the view Graduate isuseful for answering the query even though it does not syntatially math any of the subparts of the query.Even if a view has already omputed part of the query, it is not neessarily the ase that using the viewwill lead to a more eÆient evaluation plan, espeially onsidering the indexes available on the databaserelations and on the views. For example, suppose the relations Course and Registered have indexes on the-number attribute. In this ase, if the view Graduate does not have any indexes, then evaluating the querydiretly from the database relations may be heaper. Hene, the hallenge is not only to detet when a viewis logially usable for answering a query, but also to make a judiious ost-based deision on when to use theavailable views.2.2 Maintaining Physial Data IndependeneSeveral works on answering queries using views were inspired by the goal of maintaining physial dataindependene in relational and objet-oriented databases [YL87,TSI96,Flo96℄. One of the priniples un-derlying modern database systems is the separation between the logial view of the data (e.g., as tableswith their named attributes) and the physial view of the data (i.e., how it is laid out on disk). With theexeption of horizontal or vertial partitioning of relations into multiple �les, relational database systemsare still largely based on a 1-1 orrespondene between relations in the shema and �les in whih they arestored. In objet-oriented systems, maintaining the separation is neessary beause the logial shema on-tains signi�ant redundany, and does not orrespond to a good physial layout. Maintaining physial dataindependene beomes more ruial in appliations where the logial model is introdued as an intermedi-ate level after the physial representation has already been determined. This is ommon in appliations ofsemi-strutured data [Bun97,Abi97,FLM98℄, storage of XML data in relational databases [FK99,SGT+99,DFS99,TIHW01℄, and in data integration. In fat, the STORED System [DFS99℄ stores XML douments ina relational database, and uses views to desribe the mapping from XML into relations in the database. Insome sense, data integration, disussed in the next setion, is an extreme ase where there is a separationbetween the logial view of the data and its physial view.To maintain physial data independene, several authors proposed to use views as a mehanism fordesribing the storage of the data. In partiular, [TSI96℄ desribed the storage of the data using GMAPs(generalized multi-level aess paths), expressed over the oneptual model of the database.To illustrate, onsider the entity-relationship model of a slightly extended university domain shown inFigure 1. Figure 2 shows GMAPs expressing the di�erent storage strutures for this data.A GMAP desribes the physial organization and indexes of the storage struture. The �rst lause of theGMAP (the as lause) desribes the atual data struture used to store a set of tuples (e.g., a B+-tree, hashindex, et.) The remaining lauses desribe the ontent of the struture, muh like a view de�nition. Thegiven and selet lauses desribe the available attributes, where the given lause desribes the attributes onwhih the struture is indexed. The de�nition of the view, given in the where lause uses in�x notation overthe oneptual model.In our example, the GMAP G1 stores a set of pairs ontaining students and the departments in whihthey major, and these pairs are indexed by a B+-tree on attribute Student.name. The GMAP G2 stores an



Answering Queries Using Views: A Survey 5
Evaluation

Advises

Quarter

Quarter

Faculty

Department

Course

name

area

name

c-number

worksIn

teaches

title

major

name

registered

Student

Fig. 1 An Entity/Relationship diagram for the university domain. Note that quarter is an attribute of the relation-ships registered and teahes.def gmap G1 as b+-tree by def gmap G2 as b+-tree bygiven Student.name given Student.nameselet Department selet Course.-numberwhere Student major Department. where Student registered Course.def gmap G3 as b+-tree bygiven Course.-numberselet Departmentwhere Student registered Course and Student major Department.Fig. 2 GMAPs for the university domain.index from the names of students to the numbers of the ourses in whih they are registered. The GMAPG3 stores an index from ourse numbers to departments whose majors are enrolled in the ourse. As shownin [TSI96℄, using GMAPs it is possible to express a large family of data strutures, inluding seondaryindexes on relations, nested indexes, olletion based indexes and strutures implementing �eld repliation.Given that the data is stored in the strutures desribed by the GMAPs, the question that arises is howto use these strutures to answer queries. Sine the logial ontent of the GMAPs are desribed by views,answering a query amounts to �nding a way of rewriting the query using these views. If there are multipleways of answering the query using the views, we would like to �nd the heapest one. Note that in ontrastto the query optimization ontext, we must use the views to answer a given query, beause all the data isstored in the GMAPs,Consider the following query in our domain, whih asks for names of students registered for Ph.D-levelourses and the departments in whih these students are majoring.selet Student.name, Departmentwhere Student registered Course and Student major Department and Course.-number�500.The query an be answered in two ways. First, sine Student.name uniquely identi�es a student, we antake the join of G1 and G2, and then apply a seletion Course.-number�500, and a projetion on Stu-dent.name and Department. A seond solution would be to join G3 with G2 and selet Course.-number�500.In fat, this solution may even be more eÆient beause G3 has an index on the ourse number and thereforethe intermediate joins may be muh smaller.2.3 Data IntegrationMuh of the reent work on answering queries using views has been spurred beause of its appliabilityto data integration systems. A data integration system (a.k.a. a mediator system [Wie92℄) provides a uni-form query interfae to a multitude of autonomous heterogeneous data soures. Prime examples of data



6 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleintegration appliations inlude enterprise integration, querying multiple soures on the World-Wide Web,and integration of data from distributed sienti� experiments. The soures in suh an appliation may betraditional databases, legay systems, or even strutured �les. The goal of a data integration system is tofree the user from having to �nd the data soures relevant to a query, interat with eah soure in isolation,and manually ombine data from the di�erent soures.To provide a uniform interfae, a data integration system exposes to the user a mediated shema. Amediated shema is a set of virtual relations, in the sense that they are not atually stored anywhere. Themediated shema is designed manually for a partiular data integration appliation. To be able to answerqueries, the system must also ontain a set of soure desriptions. A desription of a data soure spei�es theontents of the soure, the attributes that an be found in the soure, and the onstraints on the ontentsof the soure.One of the approahes for speifying soure desriptions, whih has been adopted in several systems([LRO96b,KW96,FW97,DG97b,LKG99℄), is to desribe the ontents of a data soure as a view over the me-diated shema. This approah failitates the addition of new data soures and the spei�ation of onstraintson ontents of soures (see [Ull97,FLM98,Lev00℄ for a omparison of di�erent approahes for speifyingsoure desriptions).In order to answer a query, a data integration system needs to translate a query formulated on themediated shema into one that refers diretly to the shemas in the data soures. Sine the ontents of thedata soures are desribed as views, the translation problem amounts to �nding a way to answer a queryusing a set of views.We illustrate the problem with the following example, where the mediated shema exposed to the user isour university shema, exept that the relations Teahes and Course have an additional attribute identifyingthe university at whih a ourse is being taught:Teahes(prof, -number, quarter, evaluation, univ)Course(-number, title, univ)Suppose we have the following two data soures. The �rst soure provides a listing of all the ourses titled\Database Systems" taught anywhere and their instrutors. This soure an be desribed by the followingview de�nition:reate view DB-ourses asselet Course.title, Teahes.prof, Course.-number, Course.univfrom Teahes, Coursewhere Teahes.-number=Course.-number and Teahes.univ=Course.univ andCourse.title=\Database Systems".The seond soure lists Ph.D level ourses being taught at the University of Washington (UW), and isdesribed by the following view de�nition:reate view UW-phd-ourses asselet Course.title, Teahes.prof, Course.-number, Course.univfrom Teahes, Coursewhere Teahes.-number=Course.-number andCourse.univ=\UW" and Teahes.univ=\UW" and Course.-number�500.If we were to ask the data integration system who teahes ourses titled \Database Systems" at UW, itwould be able to answer the query by applying a seletion on the soure DB-ourses:selet proffrom DB-ourseswhere univ=\UW".On the other hand, suppose we ask for all the graduate-level ourses (not just in databases) being o�eredat UW. Given that only these two soures are available, the data integration system annot �nd all tuplesin the answer to the query. Instead, the system an attempt to �nd the maximal set of tuples in the answerthat are available from the soures. In partiular, the system an obtain graduate database ourses at UWfrom the DB-ourses soure, and the Ph.D level ourses at UW from the UW-Phd-ourses soure. Hene, thefollowing query provides the maximal set of answers that an be obtained from the two soures:



Answering Queries Using Views: A Survey 7selet title, -numberfrom DB-ourseswhere univ=\UW" and -number�400UNIONselet title, -numberfrom UW-phd-ourses.Note that ourses that are not Ph.D-level ourses or database ourses will not be returned as answers.Whereas in the ontexts of query optimization and maintaining physial data independene the fous is on�nding a query expression that is equivalent to the original query, here we attempt to �nd a query expressionthat provides the maximal answers from the views. We formalize both of these notions in Setion 3.Other appliations: Before proeeding, we also note that the problem of answering queries using views arisesin the design of data warehouses (e.g., [HRU96,TS97,GHRU97,YKL97℄) and in semanti data ahing. Indata warehouse design, when we hoose a set of views to materialize in a data warehouse, we need to hekthat we will be able to answer all the required queries over the warehouse using only these views. In theontext of semanti data ahing (e.g., [DFJ+96,KB96,CR94,ACPS96℄) we need to hek whether the ahedresults of a previously omputed query an be used for a new query, or whether the lient needs to requestadditional data from the server. In [FLSY99,YFIV00℄ it is shown that preomputing views an signi�antlyspeed up the response time from web sites, whih again raises the question of view seletion.2.4 A taxonomy of the �eldAs illustrated by the examples, there are several dimensions along whih we an lassify the treatments of theproblem of answering queries using views. In this setion we desribe a taxonomy for lassifying the di�erentworks on this problem, and highlight the main di�erenes between the problem treatments. Figure 3 showsthe taxonomy and some of the representative works belonging to eah of its lasses.Answering queries using views���������� XXXXXXXXXXCost-based rewriting(query optimization and physial data independene) Logial rewriting(data integration)������� XXXXXXX ������� XXXXXXXSystem-R style Query answering algorithms(omplete or inomplete soures)Transformational approahes Rewriting algorithms[YL87,LMSS95℄[Qia96,LRO96b℄[DG97a,PL00℄ [AD98,GM99a,CGLV00a℄[FRV96,BDD+98℄[DPT99,ZCL+00,GL01℄[CKPS95,TSI96,PH01℄Fig. 3 A taxonomy of work on answering queries using views. The main distintion is between works on queryoptimization and maintenane of physial data independene and works onsidering logial rewritings, mostly in theontext of data integration. The works on query optimization have onsidered both System-R style algorithms andtransformation-based algorithms. The works on data integration onsidered algorithms that sale to a large numberof views, and the question of �nding all the answers to the query, given the view extensions.The most signi�ant distintion between the di�erent works is whether their goal is data integration orwhether it is query optimization and maintenane of physial data independene. The key di�erene betweenthese two lasses of works is the output of the algorithm for answering queries using views. In the former ase,given a query Q, and a set of views V , the goal of the algorithm is to produe an expression Q0 that referenesthe views and is either equivalent to or ontained in Q. In the latter ase, the algorithm must go further



8 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleand produe a (hopefully optimal) query exeution plan for answering Q using the views (and possibly thedatabase relations). Here the rewriting must be an equivalent to Q in order to ensure the orretness of theplan.The similarity between these two bodies of work is that they are onerned with the ore issue of whethera rewriting of a query is equivalent to or ontained in the query. However, while logial orretness suÆesfor the data integration ontext, it does not in the query optimization ontext where we also need to �nd theheapest plan using the views. The ompliation arises beause the optimization algorithms need to onsiderviews that do not ontribute to the logial orretness of the rewriting, but do redue the ost of the resultingplan. Hene, while the reasoning underlying the algorithms in the data integration ontext is mostly logial,in the query optimization ase it is both logial and ost-based. On the other hand, an aspet stressed inthe data integration ontext is the importane of dealing with a large number of views, whih orrespond todata soures. In the ontext of query optimization it is generally assumed (not always!) that the number ofviews is roughly omparable to the size of the shema.Extension Relevant worksGrouping and aggregation [GHQ95,SDJL96,CNS99,GRT99,ZCL+00,GT00℄ (Setion 5.3)Bag semantis [CKPS95,ZCL+00℄ (Setion 5.3)OQL [FRV96,DPT99℄ (Setion 8.1)Multi-blok queries [ZCL+00℄ (Setion 5.2)Integrity onstraints [DL97,Gry98,ZCL+00,DPT99℄ (Setion 7.2)Aess-pattern limitations [RSU95,KW96,DL97℄ (Setion 8.2)Unions in the views [AGK99,Dus98℄ (Setion 8.3)Queries over semi-strutured data [CGLV99,PV99℄ (Setion 8.3)Hierarhies in Desription Logis [BLR97,CGL99℄ (Setion 8.3)Languages for querying shema [Mil98℄ (Setion 8.3)Table 1 Extensions to query and view languagesThe works on query optimization an be lassi�ed into System-R style optimizers and transformationaloptimizers. The initial works inorporated views into System-R style join enumeration, while later works thatattempt to deal with a more extended subset of SQL realized that the power of rewriting rules is requiredin order to inorporate views.The main line of work on data integration attempted to develop algorithms for answering queries usingviews that sale up to a large number of views2. A seond line of work started onsidering di�erent propertiesof the data soures. For example, it was shown that if data soures are assumed to be omplete (i.e., theyinlude all the tuples that satisfy their de�nition), then the problem of answering queries using views beomesomputationally harder. Intuitively, the reason for the added omplexity is that when soures are omplete,we an also infer negative information as a result of a query to the soure. This led to asking the following morebasi question: given a query Q, a set of views V and their extensions, what is the omplexity of �nding themaximal set of tuples in the answer to Q from V .3 This work established an interesting onnetion betweenthe problem of answering queries using views and query answering in onditional tables [IL84℄. In theseworks, a major fator a�eting the omplexity of the problem is whether the view extensions are assumedto be omplete or not (when they are omplete, the omplexity is higher). Note that in the ontext of queryoptimization, the views are always assumed to be omplete.A separate dimension for lassifying the di�erent works is the spei� language used for expressing viewsand queries. Muh of the early work on the problem foused on selet-projet-join queries, but, as shown inTable 1, many extensions have been onsidered as well. The works on query optimization have onsidered2 Stritly speaking, the motivation for the work of [YL87℄ was the maintenane of physial data independene, buttheir algorithm has more similarities with the data integration algorithms.3 Some authors refer to the distintion between the two problems as the rewriting problem versus the queryanswering problem.



