CSE 544
 Theory of Query Languages

Tuesday, February 22nd, 2011

Outline

- Conjunctive queries; containment
- Datalog
- Query complexity

Conjunctive Queries

- A subset of Relational Calculus (=FO)
- Correspond to SELECT-DISTINCT-FROM-WHERE
- Most queries in practice are conjunctive
- Some optimizers handle only conjunctive queries - break larger queries into many CQs
- CQ' s have more positive theoretical properties than arbitrary queries

Conjunctive Queries

- Definition A conjunctive query is defined by:

$$
\varphi::=R\left(t_{1}, \ldots, t_{k}\right) \quad\left|\quad t_{i}=t_{j}\right| \varphi \wedge \varphi^{\prime} \quad \exists x . \varphi
$$

- missing are \forall, \vee, \neg

Conjunctive Queries, CQ

- Example of CQ

$$
\begin{aligned}
& q(x, y)=\exists z \cdot(R(x, z) \wedge \exists u \cdot(R(z, u) \wedge R(u, y))) \\
& q(x)=\exists z \cdot \exists u \cdot(R(x, z) \wedge R(z, u) \wedge R(u, y))
\end{aligned}
$$

- Examples of non-CQ:

$$
\begin{aligned}
& q(x, y)=\forall z \cdot(R(x, z) \rightarrow R(y, z)) \\
& q(x)=T(x) \vee \exists z \cdot S(x, z)
\end{aligned}
$$

Conjunctive Queries

- Any CQ query can be written as:

$$
q\left(x_{1}, \ldots, x_{n}\right)=\exists y_{1} \cdot \exists y_{2} \ldots \exists y_{p} \cdot\left(R_{1}\left(t_{11}, \ldots, t_{1 m}\right) \wedge \ldots \wedge R_{k}\right.
$$

$$
\left.\left(\mathrm{t}_{\mathrm{k} 1}, \ldots, \mathrm{t}_{\mathrm{km}}\right)\right)
$$

(i.e. all quantifiers are at the beginning)

- Same in Datalog notation:

Datalog rule

$$
\left.q\left(x_{1}, \ldots, x_{n}\right):-R_{1}\left(t_{11}, \ldots, t_{1 m}\right), \ldots, R_{k}\left(t_{k 1}, \ldots, t_{k m}\right)\right)
$$

head
body

Examples

Employee(x), ManagedBy(x,y), Manager(y)

- Find all employees having the same manager as "Smith":

A(x) :- ManagedBy("Smith",y), ManagedBy(x,y)

Examples

Employee(x), ManagedBy(x,y), Manager(y)

- Find all employees having the same director as Smith:

A(x) :- ManagedBy("Smith",y), ManagedBy(y,z), ManagedBy(x,u), ManagedBy(u,z)

CQs are useful in practice

CQ and SQL

CQ:

A(x) :- ManagedBy("Smith",y), ManagedBy(x,y)

CQ and SQL

- Are CQ queries precisely the SELECT-DISTINCT-FROM-WHERE queries ?

CQ and SQL

- Are CQ queries precisely the SELECT-DISTINCT-FROM-WHERE queries ?
- No: CQ queries do not allow $<, \leq, \neq$
- But we can extend CQ with inequality predicates, and usually write the extended language as $\mathrm{CQ}^{<}$, etc

$C Q$ and RA

Relational Algebra:

- CQ correspond precisely to σ_{C}, Π_{A}, x (missing: $\cup,-$) and where C has only =

A(x) :- ManagedBy("Smith",y), ManagedBy(x,y)

Extensions of CQ

CQ^{\neq}

Find managers that manage at least 2 employees

A(y) :- ManagedBy $(x, y), \quad$ ManagedBy $(z, y), x \neq z$

Extensions of CQ

CQ

Find employees earning more than their manager:

A(y) :- ManagedBy(x,y), Salary(x,u), Salary(y,v), u>v

Extensions of CQ

CQ \because : negation applied only to one atom
Find people sharing the same office with Alice, but not the same manager:

A(y) :- Office("Alice", u), Office (y, u),
ManagedBy("Alice",x), \neg ManagedBy(x,y)

Extensions of CQ

UCQ Union of conjunctive queries

Datalog:
A(name) :- Employee(name, dept, age, salary), age > 50 A(name) :- RetiredEmployee(name, address)

Datalog notation is very convenient for expressing unions (no need for v)

Summary of Extensions of CQ

- CQ
- CQ ${ }^{\neq}$
- $\mathrm{CQ}<$
- UCQ
- CQ
- Which of these classes contain only monotone queries ?