Answering Queries Using Views: A Survey 9extensions of interest to SQL engines, suh as grouping and aggregation and the presene of ertain integrityonstraints on the database relations. For obvious reasons, these works have also onsidered the impliationsof bag semantis on the rewriting problem. The data integration works have onsidered extensions suhas aess-pattern limitation to the views, reursive queries, path expressions in the queries, and integrityonstraints expressed in desription logis.3 Problem De�nitionIn this setion we de�ne the basi terminology used throughout this paper. We de�ne the onepts of queryontainment and query equivalene that provide a semanti basis for omparing between queries and theirrewritings, and then de�ne the problem of answering queries using views. Finally, we de�ne the problem ofextrating all the answers to a query from a set of views (referred to as the set of ertain answers).The bulk of our disussion will fous on the lass of selet-projet-join queries on relational databases.A view is a named query. It is said to be materialized if its results are stored in the database. A databaseinstane is an assignment of an extension (i.e., a set of tuples) to eah of the relations in the database.We assume the reader is familiar with the basi elements of SQL. We will distinguish between queries thatinvolve arithmeti omparison prediates (e.g., �; <; 6=) and those that do not. Our disussion of answeringqueries using views in the ontext of data integration systems will require onsidering reursive datalogqueries. We reall the basi onepts of datalog in Setion 6.In our disussion, we denote the result of omputing the query Q over the database D by Q(D). We oftenrefer to queries that referene named views (e.g., in query rewritings). In that ase, Q(D) refers to the resultof omputing Q after the views have been omputed from D.3.1 Containment and EquivaleneThe notions of query ontainment and query equivalene enable omparison between di�erent reformulationsof queries. They will be used when we test the orretness of a rewriting of a query in terms of a set of views.In the de�nitions below we assume the answers to queries are sets of tuples. The de�nitions an be extendedin a straightforward fashion to bag semantis. In the ontext of our disussion it is important to note thatthe de�nitions below also apply to queries that may referene named views.De�nition 1 Query ontainment and equivalene: A query Q1 is said to be ontained in a query Q2, denotedby Q1 v Q2, if for all database instanes D, the set of tuples omputed for Q1 is a subset of those omputedfor Q2, i.e., Q1(D) � Q2(D). The two queries are said to be equivalent if Q1 v Q2 and Q2 v Q1.The problems of query ontainment and equivalene have been studied extensively in the literature andshould be a topi of a speialized survey. Some of the ases whih are most relevant to our disussioninlude: ontainment of selet-projet-join queries and unions thereof [CM77,SY81℄, queries with arithmetiomparison prediates [Klu88,LS93,ZO93,KMT98℄, reursive queries [Shm93,Sag88,LS93,CV92,CV94℄, andqueries with bag semantis [CV93℄3.2 Rewriting of a Query Using ViewsGiven a query Q and a set of view de�nitions V1; : : : ; Vm, a rewriting of the query using the views is a queryexpression Q0 that refers only to the views V1; : : : ; Vm.4 In SQL, a query refers only to the views if all therelations mentioned in the from lauses are views. In pratie, we may also be interested in rewritings thatan also refer to the database relations. Coneptually, rewritings that refer to the database relations do notintrodue new diÆulties, beause we an always simulate the previous ase by inventing views that mirrorpreisely the database tables.As we saw in Setion 2, we need to distinguish between two types of query rewritings: equivalent rewritingsand maximally-ontained rewritings. For query optimization and maintaining physial data independene weonsider equivalent rewritings.4 Note that rewritings that refer only to the views were alled omplete rewritings in [LMSS95℄.



10 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleDe�nition 2 Equivalent rewritings: Let Q be a query and V = fV1; : : : ; Vmg be a set of view de�nitions. Thequery Q0 is an equivalent rewriting of Q using V if:{ Q0 refers only to the views in V, and{ Q0 is equivalent to Q.In the ontext of data integration, we often need to onsider maximally-ontained rewritings. Unlike the aseof equivalent rewritings, the maximally-ontained rewriting may di�er depending on the query language weonsider for the rewriting. Hene, the following de�nition depends on a partiular query language:De�nition 3 Maximally-ontained rewritings: Let Q be a query, V = fV1; : : : ; Vmg be a set of view de�ni-tions, and L be a query language. The query Q0 is a maximally-ontained rewriting of Q using V w.r.t. Lif:{ Q0 is a query in L that refers only to the views in V,{ Q0 is ontained in Q, and{ there is no rewriting Q1 2 L, suh that Q0 v Q1 v Q and Q1 is not equivalent to Q0.When a rewriting Q0 is ontained in Q but is not a maximally-ontained rewriting we refer to it as aontained rewriting. Note that the above de�nitions are independent of the partiular query language weonsider. Furthermore, we note that algorithms for query ontainment and equivalene provide methodsfor testing whether a andidate rewriting of a query is an equivalent or ontained rewriting. However, bythemselves, these algorithms do not provide a solution to the problem of answering queries using views.A more fundamental question we an onsider is how to �nd all the possible answers to the query, givena set of view de�nitions and their extensions. Finding a rewriting of the query using the views and thenevaluating the rewriting over the views is learly one andidate algorithm. If the rewriting is equivalent to thequery, then we are guaranteed to �nd all the possible answers. However, as we see in Setion 7, a maximally-ontained rewriting of a query using a set of views does not always provide all the possible answers that anbe obtained from the views. Intuitively, the reason for this is that a rewriting is maximally-ontained onlyw.r.t. a spei� query language, and hene there may sometimes be a query in a more expressive languagethat may provide more answers.The problem of �nding all the answers to a query given a set of views is formalized below by the notionof ertain answers, originally introdued in [AD98℄. In the de�nition, we distinguish the ase in whih theview extensions are assumed to be omplete (losed-world assumption) from the ase in whih the views maybe partial (open-world).De�nition 4 Certain answers: Let Q be a query and V = fV1; : : : ; Vmg be a set of view de�nitions overthe database shema R1; : : : ; Rn. Let the sets of tuples v1; : : : ; vm be extensions of the views V1; : : : ; Vm,respetively.The tuple a is a ertain answer to the query Q under the losed-world assumption given v1; : : : ; vm ifa 2 Q(D) for all database instanes D suh that Vi(D) = vi for every i, 1 � i � m.The tuple a is a ertain answer to the query Q under the open-world assumption given v1; : : : ; vm ifa 2 Q(D) for all database instanes D suh that Vi(D) � vi for every i, 1 � i � m.The intuition behind the de�nition of ertain answers is the following. The extensions of a set of viewsdo not de�ne a unique database instane. Hene, given the extensions of the views we have only partialinformation about the real state of the database. A tuple is a ertain answer of the query Q if it is ananswer for any of the possible database instanes that are onsistent with the given extensions of the views.Setion 7.3 onsiders the omplexity of �nding ertain answers.Example 1 As a very simple example, onsider a database shema R(A;B) that inludes a single relationwith two attributes. Suppose the view V1 is de�ned to be the projetion of R on A, while V2 is de�ned to bethe projetion of R on B, and suppose that our query Q is to retrieve all of the relation R.Suppose we are given that the extension of V1 inludes the single tuple (1), and that the extension of V2inludes the single tuple (2),Under the losed-world assumption, we an infer that the tuple (1; 2) must be in the relation R, andhene it is a ertain answer to Q. However, under the open-world assumption, sine V1 and V2 are notneessarily omplete, the tuple (1; 2) need not be in R. For example, R may ontain the tuples (1; d) and(e; 2) for some onstants d and e. Hene, (1; 2) is not a ertain answer to Q. 2



Answering Queries Using Views: A Survey 114 When is a View Usable for a QueryThe ommon theme aross all of the works on answering queries using views is that they all have to dealwith the fundamental question of when a view is usable to answer a query. Hene, before desribing theatual algorithms for answering queries using views it is instrutive to examine a few examples and gain anintuition for the onditions under whih a view is usable for answering a query, and in what ways a viewmay be useful. In this setion we onsider selet-projet-join queries under set semantis. Note that in someases a view may be usable in maximally-ontained rewritings but not in equivalent rewritings.Informally, a view an be useful for a query if the set of relations it mentions overlaps with that of thequery, and it selets some of the attributes seleted by the query. Moreover, if the query applies prediatesto attributes that it has in ommon with the view, then the view must apply either equivalent or logiallyweaker prediates in order to be part of an equivalent rewriting. If the view applies a logially strongerprediate, it may be part of a ontained rewriting.Consider the following query, asking for the triplets of professors, students, and teahing quarters, wherethe student is advised by the professor, and has taken a lass taught by the professor during the winter of1998 or later.selet Advises.prof, Advises.student, Registered.quarterfrom Registered, Teahes, Adviseswhere Registered.-number=Teahes.-number and Registered.quarter=Teahes.quarter andAdvises.prof=Teahes.prof and Advises.student=Registered.student andRegistered.quarter � "winter98".The following view V1 is usable beause it applies the same join onditions to the relations Registered andTeahes. Hene, we an use V1 to answer the query by joining it with the relation Advises. Furthermore, V1selets the attributes Registered.student, Registered.quarter and Teahes.prof that are needed for the join withthe relation Advises and for the selet lause of the query. Finally, V1 applies a prediate Registered.quarter >"winter97" whih is weaker than the prediate Registered.quarter � "winter98" in the query. However, sineV1 selets the attribute Registered.quarter, the stronger prediate an be applied as part of the rewriting.reate view V1 asselet Registered.student, Teahes.prof, Registered.quarterfrom Registered, Teaheswhere Registered.-number=Teahes.-number and Registered.quarter=Teahes.quarter andRegistered.quarter > "winter97".The views shown in Figure 4 illustrate how minor modi�ations to V1 hange their usability in answeringthe query. The view V2 is similar to V1, exept that it does not selet the attribute Teahes.prof, whih isneeded for the join with the relation Advises and in the selet lause of the query. Hene, to use V2 in therewriting, we would need to join V2 with the Teahes relation again (in addition to a join with Advises). Still,if the join of the relations Registered and Teahes is very seletive, then employing V2 may atually result ina more eÆient query exeution plan.The view V3 does not apply the neessary equi-join prediate between Registered.quarter and Teahes.quarter.Sine the attributes Teahes.quarter and Registered.quarter are not seleted by V3, the join prediate annotbe applied in the rewriting, and therefore there is little to gain by using V3. The view V4 onsiders only theprofessors who have at least one area of researh. Hene, the view applies an additional ondition that doesnot exist in the query, and annot be used in an equivalent rewriting unless we allow union and negationin the rewriting language. However, if we have an integrity onstraint stating that every professor has atleast one area of researh, then an optimizer should be able to realize that V4 is usable. Finally, view V5applies a stronger prediate than in the query (Registered.quarter > "winter99"), and is therefore usable fora ontained rewriting, but not for an equivalent rewriting of the query.To summarize, the following onditions need to hold in order for a selet-projet-join view V to be usablein an equivalent rewriting of a query Q. The intuitive onditions below an be made formal in the ontextof a spei� query language and/or available integrity onstraints (see e.g., [YL87,LMSS95℄).



12 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitlereate view V2 as reate view V3 asselet Registered.student, Registered.quarter selet Registered.student, Teahes.prof, Registered.quarterfrom Registered, Teahes from Registered, Teaheswhere Registered.-number=Teahes.-number where Registered.-number=Teahes.-numberand Registered.quarter=Teahes.quarter and Registered.quarter � "winter98".and Registered.quarter � "winter98".reate view V4 as reate view V5 asselet Registered.student, Registered.quarter, selet Registered.student, Teahes.prof, Registered.quarterTeahes.proffrom Registered, Teahes, Advises, Area from Registered, Teaheswhere Registered.-number=Teahes.-number where Registered.-number=Teahes.-numberand Registered.quarter=Teahes.quarter and Registered.quarter=Teahes.quarterand Teahes.prof=Advises.prof and Registered.quarter > "winter99".and Teahes.prof=Area.nameand Registered.quarter � "winter98"Fig. 4 Examples of unusable views.1. There must be a mapping  from the ourrenes of tables mentioned in the from lause of V to thosementioned in the from lause of Q, mapping every table name to itself. In the ase of bag semantis,  must be a 1-1 mapping, whereas for set semantis,  an be a many-to-1 mapping.2. V must either apply the join and seletion prediates in Q on the attributes of the tables in the domainof  , or must apply to them a logially weaker seletion, and selet the attributes on whih prediatesneed to still be applied.3. V must not projet out any attributes of the tables in the domain of  that are needed in the seletion ofQ, unless these attributes an be reovered from another view (or from the original table if it's available).Finally, we note that the introdution of bag semantis introdues additional subtleties. In partiular, wemust ensure that the multipliity of answers required in the query are not lost in the views (e.g., by the useof distint), and are not inreased (e.g., by the introdution of additional joins).5 Inorporating Materialized Views into Query OptimizationThis setion desribes the di�erent approahes to inorporating materialized views into query optimization.The fous of these algorithms is to judiiously deide when to use views to answer a query. The output ofthe algorithm is an exeution plan for the query. The approahes di�er depending on whih phase of queryoptimization was modi�ed to onsider materialized views. Setion 5.1 desribes algorithms based on SystemR-style optimization, where materialized views are onsidered during the join enumeration phase [CKPS95,TSI96℄. Setion 5.2 desribes works based on transformational optimizers [ZCL+00,DPT99,PDST00,GL01℄.There, the key idea is that replaing a query subexpression by a view is yet another transformation employedby the optimizer. Setion 5.3 disusses some of the issues that arise when rewriting algorithms are extendedto onsider grouping and aggregation. These extensions are key to inorporating materialized views intodeision support appliations.5.1 System-R style optimizationIn this setion we onsider selet-projet-join queries and disuss the hanges that need to be made to ajoin enumeration algorithm to inorporate materialized views. To illustrate the hanges to a System R-styleoptimizer we �rst briey reall the priniples underlying System-R optimization [SAC+79℄. System-R takesa bottom-up approah to building query exeution plans. In the �rst phase, it onstruts plans of size 1, i.e.,hooses the best aess paths to every table mentioned in the query. In phase n, the algorithm onsidersplans of size n, by ombining pairs of plans obtained in the previous phases (Note that if the algorithm is



Answering Queries Using Views: A Survey 13onsidering only left-deep plans, it will try to ombine plans of size n� 1 with plans of size 1. Otherwise, itwill onsider ombining plans of size k with plans of size n�k.) The algorithm terminates after onstrutingplans that over all the relations in the query.Intuitively, the eÆieny of System-R stems from the fat that it partitions query exeution plans intoequivalene lasses, and only onsiders a single exeution plan for every equivalene lass. Two plans are inthe same equivalene lass if they (1) over the same set of relations in the query (and therefore are also ofthe same size), and (2) produe the answers in the same interesting order. In the proess of building plans,two plans are ombined only if they over disjoint subsets of the relations mentioned in the query.In our ontext, the query optimizer builds query exeution plans by aessing a set of views, ratherthan a set of database relations. Hene, in addition to the meta-data that the query optimizer has aboutthe materialized views (e.g., statistis, indexes) the optimizer is also given as input the query expressionsde�ning the views. Reall that a database relation an always be modeled as a view as well.We illustrate the hanges to the join enumeration algorithm with an example that inludes the followingviews:reate view V1 asselet student, deptfrom Major.reate view V2 asselet Registered.student, Registered.-numberfrom Registered, Coursewhere Registered.-number=Course.-numberand Course.title LIKE '%theory%'.reate view V3 asselet Major.dept, Registered.-numberfrom Registered, Majorwhere Registered.student=Major.student and Registered.-number�500.Suppose the query below asks for all of the students attending Ph.D level lasses with 'theory' in theirtitle, and the departments in whih the students are majoring.selet Registered.student, Major.deptfrom Registered, Major, Coursewhere Registered.student=Major.student and Registered.-number=Course.-number andCourse.-number�500 and Course.title LIKE '%theory%'.We now desribe the additional issues that the optimizer needs to onsider in the presene of materializedviews. Figure 5 shows a side-by-side omparison of the steps of a traditional optimizer vs. one that exploitsmaterialized views. The algorithm desribed below is a slight modi�ation of the GMAP algorithm [TSI96℄.The algorithm desribed in [CKPS95℄ uses the same priniples, but, as we explain later, with several di�er-enes.A. In the �rst iteration the algorithm needs to deide whih views are relevant to the query. A view is relevantif it is usable in answering the query (illustrated by the onditions in Setion 4). The orresponding stepin a traditional optimizer is trivial: a relation is relevant to the query if it is mentioned in the from lause.In our example, the algorithm will determine that all three views are relevant to the query, beause eahof them mentions the relations in the query and applies some of the same join prediates as in the query.Therefore, the algorithm hooses the best aess path to eah of the views, depending on the existing indexstrutures and seletion prediates in the query.B. Sine the query exeution plans involve joins over views, rather than joins over database relations, plansan no longer be neatly partitioned into equivalene lasses whih an be explored in inreasing size. Thisobservation implies several hanges to the traditional algorithm:



14 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle1. Termination testing: the algorithm needs to distinguish partial query exeution plans of the queryfrom omplete exeution plans. The enumeration of the possible join orders terminates when thereare no more unexplored partial plans. In ontrast, in the traditional setting the algorithm terminatesafter onsidering the equivalene lasses that inlude all the relations in the query.2. Pruning of plans: a traditional optimizer ompares between pairs of plans within one equivalenelass and saves only the heapest one for eah lass. In our ontext, the query optimizer needs toompare between any pair of plans generated thus far. A plan p is pruned if there is another plan p0that (1) is heaper than p and, (2) has greater or equal ontribution to the query than p. Informally,a plan p0 ontributes more to the query than the plan p if it overs more of the relations in the queryand selets more of the neessary attributes.3. Combining partial plans: in the traditional setting, when two partial plans are ombined, the joinprediates that involve both plans are expliit in the query, and the enumeration algorithm need onlyonsider the most eÆient way to apply these prediates. However, in our ase, it may not be obviousa priori whih join prediate will yield a orret rewriting of the query, sine we are joining viewsrather than database relations diretly. Hene, the enumeration algorithm needs to onsider severalalternative join prediates. Fortunately, in pratie, the number of join prediates that need to beonsidered an be signi�antly pruned using meta-data about the shema. For example, there is nopoint in trying to join a string attribute with a numeri one. Furthermore, in some ases we anuse knowledge of integrity onstraints and the struture of the query to redue the number of joinprediates we onsider. Finally, after onsidering all the possible join prediates, the optimizer alsoneeds to hek whether the resulting plan is still a partial solution to the query.In our example, the algorithm will onsider in the seond iteration all possible methods to join pairsof plans produed in the �rst iteration. The algorithm will save the heapest plan for eah of the two-wayjoins, assuming the result is still a partial or omplete solution to the query. The algorithm will onsider thefollowing ombinations (in this disussion we ignore the hoie of inner versus outer input to the join):{ the join of V1 and V2 on the attribute student: This join produes a partial result to the query. Thereare two ways to extend this join to omplete exeution plan. The �rst is to apply an additional seletionon the -number attribute and a projetion on student and dept. The seond, whih is explored in thesubsequent iteration, is to join the result with V3. Hene, the algorithm produes one omplete exeutionplan and keeps V1 1 V2 for the subsequent iterations.In priniple, as explained in bullet 3 above, the algorithm should also onsider joining V1 and V2 onother attributes (e.g., V1.student=V2.-number), but in this ase, a simple semanti analysis shows thatsuh a join will not yield a partial solution.{ the joins of V1 with V3 (on dept) and of V2 with V3 (on -number): These two joins produe partialsolutions to the query, but only if set semantis are onsidered (otherwise, the resulting rewriting will havemultiple ourrenes of the Major (or Registered) relation, whereas the query has only one ourrene).In the third iteration, the algorithm tries to join the plans for the partial solutions from the seonditeration with a plan from the �rst iteration. One of the plans the algorithm will onsider is the one in whihthe result of joining V2 and V3 is then joined with V1. Even though this plan may seem redundant omparedto V1 1 V2, it may be heaper depending on the available indexes on the views, beause it enables pruningthe (possibly larger) set of students based on the seletive ourse number.Variations on the above priniples are presented in [TSI94,TSI96℄ and [CKPS95℄. The algorithm in [TSI96℄attempts to reformulate a query on a logial shema to refer diretly to GMAPs storing the data (seeSetion 2). They onsider selet-projet-join queries with set semantis. To test whether a solution is omplete(i.e., whether it is equivalent to the original query) they use an eÆient and suÆient query-equivaleneondition that also makes use of some inlusion and funtional dependenies.The goal of the algorithm desribed in [CKPS95℄ is to make use of materialized views in query evaluation.They onsider selet-projet-join queries with bag semantis and whih may also inlude arithmeti om-parison prediates. Under bag semantis, the ways in whih views may be ombined to answer a query aremore limited. This is due to the fat that two queries are equivalent if and only if there is a bi-diretional 1-1mapping between the two queries, whih maps the join prediates of one query to those of the other [CV93℄.Hene, if we ignore the arithmeti omparison operators, a view is usable only if it is isomorphi to a subset



Answering Queries Using Views: A Survey 15Conventional optimizer Optimizer using viewsIteration 1 Iteration 1a) �nd all possible aess paths. a1) Find all views that are relevant to the query.a2) Distinguish between partial and omplete solutionsto the query.b) Compare their ost and keep the least b) Compare all pairs of views. If one has neither greaterexpensive. ontribution nor a lower ost than the other, prune it.) If the query has one relation, stop. ) If there are no partial solutions, stop.Iteration 2 Iteration 2For eah query join:a) Consider joining the relevant aess paths a1) Consider joining all partial solutions found in thefound in the previous iteration using all previous iteration using all possible equi-join methods andpossible join methods. trying all possible subsets of join prediates.a2) Distinguish between omplete and partial solutions.b) Compare the ost of the resulting join b) If any newly generated solution is either not relevantplans and keep the least expensive. to the query, or dominated by another, prune it.) If the query has only 2 relations, stop. ) If there are no partial solutions, stop.Iteration 3 Iteration 3: : : : : :Fig. 5 A omparison of a traditional query optimizer with one that exploits materialized views.of the query. An additional di�erene between [TSI96℄ and [CKPS95℄ is that the latter searhes the spaeof join orderings in a top-down fashion, ompared to the bottom-up fashion in [TSI96℄. However, sine thealgorithms onsider di�erent semantis, their searh spaes are inomparable. Both [TSI96℄ and [CKPS95℄present experimental results that examine the ost of onsidering materialized views in query optimization.5.2 Transformational and other approahes to view rewritingIn this setion we desribe several works that inorporate view rewriting as transformations. The ommontheme in these works is that replaing some part of a query with a view is onsidered as another transforma-tion available to the optimizer. This approah is neessary when (1) the entire optimizer is transformational(e.g, in [GL01℄), and (2) in the logial rewriting phase of a System-R style optimizer that is onsidering moreomplex SQL queries (as in [ZCL+00℄).In [GL01℄ the authors desribe an algorithm for rewriting queries using views that is implemented in thetransformational optimizer of Mirosoft SQL Server. In the algorithm, view mathing is added as anothertransformation rule in the optimizer. The transformation rule is invoked on selet-projet-join-group-by(SPJG) expressions, and it attempts to replae the SPJG expression by a single view. The authors desribein detail the onditions under whih a sub-query is replaed by a view. The key novelty in this work is the�lter-tree, a lever index struture that makes it possible to eÆiently �lter the set of views that are relevantto a partiular SPJG expression. The index is omposed of several sub-indexes, eah of whih is built ona partiular property of the views (e.g., the set of tables in the view, the set of output olumns, groupingolumns). The sub-indexes are ombined in a hierarhial fashion into the �lter tree, where eah level in thetree further partitions the views aording to another property. The authors desribe a set of experimentsthat shows that their algorithm adds relatively little to the optimization time, even in the presene of 1000views.In [ZCL+00℄ the authors desribe how view rewriting is inorporated into the query rewrite phase of theIBM DB2 UDB optimizer. Their algorithm operates on the Query Graph Model (QGM) representation ofa query [HFLP89℄, whih deomposes the query into multiple QGM boxes, eah orresponding to a selet-projet-join blok. The algorithm attempts to math pairs of QGM boxes in the views with those in the query.The algorithm navigates the QGM in a bottom up fashion, starting from the leaf boxes. A math between abox in the query and in the view an be either (1) exat, meaning that the two boxes represent equivalentqueries, or (2) may require a ompensation. A ompensation represents a set of additional operations thatneed to be performed on a box of the view in order to obtain an equivalent result to a box in the query. The



16 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitlealgorithm onsiders a pair of boxes only after the math algorithm has been applied to every possible pair oftheir hildren. Therefore, the math (and orresponding ompensation) an be determined without lookinginto the subtrees of their hildren. The algorithm terminates when it �nds a math between the root of theview and some box in the QGM of the query. The authors show that by onsidering rewritings at the QGMlevel, they are able to extend previous algorithms to handle SQL queries and views with multiple bloks,while previous algorithms onsidered only single blok queries. As we point out in the next setion, theiralgorithm also extends previous work to handle more omplex types of grouping and aggregation.In [DPT99℄ the authors use a transformational approah to uniformly inorporate the use materializedviews, speialized indexes and semanti integrity onstraints. All of these are represented as onstraints.Their proedure involves two phases, eah involving a di�erent set of transformations. In the �rst phase,the hase, the query is expanded to inlude any other struture (e.g,. materialized view or aess struture)that is relevant to the query, resulting in a universal query plan. In the seond phase, the bak-hase, theoptimizer tries to remove strutures (and hene joins) from the universal plan, in order to obtain a plan ofminimal ost. The hase proedure is based on a generalization of the standard hase proedure to handlepath onjuntive queries [PT99℄, thereby enabling the algorithm to handle ertain forms of objet-orientedqueries. In [PDST00℄ the authors desribe an implementation of the framework and experiments that proveits feasibility, fousing on methods for speeding up the bak-hase phase.In [BDD+98℄ the authors desribe a limited use of transformation rules to inorporate view rewritingalgorithm into the Orale 8i DBMS. The algorithm works in two phases. In the �rst phase, the algorithmapplies a set of rewrite rules that attempt to replae parts of the query with referenes to existing materializedviews. The rewrite rules onsider the ases in whih views satisfy the onditions desribed in Setion 4, andalso onsider ommon integrity onstraints enountered in pratie, suh as funtional dependenies andforeign key onstraints. The result of the rewrite phase is a query that refers to the views. In the seondphase, the algorithm ompares the estimated ost of two plans: the ost of the result of the �rst phase, andthe ost of the best plan found by the optimizer that does not onsider the use of materialized views. Theoptimizer hooses to exeute the heaper of these two plans. The main advantage of this approah is its easeof implementation, sine the apability of using views is added to the optimizer without hanging the joinenumeration module. On the other hand, the algorithm onsiders the ost of only one possible rewriting ofthe query using the views, and hene may miss the heapest use of the materialized views.Finally, in [ALU01℄ the authors onsider using views for query optimization from a di�erent angle. Theyonsider the problem of �nding the rewriting of the query with minimal ost under three spei� ost models:(1) minimizing the number of views in the rewriting (hene the number of joins), (2) reduing the size of theintermediate relations omputed during the rewriting, and (3) reduing the size of intermediate relations whilealso dropping irrelevant attributes as the omputation proeeds. The tehniques underlying the CoreCoveralgorithm desribed in [ALU01℄ are loser in spirit to those used in the MiniCon Algorithm [PL00℄ desribedin Setion 6.4.5.3 Queries with grouping and AggregationIn deision support appliations, when queries ontain grouping and aggregation, there is even more of anopportunity to obtain signi�ant speedups by reusing the results of materialized views. However, the preseneof grouping and aggregation in the queries or the views introdues several new diÆulties to the problem ofanswering queries using views. The �rst diÆulty that arises is dealing with aggregated olumns. Reall thatfor a view to be usable by a query, it must not projet out an attribute that is needed in the query (and isnot otherwise reoverable). When a view performs an aggregation on an attribute, we lose some informationabout the attribute, and in a sense partially projeting it out. If the query requires the same or a oarsergrouping than performed in the view, and the aggregated olumn is either available or an be reonstrutedfrom other attributes, then the view is still usable for the query. The seond diÆulty arises due to theloss of multipliity of values on attributes on whih grouping is performed. When we group on an attributeA, we lose the multipliity of the attribute in the data, thereby losing the ability to perform subsequentsum, ounting or averaging operations. In some ases, it may be possible to reover the multipliity usingadditional information.