Query Equivalence and Containment

- Justified by optimization needs
- Intensively studied since 1977

Query Equivalence

- Queries q_{1} and q_{2} are equivalent if for every database $D, q_{1}(D)=q_{2}(D)$.
- Notation: $\mathrm{q}_{1} \equiv \mathrm{q}_{2}$

Query Containment

- Query q_{1} is contained in q_{2} if for every database $\mathbf{D}, \mathrm{q}_{1}(\mathbf{D}) \subseteq \mathrm{q}_{2}(\mathbf{D})$.
- q_{1} and q_{2} are equivalent if for every database $D, q_{1}(D)=q_{2}(D)$
- Notation: $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}, \mathrm{q}_{1} \equiv \mathrm{q}_{2}$
- Obviously: $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$ and $\mathrm{q}_{2} \subseteq \mathrm{q}_{1}$ iff $\mathrm{q}_{1} \equiv \mathrm{q}_{2}$
- Conversely: $q_{1} \wedge q_{2} \equiv q_{1}$ iff $q_{1} \subseteq q_{2}$

We will study the containment problem only.

Examples of Query Containments

Is $q_{1} \subseteq q_{2}$?

$$
\begin{aligned}
& q_{1}(x):-R(x, u), R(u, v), R(v, w) \\
& q_{2}(x):-R(x, u), R(u, v) \\
& \hline
\end{aligned}
$$

Examples of Query Containments

Is $q_{1} \subseteq q_{2}$?

$$
\begin{aligned}
& \mathrm{q}_{1}(\mathrm{x}):-\mathrm{R}(\mathrm{x}, \mathrm{u}), \mathrm{R}(\mathrm{u}, \mathrm{v}), \mathrm{R}(\mathrm{v}, \mathrm{x}) \\
& \mathrm{q}_{2}(\mathrm{x}):-\mathrm{R}(\mathrm{x}, \mathrm{u}), \mathrm{R}(\mathrm{u}, \mathrm{x}) \\
& \hline
\end{aligned}
$$

Examples of Query Containments

Is $q_{1} \subseteq q_{2}$?

$$
\begin{aligned}
& \begin{array}{l}
q_{1}(x):-R(x, u), R(u, u) \\
q_{2}(x):-R(x, u), R(u, v), R(v, w) \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Examples of Query Containments

$$
\text { Is } q_{1} \subseteq q_{2} ?
$$

$$
\begin{aligned}
& \mathrm{q}_{1}(\mathrm{x}):-\mathrm{R}(\mathrm{x}, \mathrm{u}), \mathrm{R}(\mathrm{u}, " \text { Smith") } \\
& \mathrm{q}_{2}(\mathrm{x}):-\mathrm{R}(\mathrm{x}, \mathrm{u}), \mathrm{R}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Query Containment

- Theorem Query containment for FO is undecidable
- Theorem Query containment for $C Q$ is decidable and NP-complete.

Trakhtenbrot's Theorem

Definition A sentence φ, is called finitely satisfiable if there exists a finite database instance D s.t. D |= φ

Satisfiable:
$\exists x . \exists y . \forall z .(R(x, z) \rightarrow R(y, z))$
$\exists x . \exists y . T(x) \vee \exists z . S(x, z)$

Unsatisfiable:
$\forall x . \forall y . \forall z .(R(x, y) \wedge R(x, z) \rightarrow y=z)$
$\wedge \exists y . \forall x . \operatorname{not} R(x, y)$

Theorem The following problem is undecidable: Given FO sentence φ, check if φ is finitely satisfiable

Query Containment

- Theorem Query containment for FO is undecidable
- Proof: By reduction from the finite satisfiability problem:
- Given a sentence φ, define two queries: $q 1(x)=R(x)$, and $q 2(x)=R(x) \wedge \varphi$
- Then $\mathrm{q} 1 \subseteq \mathrm{q} 2$ iff φ is not finitely satisfiable

Query Containment Algorithm

How to check $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$

- Canonical database for q_{1} is:
$D_{q 1}=\left(D, R_{1}{ }^{\mathrm{D}}, \ldots, R_{k}^{\mathrm{D}}\right)$
- $D=$ all variables and constants in q_{1}
$-R_{1}{ }^{D}, \ldots, R_{k}^{D}=$ the body of q_{1}
- Canonical tuple for q_{1} is:
$\mathrm{t}_{\mathrm{q} 1}$ (the head of q_{1})

Examples of Canonical Databases

$$
q 1(x, y):-R(x, u), R(v, u), R(v, y)
$$

- Canonical database: $\mathrm{D}_{\mathrm{q} 1}=\left(\mathrm{D}, \mathrm{R}^{\mathrm{D}}\right)$
- $D=\{, x, y, u, v\}$
$-R^{D}=$

X	u
V	u
V	y

- Canonical tuple: $\mathrm{t}_{\mathrm{q} 1}=(\mathrm{x}, \mathrm{y})$

Examples of Canonical Databases

q1 (x) :- R(x, u), R(u,"Smith"), R(u,"Fred"), R(u, u)

- $D_{q 1}=(D, R)$
- D=\{x,u,"Smith","Fred"\}
- $\mathrm{R}=$
- $\mathrm{t}_{\mathrm{q} 1}=(\mathrm{x})$

x	u
u	"Smith"
u	"Fred"
u	u

Checking Containment

Theorem: $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$ iff $\mathrm{t}_{\mathrm{q} 1} \in \mathrm{q}_{2}\left(\mathrm{D}_{\mathrm{q} 1}\right)$.

Example:

$$
\begin{aligned}
& q_{1}(x, y):-R(x, u), R(v, u), R(v, y) \\
& q_{2}(x, y):-R(x, u), R(v, u), R(v, w), R(t, w), R(t, y)
\end{aligned}
$$

- $D=\{x, y, u, v\}$
- $\mathrm{R}=$

$$
t_{q 1}=(x, y)
$$

- Yes, $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$

x	u
v	u
v	y

Query Homomorphisms

- A homomorphism $\mathrm{f}: \mathrm{q}_{2} \rightarrow \mathrm{q}_{1}$ is a function f: $\operatorname{var}\left(q_{2}\right) \rightarrow \operatorname{var}\left(q_{1}\right) \cup \operatorname{const}\left(q_{1}\right)$ such that:
$-f\left(\operatorname{body}\left(q_{2}\right)\right) \subseteq \operatorname{body}\left(q_{1}\right)$
$-f\left(\mathrm{t}_{\mathrm{q} 1}\right)=\mathrm{t}_{\mathrm{q} 2}$

The Homomorphism Theorem $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$ iff there exists a homomorphism $\mathrm{f}: \mathrm{q}_{2} \rightarrow \mathrm{q}_{1}$

Example of Query Homeomorphism

$$
\begin{aligned}
\operatorname{var}\left(\mathrm{q}_{1}\right) & =\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{y}\} \\
\operatorname{var}\left(\mathrm{q}_{2}\right) & =\{\mathrm{x}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{t}, \mathrm{y}\} \\
\mathrm{q}_{1}(\mathrm{x}, \mathrm{y}) & :-\mathrm{R}(\mathrm{x}, \mathrm{u}), \mathrm{R}(\mathrm{v}, \mathrm{u}), \mathrm{R}(\mathrm{v}, \mathrm{y}) \\
\mathrm{q}_{2}(\mathrm{x}, \mathrm{y}) & :-\mathrm{R}(\mathrm{x}, \mathrm{u}), \mathrm{R}(\mathrm{v}, \mathrm{u}), \mathrm{R}(\mathrm{v}, \mathrm{w}), \mathrm{R}(\mathrm{t}, \mathrm{w}), \mathrm{R}(\mathrm{t}, \mathrm{y})
\end{aligned}
$$

Therefore $\quad \mathrm{q}_{1} \subseteq \mathrm{q}_{2}$

Example of Query Homeomorphism

Therefore $\quad \mathrm{q}_{1} \subseteq \mathrm{q}_{2}$

The Complexity

Theorem Checking containment of two CQ queries is NP-complete

Containment for extensions of CQ

- CQ -- NP complete
- $\mathrm{CQ}^{\neq-}$??
- $\mathrm{CQ}^{<}$-- ??
- UCQ -- ??
- CQ -- ??
- Relational Calculus -- undecidable