Answering Queries Using Views: A Survey 17The following simple example illustrates some of the subtleties that arise in the presene of grouping andaggregation. To make this example slightly more appealing, we assume the quarter attribute of the relationTeahes is replaed by a year attribute (and hene, there are likely to be several o�erings of the same ourseduring an aademi year). Suppose we have the following view available, whih onsiders all the graduatelevel ourses, and for every pair of ourse and year, gives the maximal ourse evaluation for that ourse inthe given year, and the number of times the ourse was o�ered.reate view V asselet -number, year, Max(evaluation) as maxeval, Count(�) as o�eringsfrom Teaheswhere -number � 400groupBy -number, year.The following query onsiders only Ph.D-level ourses, and asks for the maximal evaluation obtained forany ourse during a given year, and the number of di�erent ourse o�erings during that year.selet year, ount(�), Max(evaluation)from Teaheswhere -number � 500groupBy year.The following rewriting uses the view V to answer our query.selet year, sum(o�erings), Max(maxeval)from Vwhere -number � 500groupBy year.There are a ouple of points to note about the rewriting. First, even though the view performed anaggregation on the attribute evaluation, we ould still use the view in the query, beause the groupings inthe query (on year) are more oarse than those in the view (on year and -number). Thus, the answer tothe query an be obtained by oalesing groups from the view. Seond, sine the view groups the answersby -number and thereby loses the multipliity of eah ourse, we would have ordinarily not been able touse the view to ompute the number of ourse o�erings per year. However, sine the view also omputedthe attribute o�erings, there was still enough information in the view to reover the total number of ourseo�erings per year, by summing the o�erings per ourse.Several works onsidered the problem of answering queries using views in the presene of grouping andaggregation. One approah onsidered involved a set of transformations in the query rewrite phase [GHQ95℄.In this approah, the algorithm performs syntati transformations on the query until it is possible to identifya subexpression of the query that is idential to the view, and hene substitute the view for the subexpression.However, as the authors point out, the purely syntati nature of this approah is a limiting fator in itsappliability.A more semanti approah is proposed in [SDJL96℄. The authors desribe the onditions required fora view to be usable for answering a query in the presene of grouping and aggregation, and a rewritingalgorithm that inorporates these onditions. That paper onsiders the ases in whih the views and/or thequeries ontain grouping and aggregation. It is interesting to note that when the view ontains grouping andaggregation but the query does not, then unless the query removes dupliates in the selet lause, the viewannot be used to answer a query. Another important point to reall about this ontext is that beause ofthe bag semantis a view will be usable to answer a query only if there is an isomorphism between the viewand a subset of the query [CV93℄. The work desribed in [ZCL+00℄ extends the treatment of grouping andaggregation to onsider multi-blok queries and to multi-dimensional aggregation funtions suh as ube,roll-up and grouping sets [GBLP98℄.Several works [CNS99,GRT99,GT00℄ onsider the formal aspets of answering queries using views inthe presene of grouping and aggregation. They present ases in whih it an be shown that a rewritingalgorithm is omplete, in the sense that it will �nd a rewriting if one exists. Their algorithms are based oninsights into the problem of query ontainment for queries with grouping and aggregation.



18 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleAn interesting issue that has not reeived attention to date is extending the notion of maximally-ontainedrewritings to the presene of grouping and aggregation. In partiular, one an imagine a notion of maximally-ontained plans in whih the answers provide the best possible bounds on the aggregated olumns.56 Answering Queries Using Views for Data IntegrationThe previous setion foused on extending query optimizers to aommodate the use of views. They weredesigned to handle ases where the number of views is relatively small (i.e., omparable to the size of thedatabase shema), and ases where we require an equivalent rewriting of the query. In addition, for the mostpart, these algorithms did not onsider ases in whih the resulting rewriting may ontain a union over theviews.In ontrast, the ontext of data integration requires that we onsider a large number of views, sine eahdata soure is being desribed by one or more views. In addition, the view de�nitions ontain many omplexprediates, whose goal is to express �ne-grained distintions between the ontents of di�erent data soures.As shown in Setion 2, we will often not be able to �nd an equivalent rewriting of the query using thesoure views, and the best we an do is �nd the maximally-ontained rewriting of the query. The maximally-ontained rewriting will often involve a union of several queries over the soures. Furthermore, in the ontextof data integration it is often assumed that the views are not omplete, i.e., they may only ontain a subsetof the tuples satisfying their de�nition.In this setion we desribe algorithms for answering queries using views that were developed spei�allyfor the ontext of data integration. These algorithms are the buket algorithm developed in the ontext of theInformation Manifold system [LRO96b℄ and later studied in [GM99a℄, the inverse-rules algorithm [Qia96,DGL00℄ whih was implemented in the InfoMaster system [DG97b℄, and the MiniCon algorithm [PL00,PH01℄. It should be noted that unlike the algorithms desribed in the previous setion, the output of thesealgorithms is not a query exeution plan, but rather a query referring to the view relations.6.1 Datalog notationFor this and the next setion, it is neessary to revert to datalog notation and terminology. Hene, below weprovide a brief reminder of datalog notation and of onjuntive queries [Ull89,AHV95℄.Conjuntive queries are able to express selet-projet-join queries. A onjuntive query has the form:q( �X) :� r1( �X1); : : : ; rn( �Xn)where q, and r1; : : : ; rn are prediate names. The prediate names r1; : : : ; rn refer to database relations. Theatom q( �X) is alled the head of the query, and refers to the answer relation. The atoms r1( �X1); : : : ; rn( �Xn)are the subgoals in the body of the query. The tuples �X; �X1; : : : ; �Xn ontain either variables or onstants.We require that the query be safe, i.e., that �X � �X1 [ : : : [ �Xn (that is, every variable that appears in thehead must also appear in the body).Queries may also ontain subgoals whose prediates are arithmeti omparisons <;�;=; 6=. In this ase,we require that if a variable X appears in a subgoal of a omparison prediate, then X must also appear inan ordinary subgoal. We refer to the subgoals of omparison prediates of a query Q by C(Q).As an example of expressing an SQL query in datalog, onsider the following SQL query asking for thestudents (and their advisors) who took ourses from their advisors after the winter of 1998:selet Advises.prof, Advises.studentfrom Registered, Teahes, Adviseswhere Registered.-number=Teahes.-number and Registered.quarter=Teahes.quarter andAdvises.prof=Teahes.prof and Advises.student=Registered.student andRegistered.quarter > "winter98".In the notation of onjuntive queries, the above query would be expressed as follows:5 I thank an anonymous reviewer for suggesting this problem.



Answering Queries Using Views: A Survey 19q(prof, student) :-Registered(student, -number, quarter), Teahes(prof, -number, quarter),Advises(prof, student), quarter > "winter98".Note that when using onjuntive queries, join prediates of SQL are expressed by multiple ourrenesof the same variable in di�erent subgoals of the body (e.g., the variables quarter, -number, prof, and studentabove). Unions an be expressed in this notation by allowing a set of onjuntive queries with the same headprediate.A datalog query is a set of rules, eah having the same form as a onjuntive query, exept that prediatesin the body do not have to refer to database relations. In a datalog query we distinguish EDB (extensionaldatabase) prediates that refer to the database relations from the IDB (intensional database) prediates thatrefer to intermediate omputed relations. Hene, in the rules, EDB prediates appear only in the bodies,whereas the IDB prediates may appear anywhere. We assume that every datalog query has a distinguishedIDB prediate alled the query prediate, referring to the relation of the result.A prediate p in a datalog program is said to depend on a prediate q if q appears in one of the ruleswhose head is p. The datalog program is said to be reursive if there is a yle in the dependeny graph ofprediates. It is important to reall that if a datalog program is not reursive, then it an be equivalentlyrewritten as a union of onjuntive queries, though possibly with an exponential blowup in the size of thequery. As we see in Setion 7.2, ertain ases may require rewritings that are reursive datalog queries.The input to a datalog query Q onsists of a database D storing extensions of all EDB prediates in Q.Given suh a database D, the answer to Q, denoted by Q(D), is the least �xpoint model of Q and D, whihan be omputed as follows. We apply the rules of the program in an arbitrary order, starting with emptyextensions for the IDB relations. An appliation of a rule may derive new tuples for the relation denoted bythe prediate in the head of the rule. We apply the rules until we annot derive any new tuples. The outputQ(D) is the set of tuples omputed for the query prediate. Note that sine the number of tuples that an beomputed for eah relation is �nite and monotonially inreasing, the evaluation is guaranteed to terminate.Finally, we say that a datalog query refers only to views if instead of EDB prediates we have prediatesreferring to views (but we still allow arithmeti omparison prediates and IDB prediates).6.2 The Buket AlgorithmThe goal of the buket algorithm is to reformulate a user query that is posed on a mediated (virtual) shemainto a query that refers diretly to the available data soures. Both the query and the soures are desribedby onjuntive queries that may inlude atoms of arithmeti omparison prediates (hereafter referred tosimply as prediates). As we explain in Setion 7, the number of possible rewritings of the query using theviews is exponential in the size of the query. Hene, the main idea underlying the buket algorithm is thatthe number of query rewritings that need to be onsidered an be drastially redued if we �rst onsidereah subgoal in the query in isolation, and determine whih views may be relevant to eah subgoal.Given a query Q, the buket algorithm proeeds in two steps. In the �rst step, the algorithm reates abuket for eah subgoal in Q that is not in C(Q), ontaining the views (i.e., data soures) that are relevantto answering the partiular subgoal. More formally, to deide whether the view V should be in the buketof a subgoal g, we onsider eah of the subgoals g1 in V and do the following:a. hek whether there is a uni�er � for g and g1, i.e., � is a variable mapping suh that �(g) = �(g1). Ifthere is no uni�er, we proeed to the next subgoal.b. given the uni�er �, we hek whether the view and the query would be ompatible after the uni�er isapplied. Hene, we apply �h(V ) to the query and to the view, where �h(V ) is the same as � but its domaindoes not inlude the existential variables in V (sine only the head variables of V are part of a rewriting).Then we hek two onditions: (1) that the prediates in Q and in V are mutually satis�able, i.e.,�h(V )(C(Q))^�h(V )(C(V )) is satis�able, and (2) that � treats the head variables ourring in g orretly,i.e., if X is a head variable that appears in position i of the subgoal g, then the variable appearing inposition i of g1 must be a head variable of V .If the above onditions are satis�ed, then we insert the atom �(head(V )) into the buket of g. Note thata subgoal g may unify with more than one subgoal in a view V , and in that ase the buket of g will ontainmultiple ourrenes of V .



20 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleIn the seond step, the buket algorithm �nds a set of onjuntive query rewritings, eah of them being aonjuntive query that inludes one onjunt from every buket. Eah of these onjuntive query rewritingsrepresents one way of obtaining part of the answer to Q from the views. The result of the buket algorithmis de�ned to be the union of the onjuntive query rewritings (sine eah of the rewritings may ontributedi�erent tuples). Given a onjuntion, onstruted from a single element from every buket, it is a onjuntivequery rewriting if either (1) the onjuntion is ontained in the query Q, or (2) it is possible to add atomsof omparison prediates suh that the resulting onjuntion is ontained in Q.Example 2 Consider the following viewsV1(student,-number,quarter,title) :- Registered(student,-number,quarter), Course(-number,title),-number�500, quarter�Aut98.V2(student,prof,-number,quarter) :- Registered(student,-number,quarter),Teahes(prof,-number,quarter)V3(student,-number) :- Registered(student,-number,quarter), quarter � Aut94.V4(prof,-number,title,quarter) :- Registered(student,-number,quarter), Course(-number,title),Teahes(prof,-number,quarter), quarter�Aut97.Suppose our query is:q(S,C,P) :- Teahes(P,C,Q), Registered(S,C,Q), Course(C,T), C�300, Q�Aut95.In the �rst step the algorithm reates a buket for eah of the relational subgoals in the query in turn.The resulting ontents of the bukets are shown in Table 2. The buket of Teahes(P,C,Q) inludes views V2and V4, sine the following mapping uni�es the subgoal in the query with the orresponding Teahes subgoalin the views (thereby satisfying ondition (a) above):f P ! prof, C ! -number, Q ! quarter g.Note that eah view head in a buket only inludes variables in the domain of the mapping. Fresh variables(primed) are used for the other head variables of the view.The buket of the subgoal Registered(S,C,Q) ontains the views V1 and V2, sine the following mappinguni�es the subgoal in the query with the orresponding Registered subgoal in the views:f S ! student, C ! -number, Q ! quarter g.Teahes(P,C,Q) Registered(S,C,Q) Course(C,T)V2(S',P,C,Q) V1(S,C,Q,T') V1(S',C,Q',T)V4(P,C,T',Q) V2(S,P',C,Q) V4(P',C,T,Q')Table 2 Contents of the bukets. The primed variables are those that are not in the domain of the unifying mapping.The view V3 is not inluded in the buket of Registered(S,C,Q) beause after applying the uni�ationmapping, the prediates Q � Aut95 and Q � Aut94 are mutually inonsistent. The view V4 is not inludedin the buket of Registered(S,C,Q) beause the variable student is not in the head of V4, while S is in thehead of the query.Next, onsider the buket of the subgoal Course(C,T). The views V1 and V4 will be inluded in the buketbeause of the mappingf C ! -number, T ! title g.In the seond step of the algorithm, we ombine elements from the bukets. In our example, we startwith a rewriting that inludes the top elements of eah buket, i.e.,q'(S,C,P) :- V2(S',P,C,Q), V1(S,C,Q,T'), V1(S', C, Q', T).



Answering Queries Using Views: A Survey 21As an be heked, this rewriting an be simpli�ed by equating the variables S and S', and Q and Q',and then removing the third subgoal, resulting withq'(S,C,P) :- V2(S',P,C,Q), V1(S,C,Q,T').Another possibility that the buket algorithm would explore is:q'(S,C,P) :- V4(P, C, T', Q), V1(S,C,Q,T'), V4(P', C, T, Q').However, this rewriting would be dismissed beause the quarters given in V1 are disjoint from those givenin V4. In this ase, the views V1 and V4 are relevant to the query when they are onsidered in isolation, but,if joined, would yield the empty answer.Finally, the algorithm would also produe the rewritingq'(S,C,P) :- V2(S,P,C,Q), V4(P, C, T', Q).Hene, the result of the buket algorithm is the union of two onjuntive queries, one obtains answersby joining V1 and V2, and the other by joining V2 and V4. The reader should note that in this example,as often happens in the data integration ontext, the algorithm produed a maximally-ontained rewritingof the query using the views, and not an equivalent rewriting. In fat, when the query does not ontainarithmeti omparison prediates (but the view de�nitions still may) the buket algorithm is guaranteed toreturn the maximally-ontained rewriting of the query using the views. 2The strength of the buket algorithm is that it exploits the prediates in the query to prune signi�antlythe number of andidate onjuntive rewritings that need to be onsidered. Cheking whether a view shouldbelong to a buket an be done in time polynomial in the size of the query and view de�nition when theprediates involved are arithmeti omparisons. Hene, if the data soures (i.e., the views) are indeed dis-tinguished by having di�erent omparison prediates, then the resulting bukets will be relatively small.The buket algorithm also extends naturally to ases where the query (but not the views) is a union ofonjuntive queries, and to other forms of prediates in the query suh as lass hierarhies [LRO96a℄. Fi-nally, the buket algorithm also makes it possible to identify opportunities for interleaving optimization andexeution in a data integration system in ases where one of the bukets ontains an espeially large numberof views [LRO96a℄.The main disadvantage of the buket algorithm is that the Cartesian produt of the bukets may still berather large. Furthermore, in the seond step the algorithm needs to perform a query ontainment test forevery andidate rewriting. The testing problem is �p2 -omplete,6 though only in the size of the query andthe view de�nition, and hene quite eÆient in pratie.6.3 The Inverse-rules AlgorithmLike the buket algorithm, the inverse-rules algorithm was also developed in the ontext of a data integrationsystem [DG97b℄. The key idea underlying the algorithm is to onstrut a set of rules that invert the viewde�nitions, i.e., rules that show how to ompute tuples for the database relations from tuples of the views. Weillustrate inverse rules with an example. Suppose we have the following view (we omit the quarter attributeof Registered for brevity in this example):V3(dept, -number) :- Major(student,dept), Registered(student,-number).We onstrut one inverse rule for every subgoal in the body of the view:Major(f1(dept,X), dept) :- V3(dept,X)Registered(f1(Y, -number), -number) :- V3(Y,-number)6 For onjuntive queries with no omparison prediates, query ontainment is in NP beause we only need to guessa ontainment mapping. Here, however, we need to guess a ontainment mapping for every possible ordering on thevariables in ontaining query.