Query Containment for UCQ

$\mathrm{q}_{1} \cup \mathrm{q}_{2} \cup \mathrm{q}_{3} \cup \ldots \subseteq \mathrm{q}_{1} \cup \cup \mathrm{q}_{2}{ }^{\prime} \cup \mathrm{q}_{3}{ }^{\prime} \cup \ldots$
Notice: $q_{1} \cup q_{2} \cup q_{3} \cup \ldots \subseteq q$ iff $\mathrm{q}_{1} \subseteq \mathrm{q}$ and $\mathrm{q}_{2} \subseteq \mathrm{q}$ and $\mathrm{q}_{3} \subseteq \mathrm{q}$ and \ldots

Theorem $q \subseteq q_{1}{ }^{\prime} \cup q_{2}{ }^{\prime} \cup q_{3}{ }^{\prime} \cup \ldots$ Iff there exists some k such that $q \subseteq q_{k}^{\prime}$

It follows that containment for UCQ is decidable, NP-complete.

Query Containment for $\mathrm{CQ}^{<}$

$$
\begin{aligned}
& q_{1}():-R(x, y), R(y, x) \\
& q_{2}():-R(x, y), x<=y
\end{aligned}
$$

$\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$ although there is no homomorphism!
To check containment do this:
-Consider all possible orderings of variables in q1
-For each of them check containment of q1 in q2
-lf all hold, then $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$
Still decidable, but harder than NP: now in $\Pi^{p}{ }_{2}$

Query Minimization

Definition A conjunctive query q is minimal if for every other conjunctive query q' s.t. $q \equiv q^{\prime}, q^{\prime}$ has at least as many predicates ('subgoals') as q

Are these queries minimal?

$$
q(x):-R(x, y), R(y, z), R(x, x)
$$

$$
q(x):-R(x, y), R(y, z), R\left(x,{ }^{\prime} \text { Alice' }\right)
$$

Query Minimization

- Query minimization algorithm

Choose a subgoal g of q Remove g: let q' be the new query We already know $q \subseteq q$ ' (why?) If q ' $\subseteq \mathrm{q}$ then permanently remove g

- Notice: the order in which we inspect subgoals doesn' t matter

Query Minimization In Practice

- No database system today performs minimization !!!
- Reason:
- It' s hard (NP-complete)
- Users don' t write non-minimal queries
- However, non-minimal queries arise when using views intensively

Query Minimization for Views

CREATE VIEW HappyBoaters

SELECT DISTINCT E1.name, E1.manager FROM Employee E1, Employee E2
WHERE E1.manager = E2.name
and E1.boater= 'YES' and E2.boater= 'YES'

This query is minimal

Query Minimization for Views

Now compute the Very-Happy-Boaters

SELECT DISTINCT H1.name FROM HappyBoaters H1, HappyBoaters H2 WHERE H1.manager = H2.name

This query is also minimal
What happens in SQL when we run a query on a view?

Query Minimization for Views

View Expansion

```
SELECT DISTINCT E1.name
FROM Employee E1, Employee E2, Employee E3, Empolyee E4
WHERE E1.manager = E2.name and E1.boater = 'YES' and E2.boater = 'YES'
    and E3.manager = E4.name and E3.boater = 'YES' and E4.boater = 'YES'
    and E1.manager = E3.name
```

This query is no longer minimal !

E 2 is redundant

Expressive Power of FO

- The following queries cannot be expressed in Relational Calculus (FO):
- Transitive closure:
$-\forall x . \forall y$. there exists x_{1}, \ldots, x_{n} s.t. $R\left(x, x_{1}\right) \wedge R\left(x_{1}, x_{2}\right) \wedge \ldots \wedge R\left(x_{n-1}, x_{n}\right) \wedge R\left(x_{n}, y\right)$
- Parity: the number of edges in R is even

Datalog

- Adds recursion, so we can compute transitive closure
- A datalog program (query) consists of several datalog rules:
$P_{1}\left(t_{1}\right):-$ body $_{1}$
$P_{2}\left(t_{2}\right)$:- body $_{2}$
$\dot{P}_{\mathrm{n}}\left(\mathrm{t}_{\mathrm{n}}\right):-$ body $_{\mathrm{n}}$

Datalog

Terminology:

- EDB = extensional database predicates
- The database predicates
- IDB = intentional database predicates
- The new predicates constructed by the program

Datalog

Employee(x), ManagedBy(x,y), Manager(y)

All higher level managers that are employees:

HMngr(x) :- Manager(x), ManagedBy(y,x), ManagedBy(z,y) Answer(x) :- HMngr(x), Employee(x)

IDBs

Datalog

Employee(x), ManagedBy(x,y), Manager(y)

All persons:
Person(x) :- Manager(x)
Person(x) :- Employee(x)
Manger \cup Employee

Unfolding non-recursive rules

Graph: $\mathrm{R}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& P(x, y):-R(x, u), R(u, v), R(v, y) \\
& A(x, y):-P(x, u), P(u, y)
\end{aligned}
$$

Can "unfold" it into:

$$
A(x, y):-R(x, u), R(u, v), R(v, w), R(w, m), R(m, n), R(n, y)
$$

Unfolding non-recursive rules

Graph: $\mathrm{R}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& P(x, y):-R(x, y) \\
& P(x, y):-R(x, u), R(u, y) \\
& A(x, y):-P(x, y)
\end{aligned}
$$

Now the unfolding has a union:

$$
A(x, y):-R(x, y) \vee \exists u(R(x, u) \wedge R(u, y))
$$

Non-recursive datalog = UCQ (why ?)

Recursion in Datalog

Example 1: transitive closure
Graph: $\mathrm{R}(\mathrm{x}, \mathrm{y})$
Transitive closure:

$$
\begin{aligned}
& P(x, y):-R(x, y) \\
& P(x, y):-P(x, u), R(u, y)
\end{aligned}
$$

Transitive closure:

$$
\begin{aligned}
& P(x, y):-R(x, y) \\
& P(x, y):-P(x, u), P(u, y)
\end{aligned}
$$

Recursion in Datalog

Example 2: same generation

Graph: $\mathrm{R}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& \operatorname{Sg}(x, x):-R(x, y) \\
& S g(y, y):-R(x, y) \\
& S g(x, y):-R(x, u), S g(u, v), R(v, y)
\end{aligned}
$$

Recursion in Datalog

Example 3: value of a Boolean circuit with And/Not gates
Graph: And $(\mathrm{y}, \mathrm{z}, \mathrm{x}), \operatorname{Not}(\mathrm{y}, \mathrm{x}), \operatorname{Value} 0(\mathrm{x}), \operatorname{Value} 1(\mathrm{x})$

```
isZero(x) :- Value0(x)
isOne(x) :- Value1(x)
isZero(x) :- And(y,z,x),isZero(y)
isZero(x) :- And(y,z,x),isZero(z)
isOne(x) :- And(y,z,x),isOne(y),isOne(z)
isZero(x) :- Not(y,x),isOne(y)
isOne(x) :- Not(y,x),isZero(x)
```


Semantics of a Datalog Program

- Let:
- $\mathrm{R}=$ the EDB predicates $=$ some input instance D
- $S=$ the IDB predicates
- A datalog program P maps IDB predicate instances S to new IDB predicate instances $S^{\prime}: S^{\prime}=P_{D}(S)$
- The function P_{D} is monotone (why ?)
- By Knaster-Tarski's fixpoint Theorem, P_{D} has a least fixpoint
- Definition: the meaning of $P_{D} \underline{i s}$ the least fixpoint
- Alternatively: compute the meaning of P_{D} as follows:
$-S_{0}=$ emptyset; $S_{k+1}=P\left(S_{k}\right)$
- The meaning is: $P_{D}=S_{0} \cup S_{1} \cup S_{2} \cup \ldots S_{n} \cup \ldots$

Evaluation of Datalog Programs

- Naïve evaluation algorithm:
- Start with S = emptyset
- Evaluate P on the EDB, and on the current IDB S; new-S=P(S); note: $S \subseteq$ new-S (why ?)
- Replace S with new-S; repeat;
- Stop when $S=$ new-S
- What is the complexity ?
- Semi-naïve evaluation algorithm:
- Keep track of $\Delta \mathrm{S}=$ new-S - S
- Improve somewhat the computation of $P(S)$

What is the complexity of the naïve/ semi-naïve algorithm ?