22 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleIntuitively, the inverse rules have the following meaning. A tuple of the form (dept,-number) in theextension of the view V3 is a witness of tuples in the relations Major and Registered. The tuple (dept,-number) is a witness in the sense that it tells us two things:{ the relation Major ontains a tuple of the form (Z, dept), for some value of Z.{ the relation Registered ontains a tuple of the form (Z, -number), for the same value of Z.In order to express the information that the unknown value of Z is the same in the two atoms, we referto it using the funtional term f1(dept,-number). Formally, f1 is a Skolem funtion (see [ABS99℄, Pg. 96)and therefore uninterpreted. Note that there may be several values of Z in the database that ause the tuple(dept,-number) to be in the join of Major and Registered, but all that matters is that there exists at leastone suh value.In general, we reate one funtion symbol for every existential variable that appears in the view de�nitions.These funtion symbols are used in the heads of the inverse rules.The rewriting of a query Q using the set of views V is the datalog program that inludes{ the inverse rules for V , and{ the query Q.As shown in [DG97a,DGL00℄, the inverse-rules algorithm returns the maximally-ontained rewriting ofQ using V . In fat, the algorithm returns the maximally ontained query even if Q is an arbitrary reursivedatalog program.Example 3 Suppose a query asks for the departments in whih the students of the 444 ourse are majoring,q(dept) :- Major(student,dept), Registered(student, 444)and the view V3 inludes the tuples:f (CS, 444), (EE, 444), (CS, 333) g.The inverse rules would ompute the following tuples:Registered: f (f1(CS,444), CS), (f1(EE,444), EE), (f1(CS,333), CS) gMajor: f (f1(CS,444),444), (f1(EE,444),444), (f1(CS,333),333) gApplying the query to these extensions would yield the answers CS and EE. 2In the above example we showed how funtional terms are generated as part of the evaluation of theinverse rules. However, the resulting rewriting an atually be rewritten in suh a way that no funtionalterms appear [DG97a℄.There are several interesting similarities and di�erenes between the buket and inverse rules algorithmsthat are worth noting. In partiular, the step of omputing bukets is similar in spirit to that of omputingthe inverse rules, beause both of them ompute the views that are relevant to single atoms of the databaserelations. The di�erene is that the buket algorithm omputes the relevant views by taking into onsiderationthe ontext in whih the atom appears in the query, while the inverse rules algorithm does not. Hene, if theprediates in a view de�nition entail that the view annot provide tuples relevant to a query (beause theyare mutually unsatis�able with the prediates in the query), then the view will not end up in a buket. Inontrast, the query rewriting obtained by the inverse rules algorithm may ontain views that are not relevantto the query. However, the inverse rules an be omputed one, and be appliable to any query. In orderto remove irrelevant views from the rewriting produed by the inverse-rules algorithm we need to apply asubsequent onstraint propagation phase (as in [LFS97,SR92℄).A key advantage of the inverse-rules algorithm is its oneptual simpliity and modularity. As shownin [DGL00℄, extending the algorithm to exploit funtional dependenies on the database shema, reursivequeries or the existene of aess-pattern limitations an be done by adding another set of rules to the inverserules. Furthermore, the algorithm produes the maximally-ontained rewriting in time that is polynomial inthe size of the query and the views. Note that the algorithm does not tell us whether the maximally-ontainedrewriting is equivalent to the original query, whih would ontradit the fat that the problem of �nding anequivalent rewriting is NP-omplete [LMSS95℄ (see Setion 7).



Answering Queries Using Views: A Survey 23On the other hand, using the resulting rewriting produed by the algorithm for atually evaluating queriesfrom the views has a signi�ant drawbak, sine it insists on reomputing the extensions of the databaserelations. In our example, evaluating the inverse rules omputes tuples for Registered and Major, and thequery is then evaluated over these extensions. However, by doing that, we lose the fat that the view alreadyomputed the join that the query is requesting. Hene, muh of the omputational advantage of exploitingthe materialized view is lost.In order to obtain a more eÆient rewriting from the inverse rules, we must unfold the inverse rules andremove redundant subgoals from the unfolded rules. Unfolding the rules turns out to be similar to (but stillslightly better than) the seond phase of the buket algorithm, where we onsider the Cartesian produt ofthe bukets (see [PL00℄ for an experimental analysis).6.4 The MiniCon algorithmThe MiniCon algorithm [PL00,PH01℄ addresses the limitations of the previous algorithms. The key ideaunderlying the algorithm is a hange of perspetive: instead of building rewritings by ombining rewritingsfor eah of the query subgoals or the database relation, we onsider how eah of the variables in the queryan interat with the available views. The result is that the seond phase of the MiniCon algorithm needs toonsider drastially fewer ombinations of views. The following example illustrates the key idea of MiniCon.Consider the queryq(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)and the views:V1(dept) :- Major(student,dept), Registered(student, 444, quarter).V2(prof, dept, area) :- Advises(prof, student), Prof(name, area)V3(dept, -number) :- Major(student,dept), Registered(student, -number, quarter),Advises(prof, student).The buket algorithm onsiders eah of the subgoals in the query in isolation, and therefore puts theview V1 into the bukets of Major(student, dept) and Registered(student, 444, quarter). However, a arefulanalysis reveals that V1 annot possibly be useful in a rewriting of the query. The reason is that sine thevariable student is not in the head of the view, then in order for V1 to be useful, it must ontain the subgoalAdvises(prof,student) as well. Otherwise, the join on the variable S in the query annot be applied using theresults of V1.The MiniCon algorithm starts out like the buket algorithm, onsidering whih views ontain subgoalsthat orrespond to subgoals in the query. However, one the algorithm �nds a partial variable mapping froma subgoal g in the query to a subgoal g1 in a view V , it hanges perspetive and looks at the variables in thequery. The algorithm onsiders the join prediates in the query (whih are spei�ed by multiple ourrenesof the same variable) and �nds the minimal additional set of subgoals that must to be mapped to subgoalsin V , given that g will be mapped to g1. This set of subgoals and mapping information is alled a MiniConDesription (MCD), and an be viewed as a generalized buket. Unlike bukets, MCDs are assoiated withsets of subgoals in the query. In the seond phase, the MCDs are ombined to produe the query rewritings.In the above example, the algorithm will determine that it annot reate an MCD for V1 beause itannot apply the join prediates in the query. When V2 is onsidered, the MCD will ontain only thesubgoal Advises(prof, student). When V3 is onsidered, the MCD will inlude all of the query subgoals.The key advantage of the MiniCon algorithm is that the seond phase of the algorithm onsiders manyfewer ombinations of MCDs ompared to the Cartesian produt of the bukets or ompared to the numberof unfoldings of inverse rules. The work in [PL00℄ desribes a detailed set of experiments that shows thatthe MiniCon signi�antly outperforms the inverse rules algorithm, whih in turn outperforms the buketalgorithm. The paper demonstrates exatly how these savings are obtained in the seond phase of thealgorithm. Furthermore, the experiments show that the algorithm sales up to hundreds of views withommonly ourring shapes suh as hain, star and omplete queries (see [MGA97℄ for a desription of thesequery shapes). The work in [PH01℄ also explains how to exploit the key ideas of the the MiniCon algroithmto the ontext of query optimization with materialized views, where the ost of the query plan if the primaryonern.



24 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle7 Theory of Answering Queries Using ViewsIn the previous setions we disussed spei� algorithms for answering queries using views. Here we onsiderseveral fundamental issues that ut aross all of the algorithms we have disussed thus far, and whih havebeen studied from a more theoretial perspetive in the literature.The �rst question onerns the ompleteness of the query rewriting algorithms. That is, given a set ofviews and a query, will the algorithm always �nd a rewriting of the query using the views if one exists?A related issue is haraterizing the omplexity of the query rewriting problem. We disuss these issues inSetion 7.1.Completeness of a rewriting algorithm is haraterized w.r.t. a spei� query language in whih therewritings are expressed (e.g., selet-projet-join queries, queries with union, reursion). For example, thereare ases in whih if we do not allow unions in the rewriting of the query, then we will not be able to �nd anequivalent rewriting of a query using a set of views. The language that we onsider for the rewriting is evenmore ruial when we onsider maximally-ontained rewritings, beause the notion of maximal ontainmentis de�ned w.r.t. a spei� query language. As it turns out, there are several important ases in whih amaximally-ontained rewriting of a query an only be found if we onsider reursive datalog rewritings.These ases are illustrated in Setion 7.2.At the limit, we would like to be able to extrat all the ertain answers for a query given a set of views,whether we do it by applying a query rewriting to the extensions of the views or via an arbitrary algorithm.In Setion 7.3 we onsider the omplexity of �nding all the ertain answers, and show that even in somesimple ases the problem is surprisingly o-NP-hard in the size of the extensions of the views.7.1 Completeness and omplexity of �nding query rewritingsThe �rst question one an ask about an algorithm for rewriting queries using views is whether the algorithmis omplete: given a query Q and a set of views V, will the algorithm �nd a rewriting of Q using V when oneexists. The �rst answer to this question was given for the lass of queries and views expressed as onjuntivequeries [LMSS95℄. In that paper it was shown that when the query does not ontain omparison prediatesand has n subgoals, then there exists an equivalent onjuntive rewriting of Q using V only if there is arewriting with at most n subgoals. An immediate orollary of the bound on the size of the rewriting is thatthe problem of �nding an equivalent rewriting of a query using a set of views is in NP, beause it suÆes toguess a rewriting and hek its orretness.7The bound on the size of the rewriting also sheds some light on the algorithms desribed in the previoussetions. In partiular, it entails that the searh strategy that the GMAP algorithm [TSI96℄ employs isguaranteed to be omplete under the onditions that (1) we use a sound and omplete algorithm for queryontainment for testing equivalene of rewritings, (2) when ombining two subplans, the algorithm onsidersall possible join prediates on the attributes of the ombined subplans, and (3) we onsider self-joins ofthe views. These onditions essentially guarantee that the algorithm searhes through all rewritings whosesize is bounded by the size of the query. It is important to emphasize that the rewriting of the query thatprodues the most eÆient plan for answering the query may have more onjunts that the original query.The bound of [LMSS95℄ also guarantees that the buket algorithm is guaranteed to �nd the maximally-ontained rewriting of the query when the query does not ontain arithmeti omparison prediates (but theviews may), and that we onsider unions of onjuntive queries as the language for the rewriting.In [LMSS95℄ it is also shown that the problem of �nding a rewriting is NP-hard for two independentreasons: (1) the number of possible ways to map a single view into the query, and (2) the number of ways toombine the mappings of di�erent views into the query.In [RSU95℄ the authors extend the bound on the size of the rewriting to the ase where the viewsontain aess-pattern limitations (disussed in detail in Setion 8.2). In [CR97℄ the authors exploit the loseonnetion between the ontainment and rewriting problems, and show several polynomial-time ases of therewriting problems, orresponding to analogous ases for the problem of query ontainment.7 Note that heking the orretness of a rewriting is NP-omplete; however, the guess of a rewriting an be extendedto a guess for ontainment mappings showing the equivalene of the rewriting and of the query.



Answering Queries Using Views: A Survey 257.2 The need for reursive rewritingsAs noted earlier, in ases where we annot �nd an equivalent rewriting of the query using a set of views,we onsider the problem of �nding maximally-ontained rewritings. Our hope is that when we apply themaximally-ontained rewriting to the extensions of the views, we will obtain the set of all ertain answers tothe query (De�nition 4). Interestingly, there are several ontexts where in order to ahieve this goal we needto onsider reursive datalog rewritings of the query [DGL00℄. We reall that a datalog rewriting is a datalogprogram in whih the base (EDB) prediates are the view relations, and there are additional intermediateIDB relations. Exept for the obvious ase in whih the query is reursive [DG97a℄, other ases inlude: whenwe exploit the presene of funtional dependenies on the database relations or when there are aess-patternlimitations on the extensions of the views [DL97℄ (see Setion 8.2 for a more detailed disussion), when viewsontain unions [Afr00℄ (though even reursion does not always suÆe here), and the ase where additionalsemanti information about lass hierarhies on objets is expressed using desription logis [BLR97℄. Weillustrate the ase of funtional dependenies below.Example 4 To illustrate the need for reursive rewritings in the presene of funtional dependenies, wetemporarily venture into the domain of airline ights. Suppose we have the following database relationshedule(Airline,Flight no,Date,Pilot,Airraft)whih stores tuples desribing the pilot that is sheduled for a ertain ight, and the airraft that is used forthis ight. Assume we have the following funtional dependenies on the relations in the mediated shemaPilot ! Airline andAirraft ! Airlineexpressing the onstraints that pilots work for only one airline, and that there is no joint ownership ofairrafts between airlines. Suppose we have the following view available, whih projets the date, pilot andairraft attributes from the database relation:v(D,P,C) :- shedule(A,N,D,P,C)The view v reords on whih date whih pilot ies whih airraft. Now onsider a query asking for pilotsthat work for the same airline as Mike (expressed as the following self join on the attribute Airline of theshedule relation):q(P) :- shedule(A,N,D,`mike',C), shedule(A,N',D',P,C')The view v doesn't reord the airlines that pilots work for, and therefore, deriving answers to the above queryrequires using the funtional dependenies in subtle ways. For example, if both Mike and Ann are known tohave own airraft #111, then, sine eah airraft belongs to a single airline, and every pilot ies for only oneairline, Ann must work for the same airline as Mike. Moreover, if, in addition, Ann is known to have ownairraft #222, and John has own airraft #222 then the same line of reasoning leads us to onlude thatAnn and John work for the same airline. In general, for any value of n, the following onjuntive rewritingis a ontained rewriting:qn(P ) :� v(D1;mike; C1); v(D2; P2; C1); v(D3; P2; C2); v(D4; P3; C2); : : : ;v(D2n�2; Pn; Cn�1); v(D2n�1; Pn; Cn); v(D2n; P; Cn)Moreover, for eah n, qn(P ) may provide answers that were not given by qi for i < n, beause one analways build an extension of the view v that requires n steps of haining in order to �nd answers to the query.The onlusion is that we annot �nd a maximally-ontained rewriting of this query using the views if weonly onsider non-reursive rewritings. Instead, the maximally-ontained rewriting is the following datalogprogram:relevantPilot(\mike").relevantAirCraft(C) :- v(D, \mike", C).relevantAirCraft(C) :- v(D,P,C), relevantPilot(P).relevantPilot(P) :- relevantPilot(P1), relevantAirCraft(C), v(D1, P1, C), v(D2, P, C).