Extensions of datalog with negation

- Problems with negation:

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x)
\end{aligned}
$$

- There is no minimal fixpoint

Extensions of datalog with negation

- Solution 1: Stratified Datalog ${ }^{-}$
- Insist that the program be stratified: rules are partitioned into strata, and an IDB predicate that occurs only in strata $\leq k$ may be negated in strata $\geq k+1$
- Solution 2: Inflationary-fixpoint Datalog-
- Run the naïve algorithm substituting: $S=S \cup$ new-S
- Always terminates (why ?)
- Solution 3: Partial-fixpoint Datalog ${ }^{\text {,* }}$,
- Run the naïve algorithm, substituting $S=$ new-S
- May not terminate (but we can detect that - how ?)

Datalog ${ }^{-}$

Example: complement transitive closure
Graph: $\mathrm{R}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& \operatorname{Tc}(x, y):-R(x, y) \\
& \operatorname{Tc}(x, y):-\operatorname{Tc}(x, u), R(u, y) \\
& \operatorname{CTc}(x, y):-R(x, u), R(v, y), \operatorname{not} \operatorname{Tc}(x, y)
\end{aligned}
$$

This is stratified datalog ${ }^{-}$
Challenge: express CTc in inflationary datalog ${ }^{\wedge}$

Expressive Power

Theorem:
 stratified-datalog ${ }^{\sim}$ f inflationary-datalog $\overbrace{}^{〔}$ partial-datalog ${ }^{-}$

Variants of Datalog

without recursion with recursion

	Non-recursive Datalog $=$ UCQ	Datalog
with \neg	Non-recursive Datalog \neg $=$	Datalog \neg (three variants)

Non-recursive Datalog

- Union of Conjunctive Queries = UCQ
- Containment is decidable, and NP-complete
- Non-recursive Datalog
- Is equivalent to UCQ
- Hence containment is decidable here too
- Is it still NP-complete?

Non-recursive Datalog

- A non-recursive datalog:

$$
\begin{array}{|l}
\hline \mathrm{T}_{1}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{u}), \mathrm{R}(\mathrm{u}, \mathrm{y}) \\
\mathrm{T}_{2}(\mathrm{x}, \mathrm{y}) \quad:-\mathrm{T}_{1}(\mathrm{x}, \mathrm{u}), \mathrm{T}_{1}(\mathrm{u}, \mathrm{y}) \\
\cdot: \quad: \\
\mathrm{T}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \\
\text { Answer }(\mathrm{x}, \mathrm{y}) \\
\mathrm{T}_{\mathrm{n}-1}(\mathrm{x}, \mathrm{u}), \mathrm{T}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})
\end{array}
$$

- Its unfolding as a CQ:

$$
\text { Anser }(x, y):-R\left(x, u_{1}\right), R\left(u_{1}, u_{2}\right), R\left(u_{2}, u_{3}\right), \ldots R\left(u_{m}, y\right)
$$

- How big is this query?

Non-recursive Datalog

- A non-recursive datalog:

$$
\begin{array}{|l}
\hline T_{1}(x, y):-R(x, u), R(u, y) \\
T_{2}(x, y) \quad:-T_{1}(x, u), T_{1}(u, y) \\
\cdot: \quad: \\
T_{n}(x, y) \quad:-T_{n-1}(x, u), T_{n-1}(u, y) \\
\text { Answer }(x, y):-T_{n}(x, y)
\end{array}
$$

- Its unfolding as a CQ:

Anser(x, y) :- $R\left(x, u_{1}\right), R\left(u_{1}, u_{2}\right), R\left(u_{2}, u_{3}\right), \ldots R\left(u_{m}, y\right)$

- How big is this query?

Although non-recursive-datalog = UCQ, the former is exponentially more concise

Query Complexity

- Given a query φ in FO
- And given a model $\mathrm{D}=\left(\mathrm{D}, \mathrm{R}_{1}{ }^{\mathrm{D}}, \ldots, \mathrm{R}_{\mathrm{k}}{ }^{\mathrm{D}}\right)$
- What is the complexity of computing the answer φ (D)

Query Complexity

Vardi's taxonomy:

Data Complexity:

- Fix φ. Compute $\varphi(\mathrm{D})$ as a function of $|\mathrm{D}|$

Query Complexity:

- Fix D. Compute $\varphi(\mathrm{D})$ as a function of $|\varphi|$

Combined Complexity:

- Compute $\varphi(D)$ as a function of $|D|$ and $|\varphi|$

Example

$$
\varphi(x) \equiv \exists u \cdot(R(u, x) \wedge \forall y .(\exists v . S(y, v) \Rightarrow-R(x, y)))
$$

$R=$| 3 | 8 |
| :---: | :---: |
| 7 | 5 |
| 0 | 8 |
| 09 | 7 |
| 6 | 9 |
| 7 | 6 |
| 89 | 8 |
| 98 | 7 |
| 4 | 0 |

$S=$| 43 | 4 |
| :---: | :---: |
| 5 | 58 |
| 8 | 6 |
| 9 | 79 |
| 6 | 67 |
| 4 | 7 |
| 6 | 8 |

How do we proceed?

General Evaluation Algorithm

for every subexpression φ_{i} of $\varphi,(i=1, \ldots, m)$ compute the answer to φ_{i} as a table $\mathrm{T}_{\mathrm{i}}\left(\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ return T_{m}

Theorem. If φ has k variables then one can compute $\varphi(\mathrm{D})$ in time $\mathrm{O}\left(|\varphi|^{*}|\mathrm{D}|^{\mathrm{k}}\right)$

Data Complexity $=\mathrm{O}\left(|\mathrm{D}|^{\mathrm{k}}\right)=$ in PTIME
Query Complexity $=\mathrm{O}\left(|\varphi|^{*} \mathrm{c}^{k}\right)=$ in EXPTIME

General Evaluation Algorithm

Example:

$$
\varphi(x) \quad \equiv \exists u .(R(u, x) \wedge \forall y .(\exists v . S(y, v) \Rightarrow \neg R(x, y)))
$$

$$
\begin{array}{|lll}
\hline \varphi_{1}(u, x) & \equiv R(u, x) \\
\varphi_{2}(y, v) & \equiv S(y, v) \\
\varphi_{3}(x, y) & \equiv \neg R(x, y) \\
\varphi_{4}(y) & \equiv \exists v \cdot \varphi_{2}(y, v) \\
\varphi_{5}(x, y) & \equiv \varphi_{4}(y) \Rightarrow \varphi_{3}(x, y) \\
\varphi_{6}(x) & \equiv \forall y \cdot \varphi_{5}(x, y) & \\
\varphi_{7}(u, x) & \equiv \varphi_{1}(u, x) \wedge \varphi_{6}(x) & \\
\varphi_{8}(x) & \equiv \exists u \cdot \varphi_{7}(u, x) \quad \equiv \varphi(x) \\
\hline
\end{array}
$$

Complexity

Theorem. If φ has k variables then one can compute $\varphi(\mathrm{D})$ in time $\mathrm{O}\left(|\varphi|^{*}|\mathrm{D}|^{\mathrm{k}}\right)$

Remark. The number of variables matters !

Paying Attention to Variables

- Compute all chains of length m

Chain $_{m}(\mathrm{x}, \mathrm{y})$:- $\mathrm{R}\left(\mathrm{x}, \mathrm{u}_{1}\right), \mathrm{R}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right), \mathrm{R}\left(\mathrm{u}_{2}, \mathrm{u}_{3}\right), \ldots \mathrm{R}\left(\mathrm{u}_{\mathrm{m}-1}, \mathrm{y}\right)$

- We used m+1 variables
- Can you rewrite it with fewer variables ?

Counting Variables

- $\mathrm{FO}^{\mathrm{k}}=\mathrm{FO}$ restricted to variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$
- Write Chain m_{m} in FO^{3} :

Chain $_{m}(x, y):-\exists u . R(x, u) \wedge(\exists x . R(u, x) \wedge(\exists u \cdot R(x, u) \ldots \wedge(\exists u . R(u, y) \ldots))$

Query Complexity

- Note: it suffices to investigate boolean queries only
- If non-boolean, do this:
for a_{1} in D, \ldots, a_{k} in D
if $\left(a_{1}, \ldots, a_{k}\right)$ in $\varphi(D) /^{*}$ this is a boolean query */ then output $\left(a_{1}, \ldots, a_{k}\right)$

Computational Complexity Classes

Recall computational complexity classes:

- AC^{0}
- LOGSPACE
- NLOGSPACE
- PTIME
- NP
- PSPACE
- EXPTIME
- EXPSPACE
- (Kalmar) Elementary Functions
- Turing Computable functions

Data Complexity of Query Languages

The more complex a QL, the harder it is to optimize