26 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleIn the program above, the relation relevantPilot will inlude the set of pilots who work for the same airlineas Mike, and the relation relevantAirCraft will inlude the airraft own by relevant pilots. Note that thefourth rule is mutually reursive with the de�nition of relevantAirCraft. 2In [DL97,DGL00℄ it is shown how to augment the inverse-rules algorithm to inorporate funtionaldependenies. The key element of that algorithm is to add a set of rules that simulate the appliation of aChase algorithm [MMS79℄ on the atoms of the database relations.7.3 Finding the ertain answersA di�erent perspetive on the problem of answering queries using views is the following. Given a set ofmaterialized views and the orresponding view de�nitions, we obtain some inomplete information about theontents of the database. More spei�ally, the views de�ne a set of possible underlying databases D. Givena query Q over the database and a tuple t, there are a few possibilities: (1) t would be an answer to Q forevery database in D, (2) t is an answer to Q for some database in D, or (3) t is not an answer to Q for anydatabase in D. The notion of ertain answers, (see De�nition 4) formalizes ase (1).If Q0 is an equivalent rewriting of a query Q using the set of views V , then it will always produe thesame result as Q, independent of the state of the database or of the views. In partiular, this means that Q0will always produe all the ertain answers to Q for any possible database.When Q0 is a maximally-ontained rewriting of Q using the views V it may produe only a subset of theanswers of Q for a given state of the database. The maximality of Q0 is de�ned only w.r.t. the other possiblerewritings in a partiular query language L that we onsider for Q0. Hene, the question that remains is howto �nd all the ertain answers, whether we do it by applying some rewritten query to the views or by someother algorithm.The question of �nding all the ertain answers is onsidered in detail in [AD98,GM99a℄. In their analy-sis they distinguish the ase of the open-world assumption from that of the losed-world assumption. Withthe losed-world assumption, the extensions of the views are assumed to ontain all the tuples that wouldresult from applying the view de�nition to the database. Under the open-world assumption, the extensionsof the views may be missing tuples. The open-world assumption is espeially appropriate in data integrationappliations, where the views desribe soures that may be inomplete (see [EGW97,Lev96,Dus97℄ for treat-ments of omplete soures in the data integration ontext). The losed-world assumption is appropriate forthe ontext of query optimization and maintaining physial data independene, where views have atuallybeen omputed from existing database relations.Under the open-world assumption, [AD98℄ show that in many pratial ases, �nding all the ertainanswers an be done in polynomial time. However, the problem beomes o-NP-hard (in the size of the viewextensions!) as soon as we allow union in the language for de�ning the views, or allow the prediate 6= in thelanguage de�ning the query.Under the losed-world assumption the situation is even worse. Even when both the views and the queryare de�ned by onjuntive queries without omparison prediates, the problem of �nding all ertain answersis already o-NP-hard. The following example is the rux of the proof of the o-NP-hardness result [AD98℄.Example 5 The following example shows a redution of the problem of graph 3-olorability to the problem of�nding all the ertain answers. Suppose the relation edge(X,Y) enodes the edges of a graph, and the relationolor(X,Z) enodes whih olor Z is attahed to the nodes of the graph. Consider the following three views:V1(X) :- olor(X,Y)V2(Y) :- olor(X,Y)V3(X,Y) :- edge(X,Y)where the extension of V1 is the set of nodes in a graph, the extension of V2 is the set fred, green, blueg,and the extension of V3 is the set of edges in the graph. Consider the following query:q() :- edge(X,Y), olor(X,Z), olor(Y,Z)In [AD98℄ it is shown that  is a ertain answer to q if and only if the graph enoded by edge is notthree-olorable. Hene, they show that the problem of �nding all ertain answers is o-NP-hard. 2



Answering Queries Using Views: A Survey 27The hardness of �nding all the ertain answers provides an interesting perspetive on formalisms for dataintegration. Intuitively, the result entails that when we use views to desribe the ontents of data soures,even if we only use onjuntive queries to desribe the soures, the omplexity of �nding all the answers toa query from the set of soures is o-NP-hard. In ontrast, using a formalism in whih the relations of themediated shema are desribed by views over the soure relations (as in [GMPQ+97℄), the omplexity of�nding all the answers is always polynomial. Hene, this result hints that the former formalism has a greaterexpressive power as a formalism for data integration.It is also interesting to note the onnetion established in [AD98℄ between the problem of �nding all ertainanswers and omputation with onditional tables [IL84℄. As the authors show, the partial information aboutthe database that is available from a set of views an be enoded as a onditional table using the formalismstudied in [IL84℄, providing a formalization to the intuition starting out this setion.The work in [GM99a℄ also onsiders the ase where the views may either be inomplete, omplete, orontain tuples that don't satisfy the view de�nition (referred to as inorret tuples). It is shown that withoutomparison prediates in the views or the query, when either all the views are omplete or all of them mayontain inorret tuples, �nding all ertain answers an be done in polynomial time in the size of the viewextensions. In other ases, the problem is o-NP-hard. The work in [MM01℄ onsider the query answeringproblem in ases where we may have bounds on the soundness and/or ompleteness of the views.Finally, [MLF00℄ onsiders the problem of relative query ontainment, i.e., whether the set of ertainanswers of a query Q1 is always ontained in the set of ertain answers of a query Q2. The paper shows thatfor the onjuntive queries and views with no omparison prediates the problem is �p2 -omplete, and thatthe problem is still deidable in the presene of aess pattern limitations.8 Extensions to the Query LanguageIn this setion we survey the algorithms for answering queries using views in the ontext of several importantextensions to the query languages onsidered thus far. We onsider extensions for Objet Query Language(OQL) [FRV96,Flo96,DPT99℄, and views with aess pattern limitations [RSU95,KW96,DL97℄.8.1 Objet Query LanguageIn [FRV96,Flo96℄ the authors studied the problem of answering queries using views in the ontext of queryingobjet-oriented databases, and have inorporated their algorithm into the Flora OQL optimizer. In objet-oriented databases the orrespondene between the logial model of the data and the physial model is evenless diret than in relational systems. Hene, as argued in [Flo96℄, it is imperative for a query optimizer forobjet-oriented database be based on the notion of physial data independene.Answering queries using views in the ontext of objet-oriented systems introdues two key diÆulties.First, �nding rewritings often requires that we exploit some semanti information about the lass hierarhyand about the attributes of lasses. Seond, OQL does not make a lean distintion between the selet,from and where lauses as in SQL. Selet lauses may ontain arbitrary expressions, and the where lausesalso allow path navigation.The algorithm for answering queries using views desribed in [Flo96℄ operates in two phases. In the �rstphase the algorithm rewrites the query into a anonial form, thereby addressing the lak of distintionbetween the selet, from and where lauses. As an example, in this phase, navigational expressions areremoved from the where lause by introduing new variables and terms in the from lause.In the seond phase, the algorithm exploits semanti knowledge about the lass hierarhy in order to�nd a subexpression of the query that is mathed by one of the views. When suh a math is found, thesubexpression in the query is replaed by a referene to the view and appropriate onditions are added inorder to onserve the equivalene to the query.We illustrate the main novelties of the algorithm with the following example from [Flo96℄, using a Frenhversion of our university domain. Here we have the lass Universities, with sublass Frane.Universities andthe lass City. The �rst two lasses have the attributes students, PhDstudents (a sub-attribute of students),professors and adjunts.



28 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleExample 6 Suppose we have the following view asking for students who are at least as old as their professors,and who study in universities in small ities. Below we use the notation of OQL. Note that the selet lauseof OQL de�nes the reord struture of the result. Also note the use of path expressions { for example, y inx.students means that the variable y will be bound to eah of the students of the objet to whih x will bebound.reate view V1 asselet distint [A:=x.name, B:=y.identi�er, C:=z℄from x in Universities, y in x.students, z in union(x.professors, x.adjunts)where x.ity.kind="small" and y.age � z.age.Suppose a query asks for Ph.D students in Frenh universities who have the same age as their professors,and study in small town universities:selet distint [D:=u.name, E:=v.name, F:=t.name℄from u in Frane.Universities, v in u.PhDstudents, t in u.professorswhere u.ity.kind="small" and v.age=t.age.In the �rst step, the algorithm will transform the query and the view into their normal form. The resultingexpression for the query would be: (note that the variable w was added to the query in order to eliminatethe navigation term from the where lause)selet distint [D:=u.name, E:=v.name, F:=t.name℄from u in Frane.Universities, w in City, v in u.PhDstudents, t in u.professorswhere w.kind="small" and v.age=t.age and u.ity=w.In the next step, the algorithm will note the following properties of the shema:1. The olletion Frane.Universities is inluded in the olletion Universities,2. The olletion denoted by the expression u.PhDstudents is inluded in the olletion denoted by x.students.This inlusion follows from the �rst inlusion and the fat that PhD students are a subset of students.3. The olletion u.professors is inluded in the olletion union(x.professors, x.adjunts).Putting these three inlusions together, the algorithm determines that the view an be used to answerthe query, beause the seletions in the view are less restritive than those in the query. The rewriting of thequery using the view is the following:selet distint [D:=a.A, E:=a.B.name, F:=t.name℄from a in V1, u in Frane.Universities, v in u.PhDstudents, t in u.professorswhere u.ity.kind="small" and v.age=t.age andu.name=a.A and v.name=a.B and t=a.C.Note that the role of the view is only to restrit the possible bindings of the variables used in the query.In partiular, the query still has to restrit the universities to only the Frenh ones, the students to onlythe Ph.Ds, and the range of the variable t to over only professors. In this ase, the evaluation of the queryusing the view is likely to be more eÆient than omputing the query only from the lass extents. 2As noted in Setion 5.2, the algorithm desribed in [DPT99,PDST00℄ also onsiders ertain types ofqueries over objet-oriented data.8.2 Aess Pattern LimitationsIn the ontext of data integration, where data soures are modeled as views, we may have limitations onthe possible aess paths to the data. For example, when querying the Internet Movie Database, we annotsimply ask for all the tuples in the database. Instead, we must supply one of several inputs, (e.g., ator nameor diretor), and obtain the set of movies in whih they are involved.We an model limited aess paths by attahing a set of adornments to every data soure. If a soure ismodeled by a view with n attributes, then an adornment onsists of a string of length n, omposed of the



Answering Queries Using Views: A Survey 29letters b and f . The meaning of the letter b in an adornment is that the soure must be given values for theattribute in that position. The meaning of the letter f in an adornment is that the soure doesn't have tobe given a value for the attribute in that position. For example, an adornment bf for a view V (A;B) meansthat tuples of V an be obtained only by providing values for the attributes A.Several works have onsidered the problem of answering queries using views when the views are alsoassoiated with adornments desribing limited aess patterns. In [RSU95℄ it is shown that the bound givenin [LMSS95℄ on the length of a possible rewriting does not hold anymore. To illustrate, onsider the followingexample, where the binary relation Cites stores pairs of papers X;Y , where X ites Y . Suppose we have thefollowing views with their assoiated adornments:CitationDBbf (X,Y) :- Cites(X,Y)CitingPapersf (X) :- Cites(X,Y)and suppose we have the following query asking for all the papers iting paper #001:Q(X) :- Cites(X,001)The bound given in [LMSS95℄ would require that if there exists a rewriting, then there is one with atmost one atom, the size of the query. However, the only possible rewriting in this ase is:q(X) :- CitingPapers(X), CitationDB(X,001).[RSU95℄ shows that in the presene of aess-pattern limitations it is suÆient to onsider a slightlylarger bound on the size of the rewriting: n+ v, where n is the number of subgoals in the query and v is thenumber of variables in the query. Hene, the problem of �nding an equivalent rewriting of the query using aset of views is still NP-omplete.The situation beomes more ompliated when we onsider maximally-ontained rewritings. As the fol-lowing example given in [KW96℄ shows, there may be no bound on the size of a rewriting. In the followingexample, the relation DBpapers denotes the set of papers in the database �eld, and the relation AwardPapersstores papers that have reeived awards (in databases or any other �eld). The following views are available:DBSouref (X) :- DBpapers(X)CitationDBbf (X,Y) :- Cites(X,Y)AwardDBb(X) :- AwardPaper(X)The �rst soure provides all the papers in databases, and has no aess-pattern limitations. The seondsoure, when given a paper, will return all the papers that are ited by it. The third soure, when given apaper, returns whether the paper is an award winner or not.The query asks for all the papers that won awards:Q(X) :- AwardPaper(X).Sine the view AwardDB requires its input to be bound, we annot query it diretly. One way to getsolutions to the query is to obtain the set of all database papers from the view DBSoure, and perform adependent join with the view AwardDB. Another way would be to begin by retrieving the papers in DBSoure,join the result with the view CitationDB to obtain all papers ited by papers in DBSoure, and then join theresult with the view AwardDB. As the rewritings below show, we an follow any length of itation hainsbeginning with papers in DBSoure and obtain answers to the query that were possibly not obtained byshorter hains. Hene, there is no bound on the length of a rewriting of the query using the views.Q'(X) :- DBSoure(X), AwardDB(X)Q'(X) :- DBSoure(V), CitationDB(V,X1), : : : ; CitationDB(Xn,X), AwardDB(X).Fortunately, as shown in [DL97,DGL00℄, we an still �nd a �nite rewriting of the query using the views,albeit a reursive one. The following datalog rewriting will obtain all the possible answers from the aboveviews. The key in onstruting the program is to de�ne a new intermediate relation papers whose extensionis the set of all papers reahable by itation hains from papers in databases, and is de�ned by a transitivelosure over the view CitationDB.



30 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitlepapers(X) :- DBsoure(X)papers(X) :- papers(Y), CitationDB(Y,X)Q'(X) :- papers(X), AwardDB(X).In [DL97℄ it is shown that a maximally-ontained rewriting of the query using the views an always beobtained with a reursive rewriting. In [FW97℄ and [LKG99℄ the authors desribe additional optimizationsto this basi algorithm.8.3 Other ExtensionsSeveral authors have onsidered additional extensions of the query rewriting problems in various ontexts.We mention some of them here.Extensions to the query and shema language: In [AGK99,Dus98℄ the authors onsider the rewriting prob-lem when the views may ontain unions. The onsideration of inlusion dependenies on the database relationsintrodues several subtleties to the query rewriting problem, whih are onsidered in [Gry98℄. In [Mil98℄, theauthor onsiders the query rewriting problem for a language that enables querying the shema and datauniformly, and hene, names of attributes in the data may beome onstants in the extensions of the views.In [MRP99℄ the authors show that when the shema ontains a single universal relation, answering queriesusing views and several related operations an be done more eÆiently.Semi-strutured data: The emergene of XML as a standard for sharing data on the WWW has spurredsigni�ant interest in building systems for integrating XML data from multiple soures. The emerging for-malisms for modeling XML data are variations on labeled direted graphs, whih have also been used to modelsemi-strutured data [Abi97,Bun97,ABS99℄. The model of labeled direted graphs is espeially well suitedfor modeling the irregularity and the lak of shema whih are inherent in XML data. Several languages havebeen developed for querying semi-strutured data and XML [AQM+97,FFLS97,BDHS96,DFF+99,CRF00℄.Several works have started onsidering the problem of answering queries using views when the viewsand queries are expressed in a language for querying semi-strutured data. There are two main diÆultiesthat arise in this ontext. First, suh query languages enable using regular path expressions in the query, toexpress navigational queries over data whose struture is not well known a priori. Regular path expressionsessentially provide a very limited kind of reursion in the query language. In [CGLV99℄ the authors onsiderthe problem of rewriting a regular path query using a set of regular path views, and show that the problem isin 2EXPTIME (and heking whether the rewriting is an equivalent one is in 2EXPSPACE). In [CGLV00a℄the authors onsider the problem of �nding all the ertain answers when queries and views are expressedusing regular path expressions, and show that the problem is o-NP-omplete when data omplexity (i.e., sizeof the view extensions) is onsidered. In [CGLV00b℄ the authors extend the results of [CGLV99,CGLV00a℄to path expressions that inlude the inverse operator, allowing both forward and bakward traversals in agraph.The seond problem that arises in the ontext of semi-strutured data stems from the rih restruturingapabilities whih enable the reation of arbitrary graphs in the output. The output graphs an also inludenodes that did not exist in the input data. In [PV99℄ the authors onsider the rewriting problem in thease where the query an reate answer trees, and queries that do not involve regular path expressions withreursion. For the most part, onsidering queries with restruturing remains an open researh problem.In�nite number of views: Two works have onsidered the problem of answering queries using views in thepresene of an in�nite number of views [LRU96,VP97℄. The motivation for this seemingly urious problemis that when a data soure has the apability to perform loal proessing, it an be modeled by the (possiblyin�nite) set of views it an supply, rather than a single one. As a simple example, onsider a data sourethat stores a set of douments, and an answer queries of the form:q(do) :- doument(do), ontains(do, w1), : : :, ontains(do,wn)



Answering Queries Using Views: A Survey 31where we an have any number of ourrenes of the ontains subgoal, eah with a di�erent word.To answer queries using suh soures, one need not only hoose whih soures to query, but we must alsohoose whih query to send to it out of the set of possible queries it an answer. In [LRU96,VP97℄ it is shownthat in ertain important ases the problem of answering a query using an in�nite set of views is deidable.Of partiular note is the ase in whih the set of views that a soure an answer is desribed by the �niteunfoldings of a datalog program.Desription Logis: Desription logis are a family of logis for modeling omplex hierarhial strutures.A desription logi makes it possible to de�ne sets of objets by speifying their properties, and then toreason about the relationship between these sets (e.g., subsumption, disjointness). A desription logi alsoenables reasoning about individual objets, and their membership in di�erent sets. One of the reasons thatdesription logis are useful in data management is their ability to desribe omplex models of a domainand reason about inter-shema relationships [CL93℄. For that reason, desription logis have been used inseveral data integration systems [AKS96,LRO96a℄. Borgida [Bor95℄ surveys the use of desription logis indata management.Several works have onsidered the problem of answering queries using views when desription logis areused to model the domain. In [BLR97℄ it is shown that in general, answering queries using views in thisontext may be NP-hard, and presents ases in whih we an obtain a maximally-ontained rewriting of aquery in reursive datalog. The omplexity of answering queries using views for an expressive desriptionlogi (whih also inludes n-ary relations) is studied in [CGL99℄.9 ConlusionsAs this survey has shown, the problem of answering queries using views raises a multitude of hallenges,ranging from theoretial foundations to onsiderations of a more pratial nature. While algorithms for an-swering queries using views are already being inorporated into ommerial database systems (e.g., [BDD+98,ZCL+00℄), these algorithms will have even more importane in data integration systems and data warehousedesign. Furthermore, answering queries using views is a key tehnique to give database systems the abilityof maintaining physial data independene.There are many issues that remain open in this realm. Although we have touhed upon several querylanguages and extensions thereof, many ases remain to be investigated. Of partiular note are studyingrewriting algorithms in the presene of a wider lass of integrity onstraints on both the database and viewrelations, and studying the e�et of restruturing apabilities of query languages (as in OQL or languagesfor querying semistrutured data [BDHS96,AQM+97,FFLS97,DFF+99,CRF00℄).As desribed in the artile, di�erent motivations have led to two strands of work on answering queriesusing views, one in the ontext of optimization and the other in the ontext of data integration. In part, thesedi�erenes are due to the fat that in the data integration ontext the algorithms searh for a maximally-ontained rewriting of the query and assume that the number of views is relatively large. However, as weillustrated, the priniples underlying the two strands are similar. Furthermore, interesting hallenges ariseas we try to bridge the gaps between these bodies of work. The �rst hallenge is to extend the work onquery optimization to handle a muh larger number of more omplex views. The seond hallenge is toextend data integration algorithms to hoose judiiously the best rewritings of the query. This an be doneby either trying to order the aess to the data soures (as in [FKL97,DL99,NLF99℄), or to ombine thehoie of rewritings with other adaptive aspets of query proessing explored in data integration systems(e.g., [UFA98,IFF+99℄).The ontext of data warehouse design, when one tries to selet a set of views to materialize in thewarehouse, raises another hallenge. The data warehouse design problem is often treated as a problem ofsearh through a set of warehouse on�gurations. In eah on�guration, we need to determine whether theworkload queries antiipated on the warehouse an be answered using the seleted views, and estimate theost of the on�guration. In this ontext it is important to be able to reuse the results of the omputationfrom the previous state in the searh spae. In partiular, this raises the hallenge of developing inrementalalgorithms for answering queries using views, whih an ompute rewritings more eÆiently when only minorhanges are made to the set of available views.



32 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitleIn this survey we onsidered the problem of using materialized views when they are available. I believethat the next hallenge is seleting whih views to materialize in the �rst plae. The problem of view seletionalso has a surprising number of potential appliations, suh as query optimization, data warehousing, web-sitedesign, ontent distribution networks, peer-to-peer omputing and ubiquitous omputing. Even though therehas been work on this problem (e.g., [CHS01,ACN00,Gup97a,CG00,GM99,TS97,YKL97,BPT97,GHRU97,HRU96,GHI+01℄), the researh is still in its infany. The wealth of tehniques developed for answering queriesusing views will be very useful in this realm.AknowledgmentsI would like to thank Phil Bernstein, Mike Carey, Anhai Doan, Todd Millstein, Rahel Pottinger, ArnieRosenthal, Igor Tatarinov and the anonymous reviewers for valuable omments on earlier drafts of thispaper. I would like to aknowledge the support of a Sloan Fellowship, NSF Grants #IIS-9978567 and #IIS-9985114, and gifts from Mirosoft Corporation and from NEC, Japan.Referenes[Abi97℄ Serge Abiteboul. Querying semi-strutured data. In Pro. of ICDT, pages 1{18, Delphi, Greee, 1997.[ABS99℄ Serge Abiteboul, Peter Buneman, and Dan Suiu. Data on the Web. Morgan Kaufmann, 1999.[ACN00℄ Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya. Automated seletion of materialized viewsand indexes in Mirosoft SQL Server. In Pro. of VLDB, pages 496{505, Cairo, Egypt, 2000.[ACPS96℄ S. Adali, K. Candan, Y. Papakonstantinou, and V.S. Subrahmanian. Query ahing and optimizationin distributed mediator systems. In Pro. of SIGMOD, pages 137{148, Montreal, Canada, 1996.[AD98℄ S. Abiteboul and O. Dushka. Complexity of answering queries using materialized views. In Pro. ofPODS, pages 254{263, Seattle, WA, 1998.[Afr00℄ Foto Afrati. Personal ommuniation, 2000.[AGK99℄ Foto Afrati, M. Gergatsoulis, and Th. Kavalieros. Answering queries using materialized views withdisjuntions. In Pro. of ICDT, pages 435{452, 1999.[AHV95℄ Serge Abiteboul, Rihard Hull, and Vitor Vianu. Foundations of Databases. Addison Weseley, 1995.[AKS96℄ Yigal Arens, Craig A. Knoblok, and Wei-Min Shen. Query reformulation for dynami informationintegration. International Journal on Intelligent and Cooperative Information Systems, (6) 2/3:99{130,June 1996.[ALU01℄ Foto Afrati, Chen Li, and Je�rey Ullman. Generating eÆient plans for queries using views. In Pro. ofSIGMOD, pages 319{330, 2001.[AQM+97℄ Serge Abiteboul, Dallan Quass, Jason MHugh, Jennifer Widom, and Janet Wiener. The Lorel querylanguage for semistrutured data. International Journal on Digital Libraries, 1(1):68{88, April 1997.[BDD+98℄ Randall Bello, Karl Dias, Alan Downing, James Feenan, Jim Finnerty, William Norott, Harry Sun,Andrew Witkowski, and Mohamed Ziauddin. Materialized views in Orale. In Pro. of VLDB, pages659{664, 1998.[BDHS96℄ Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suiu. A query language and optimizationtehniques for unstrutured data. In Pro. of SIGMOD, pages 505{516, Montreal, Canada, 1996.[BLR97℄ Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using views in desriptionlogis. In Pro. of PODS, pages 99{108, Tuson, Arizona., 1997.[Bor95℄ Alex Borgida. Desription logis in data management. IEEE Trans. on Know. and Data Engineering,7(5):671{682, 1995.[BPT97℄ Elena Baralis, Stefano Paraboshi, and Ernest Teniente. Materialized views seletion in a multidimen-sional database. In Pro. of VLDB, pages 156{165, 1997.[Bun97℄ Peter Buneman. Semistrutured data. In Pro. of PODS, pages 117{121, Tuson, Arizona, 1997.[CG00℄ Rada Chirkova and Mihael Genesereth. Linearly bounded reformulations of onjuntive databases. InPro. of DOOD, pages 987{1001, 2000.[CGL99℄ Diego Calvanese, Giuseppe De Giaomo, and Maurizio Lenzerini. Answering queries using views indesription logis. In Working notes of the KRDB Workshop, 1999.[CGLV99℄ D. Calvanese, G. De Giaomo, M. Lenzerini, and M. Vardi. Rewriting of regular expressions and regularpath queries. In Pro. of PODS, pages 194{204, 1999.[CGLV00a℄ D. Calvanese, G. De Giaomo, M. Lenzerini, and M. Vardi. Answering regular path queries using views.In Pro. of ICDE, pages 389{398, 2000.



Answering Queries Using Views: A Survey 33[CGLV00b℄ D. Calvanese, G. De Giaomo, M. Lenzerini, and M. Vardi. View-based query proessing for regularpath queries with inverse. In Pro. of PODS, pages 58{66, 2000.[CHS01℄ Rada Chirkova, Alon Halevy, and Dan Suiu. A formal perspetive on the view seletion problem. InPro. of VLDB, 2001.[CKPS95℄ Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim. Optimizing querieswith materialized views. In Pro. of ICDE, pages 190{200, Taipei, Taiwan, 1995.[CL93℄ T. Catari and M. Lenzerini. Representing and using intershema knowledge in ooperative informationsystems. Journal of Intelligent and Cooperative Information Systems, pages 55{62, 1993.[CM77℄ A.K. Chandra and P.M. Merlin. Optimal implementation of onjuntive queries in relational databases.In Proeedings of the Ninth Annual ACM Symposium on Theory of Computing, pages 77{90, 1977.[CN98a℄ S. Chaudhuri and V. R. Narasayya. Autoadmin 'what-if' index analysis utility. In Pro. of SIGMOD,pages 367{378, 1998.[CN98b℄ S. Chaudhuri and V. R. Narasayya. Mirosoft index tuning wizard forSQL Server 7.0. In Pro. ofSIGMOD, pages 553{554, 1998.[CNS99℄ S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries using views. In Pro. of PODS,pages 155{166, 1999.[CR94℄ C. Chen and N. Roussopoulos. Implementation and performane evaluation of the ADMS query opti-mizer. In Pro. of EDBT, pages 323{336, Marh 1994.[CR97℄ C. Chekuri and A. Rajaraman. Conjuntive query ontainment revisited. In Pro. of ICDT, pages 56{70,Delphi, Greee, 1997.[CRF00℄ Donald D. Chamberlin, Jonathan Robie, and Daniela Floresu. Quilt: An XML query language forheterogeneous data soures. In WebDB (Informal Proeedings) 2000, pages 53{62, 2000.[CV92℄ Surajit Chaudhuri and Moshe Vardi. On the equivalene of reursive and nonreursive datalog programs.In Pro. of PODS, pages 55{66, San Diego, CA., 1992.[CV93℄ Surajit Chaudhuri and Moshe Vardi. Optimizing real onjuntive queries. In Pro. of PODS, pages59{70, Washington D.C., 1993.[CV94℄ Surajit Chaudhuri and Moshe Vardi. On the omplexity of equivalene between reursive and nonreur-sive datalog programs. In Pro. of PODS, pages 55{66, Minneapolis, Minnesota, 1994.[DFF+99℄ Alin Deutsh, Mary Fernandez, Daniela Floresu, Alon Levy, and Dan Suiu. A query language forXML. In Proeedings of the World-Wide Web 8 Conferene, pages 1155{1169, 1999.[DFJ+96℄ Shaul Dar, Mihael J. Franklin, Bjorn Jonsson, Divesh Srivastava, and Mihael Tan. Semanti dataahing and replaement. In Pro. of VLDB, pages 330{341, 1996.[DFS99℄ Alin Deutsh, Mary Fernandez, and Dan Suiu. Storing semi-strutured data with STORED. In Pro.of SIGMOD, pages 431{442, 1999.[DG97a℄ Oliver M. Dushka and Mihael R. Genesereth. Answering reursive queries using views. In Pro. ofPODS, pages 109{116, Tuson, Arizona., 1997.[DG97b℄ Oliver M. Dushka and Mihael R. Genesereth. Query planning in infomaster. In Proeedings of theACM Symposium on Applied Computing, pages 109{111, San Jose, CA, 1997.[DGL00℄ Oliver Dushka, Mihael Genesereth, and Alon Levy. Reursive query plans for data integration. Journalof Logi Programming, speial issue on Logi Based Heterogeneous Information Systems, 43(1):49{73,2000.[DL97℄ Oliver M. Dushka and Alon Y. Levy. Reursive plans for information gathering. In Proeedings of the15th International Joint Conferene on Arti�ial Intelligene, pages 778{784, 1997.[DL99℄ Anhai Doan and Alon Levy. EÆiently ordering query plans for data integration. In IJCAI Workshopon Intelligent Data Integration, Stokholm, Sweden, August 1999.[DPT99℄ Alin Deutsh, Luian Popa, and Val Tannen. Physial data independene, onstraints and optimizationwith universal plans. In Pro. of VLDB, pages 459{470, 1999.[Dus97℄ Oliver Dushka. Query optimization using loal ompleteness. In Proeedings of the AAAI FourteenthNational Conferene on Arti�ial Intelligene, pages 249{255, 1997.[Dus98℄ Oliver M. Dushka. Query Planning and Optimization in Information Integration. PhD thesis, StanfordUniversity, Stanford, California, 1998.[EGW97℄ Oren Etzioni, Keith Golden, and Daniel S. Weld. Sound and eÆient losed-world reasoning for planning.Arti�ial Intelligene, 89(1-2):113{148, 1997.[FFLS97℄ Mary Fernandez, Daniela Floresu, Alon Levy, and Dan Suiu. A query language for a web-site man-agement system. SIGMOD Reord, 26(3):4{11, September 1997.[FK99℄ D. Floresu and D. Kossmann. Storing and querying XML data using an rdbms. IEEE Data EngeneeringBulletin, 22(3):27{34, September 1999.[FKL97℄ Daniela Floresu, Daphne Koller, and Alon Levy. Using probabilisti information in data integration.In Pro. of VLDB, pages 216{225, Athens, Greee, 1997.



34 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle[FLM98℄ Daniela Floresu, Alon Levy, and Alberto Mendelzon. Database tehniques for the world-wide web: Asurvey. SIGMOD Reord, 27(3):59{74, September 1998.[Flo96℄ Daniela D. Floresu. Searh Spaes for Objet-Oriented Query Optimization. PhD thesis, Univerisity ofParis VI, Frane, 1996.[FLSY99℄ Daniela Floresu, Alon Levy, Dan Suiu, and Khaled Yagoub. Optimization of run-time management ofdata intensive web sites. In Pro. of VLDB, pages 627{638, 1999.[FRV96℄ Daniela Floresu, Louiqa Rashid, and Patrik Valduriez. Answering queries using OQL view expressions.In Workshop on Materialized Views, in ooperation with ACM SIGMOD, Montreal, Canada, 1996.[FW97℄ M. Friedman and D. Weld. EÆient exeution of information gathering plans. In Proeedings of theInternational Joint Conferene on Arti�ial Intelligene, Nagoya, Japan, pages 785{791, 1997.[GBLP98℄ Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data ube: A relational aggregationoperator generalizing group-by, ross-tab and sub-totals. In Pro. of ICDE, pages 152{159, 1998.[GHI+01℄ Steven Gribble, Alon Halevy, Zahary Ives, Maya Rodrig, and Dan Suiu. What an databases do forpeer-to-peer? In ACM SIGMOD WebDB Workshop 2001, 2001.[GHQ95℄ Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query proessing in data warehousingenvironments. In Pro. of VLDB, pages 358{369, 1995.[GHRU97℄ H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index seletion for OLAP. In Pro. ofICDE, pages 208{219, 1997.[GL01℄ Jonathan Goldstein and Per-Ake Larson. Optimizing queries using materialized views: a pratial,salable solution. In Pro. of SIGMOD, pages 331{342, 2001.[GM99a℄ Gosta Grahne and Alberto O. Mendelzon. Tableau tehniques for querying information soures throughglobal shemas. In Pro. of ICDT, pages 332{347, 1999.[GM99b℄ Ashish Gupta and Inderpal Mumik, editors. Materialized Views: Tehniques, Implementations andAppliations. The MIT Press, 1999.[GM99℄ H. Gupta and I. S. Mumik. Seletion of views to materialize under a maintenane ost onstraint. InPro. of ICDT, pages 453{470, 1999.[GMPQ+97℄ H. Garia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom.The TSIMMIS projet: Integration of heterogeneous information soures. Journal of Intelligent Infor-mation Systems, 8(2):117{132, Marh 1997.[GRT99℄ Stephane Grumbah, Maurizio Rafanelli, and Leonardo Tininini. Querying aggregate data. In Pro. ofPODS, pages 174{184, 1999.[Gry98℄ Jarek Gryz. Query folding with inlusion dependenies. In Pro. of ICDE, pages 126{133, Orlando,Florida, 1998.[GT00℄ Stephane Grumbah and Leonardo Tininini. On the ontent of materialzed aggregate views. In Pro. ofPODS, 2000.[Gup97a℄ H. Gupta. Seletion of views to materialize in a data warehouse. In Pro. of ICDT, pages 98{112, 1997.[Gup97b℄ Himanshu Gupta. Seletion of views to materialize in a data warehouse. In Pro. of ICDT, pages 98{112,Delphi, Greee, 1997.[HFLP89℄ Laura Haas, Johann Freytag, Guy Lohman, and Hamid Pirahesh. Extensible query proessing in Star-burst. In Pro. of SIGMOD, pages 377{388, 1989.[HRU96℄ V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data ubes eÆiently. In Pro. ofSIGMOD, pages 205{216, 1996.[IFF+99℄ Zahary Ives, Daniela Floresu, Mar Friedman, Alon Levy, and Dan Weld. An adaptive query exeutionengine for data integration. In Pro. of SIGMOD, pages 299{310, 1999.[IL84℄ T. Imielinski and W. Lipski. Inomplete information in relational databases. Journal of the ACM,31(4):761{791, 1984.[KB96℄ A. M. Keller and J. Basu. A prediate-based ahing sheme for lient-server database arhitetures.VLDB Journal, 5(1):35{47, 1996.[Klu88℄ A. Klug. On onjuntive queries ontaining inequalities. Journal of the ACM, pages 35(1): 146{160,1988.[KMT98℄ Phokion Kolaitis, David Martin, and Madhukar Thakur. On the omplexity of the ontainment problemfor onjuntive queries with built-in prediates. In Pro. of PODS, pages 197{204, Seattle, WA, 1998.[KW96℄ Chung T. Kwok and Daniel S. Weld. Planning to gather information. In Proeedings of the AAAIThirteenth National Conferene on Arti�ial Intelligene, pages 32{39, 1996.[Lev96℄ Alon Y. Levy. Obtaining omplete answers from inomplete databases. In Pro. of VLDB, pages 402{412,Bombay, India, 1996.[Lev00℄ Alon Y. Levy. Logi-based tehniques in data integration. In Jak Minker, editor, Logi-Based Arti�ialIntelligene, pages 575{595. Kluwer Aademi Publishers, Dordreht, 2000.



Answering Queries Using Views: A Survey 35[LFS97℄ Alon Y. Levy, Rihard E. Fikes, and Shuky Sagiv. Speeding up inferenes using relevane reasoning: Aformalism and algorithms. Arti�ial Intelligene, 97(1-2), 1997.[LKG99℄ Eri Lambreht, Subbarao Kambhampati, and Senthil Gnanaprakasam. Optimizing reursive informa-tion gathering plans. In Proeedings of the 16th International Joint Conferene on Arti�ial Intelligene,pages 1204{1211, 1999.[LMSS95℄ Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering queries usingviews. In Pro. of PODS, pages 95{104, San Jose, CA, 1995.[LRO96a℄ Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query answering algorithms for informationagents. In Proeedings of the National Conferene on Arti�ial Intelligene, pages 40{47, 1996.[LRO96b℄ Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information souresusing soure desriptions. In Pro. of VLDB, pages 251{262, Bombay, India, 1996.[LRU96℄ Alon Y. Levy, Anand Rajaraman, and Je�rey D. Ullman. Answering queries using limited externalproessors. In Pro. of PODS, pages 227{237, Montreal, Canada, 1996.[LS93℄ Alon Y. Levy and Yehoshua Sagiv. Queries independent of updates. In Pro. of VLDB, pages 171{181,Dublin, Ireland, 1993.[MGA97℄ M.Steinbrunn, G.Moerkotte, and A.Kemper. Heuristi and randomized optimization for the join. VLDBJournal, 6(3):191{208, 1997.[Mil98℄ R. J. Miller. Using shematially heterogeneous strutures. In Pro. of SIGMOD, pages 189{200, Seattle,WA, 1998.[MLF00℄ Todd Millstein, Alon Levy, and Mar Friedman. Query ontainment for data integration systems. InPro. of PODS, pages 67{75, Dallas, Texas, 2000.[MM01℄ Alberto Mendelzon and George Mihaila. Querying partially sound and omplete data soures. In Pro.of PODS, pages 162{170, 2001.[MMS79℄ David Maier, Alberto Mendelzon, and Yehoshua Sagiv. Testing impliations of data dependenies. ACMTransations on Database Systems, 4(4):455{469, 1979.[MRP99℄ Mihael Minok, Marek Rusinkiewiz, and Brad Perry. The identi�ation of missing information re-soures through the query di�erene operator. In Proeedings of the Fourth IFCIS International Con-ferene on Cooperative Information Systems (CoopIS 99), September 1999.[NLF99℄ Felix Naumann, Ulf Leser, and Johann C. Freytag. Quality-driven integration of heterogeneous infor-mation systems. In 25th Conferene on Very Large Database Systems (VLDB), pages 447{458, 1999.[PDST00℄ Luian Popa, Alin Deutsh, Arnaud Sahuguet, and Val Tannen. A hase too far? In Pro. of SIGMOD,pages 273{284, 2000.[PH01℄ Rahel Pottinger and Alon Halevy. Minion: A salable algorithm for answering queries using views.VLDB Journal, 2001.[PL00℄ Rahel Pottinger and Alon Levy. A salable algorithm for answering queries using views. In Pro. ofVLDB, pages 484{495, Cairo, Egypt, 2000.[PT99℄ Luian Popa and Val Tannen. An equational hase for path onjuntive queries, onstraints and views.In Pro. of ICDT, 1999.[PV99℄ Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting for semi-strutured data. In Pro. ofSIGMOD, pages 455{466, 1999.[Qia96℄ Xiaolei Qian. Query folding. In Pro. of ICDE, pages 48{55, New Orleans, LA, 1996.[RSU95℄ Anand Rajaraman, Yehoshua Sagiv, and Je�rey D. Ullman. Answering queries using templates withbinding patterns. In Pro. of PODS, pages 105{112, San Jose, CA, 1995.[SAC+79℄ P. Selinger, M Astrahan, D. Chamberlin, R. Lorie, and T. Prie. Aess path seletion in relationaldatabase systems. In Pro. of SIGMOD, pages 23{34, Boston, Massahusetts, 1979.[Sag88℄ Yehoshua Sagiv. Optimizing datalog programs. In Jak Minker, editor, Foundations of DedutiveDatabases and Logi Programming, pages 659{698. Morgan Kaufmann, Los Altos, CA, 1988.[SDJL96℄ Divesh Srivastava, Shaul Dar, H. V. Jagadish, and Alon Y. Levy. Answering SQL queries using materi-alized views. In Pro. of VLDB, Bombay, India, 1996.[SGT+99℄ J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. J. DeWitt, and J. Naughton. Relationaldatabases for querying XML douments: Limitations and opportunities. In Pro. of VLDB, pages 302{314, 1999.[Shm93℄ Oded Shmueli. Equivalene of datalog queries is undeidable. Journal of Logi Programming, 15:231{241,1993.[SR92℄ Divesh Srivastava and Raghu Ramakrishnan. Pushing onstraint seletions. In Pro. of PODS, pages301{315, San Diego, CA., 1992.[SY81℄ Y. Sagiv and M. Yannakakis. Equivalene among relational expressions with the union and di�ereneoperators. Journal of the ACM, 27(4):633{655, 1981.



36 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle[TIHW01℄ Igor Tatarinov, Zahary Ives, Alon Halevy, and Dan Weld. Updating XML. In Pro. of SIGMOD, pages413{424, 2001.[TS97℄ Dimitri Theodoratos and Timos Sellis. Data warehouse on�guration. In Pro. of VLDB, pages 126{135,Athens, Greee, 1997.[TSI94℄ Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. The GMAP: A versatile tool forphysial data independene. In Pro. of VLDB, pages 367{378, Santiago, Chile, 1994.[TSI96℄ Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. The GMAP: A versatile tool forphysial data independene. VLDB Journal, 5(2):101{118, 1996.[UFA98℄ Tolga Urhan, Mihael J. Franklin, and Laurent Amsaleg. Cost based query srambling for initial delays.In Pro. of SIGMOD, pages 130{141, Seattle, WA, 1998.[Ull89℄ Je�rey D. Ullman. Priniples of Database and Knowledge-base Systems, Volumes I, II. Computer SienePress, Rokville MD, 1989.[Ull97℄ Je�rey D. Ullman. Information integration using logial views. In Pro. of ICDT, pages 19{40, Delphi,Greee, 1997.[Val87℄ Patrik Valduriez. Join indies. ACM Transations on Database Systems, 12(2):218{246, 1987.[VP97℄ Vasilis Vassalos and Yannis Papakonstantinou. Desribing and using query apabilities of heterogeneoussoures. In Pro. of VLDB, pages 256{265, Athens, Greee, 1997.[Wie92℄ Gio Wiederhold. Mediators in the arhiteture of future information systems. IEEE Computer, pages38{49, 1992.[YFIV00℄ Khaled Yagoub, Daniela Floresu, Valerie Issarny, and Patrik Valduriez. Cahing strategies for data-intensive web sites. In Pro. of VLDB, pages 188{199, Cairo, Egypt, 2000.[YKL97℄ J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in data warehousingenvironment. In Pro. of VLDB, pages 136{145, Athens, Greee, 1997.[YL87℄ H. Z. Yang and P. A. Larson. Query transformation for PSJ-queries. In Pro. of VLDB, pages 245{254,Brighton, England, 1987.[ZCL+00℄ Markos Zaharioudakis, Roberta Cohrane, George Lapis, Hamid Pirahesh, and Monia Urata. Answeringomplex SQL queries using automati summary tables. In Pro. of SIGMOD, pages 105{116, 2000.[ZO93℄ X. Zhang and M. Z. Ozsoyoglu. On eÆient reasoning with impliation onstraints. In Pro. of DOOD,pages 236{252, 1993.


