CSE 544
Parallel Databases

Tuesday, February 17t 2011

Dan Suciu -- 544, Winter 2011

Final Thoughts on Optimization:
Parameters |

75,82 Pl
15,82 P2
L #.61 v3
I 4.75 ré
N 3.96 P
"

.82 6
E s 3.208 e?
307 8

I

1
(0 28 WM 40 S8 G0 T8 @0 %8 109,95 _ P18
-

SUPPLIER 68 Plans

Chaudhuri “Rethinking the Contract”

Dan Suciu -- 544, Winter 2011

Overview of Today’s Lecture

« Parallel databases (Chapter 22.1 — 22.5)
 Map/reduce

* Pig-Latin
— Some slides from Alan Gates (Yahoo!
Research)

Parallel v.s. Distributed
Databases

« Parallel database system:

— Improve performance through parallel
Implementation

— WIll discuss In class

* Distributed database system:

— Data is stored across several sites, each site
managed by a DBMS capable of running
independently

— WIll not discuss in class

Parallel DBMSs

e Goal

— Improve performance by executing multiple
operations in parallel

» Key benefit

— Cheaper to scale than relying on a single
increasingly more powerful processor

* Key challenge

— Ensure overhead and contention do not Kill
performance

Performance Metrics

for Parallel DBMSs

* Speedup
— More processors = higher speed
— Individual queries should run faster
— Should do more transactions per second (TPS)

« Scaleup
— More processors = can process more data

— Batch scaleup
« Same query on larger input data should take the same time

— Transaction scaleup
* N-times as many TPS on N-times larger database
» But each transaction typically remains small

Linear v.s. Non-linear Speedup

A

Speedup

processors (=P)

v

Linear v.s. Non-linear Scaleup

A

Batch
Scaleup

x 1 x5 x10 x15
|

|
processors (=P) AND data size

S
| -

Challenges to
Linear Speedup and Scaleup

« Startup cost

— Cost of starting an operation on many
processors

* Interference
— Contention for resources between processors

o Skew
— Slowest processor becomes the bottleneck

Architectures for Parallel
Databases

* Shared memory

 Shared disk

« Shared nothing

Shared Memory
P P P
Inferconneétion Netwdrk

Global Shared Memory

Shared Disk

M M
[Interconnection Network}

o o

-- 544, Winter 2011

(v =

E@

12

Shared Nothing

Interconnectlon Network

© © @

o

an Suciu -- 544, Winter 2011

o

13

Shared Nothing

Most scalable architecture

— Minimizes interference by minimizing resource
sharing

— Can use commodity hardware

Also most difficult to program and manage

Processor = server = node
P = number of nodes

We will focus on shared nothing

Taxonomy for
Parallel Query Evaluation

* |Inter-query parallelism
— Each query runs on one processor

* Inter-operator parallelism
— A query runs on multiple processors
— An operator runs on one processor

* Intra-operator parallelism
— An operator runs on multiple processors

We study only intra-operator parallelism: most scalable

Horizontal Data Partitioning

Relation R split into P chunks R,,, ..., Rp_;,
stored at the P nodes

Round robin: tuple t to chunk (i mod P)

Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P

Range based partitioning on attribute A:
— Tuple tto chunkiif v, <t A<y,

Parallel Selection

Compute 0,-,(R), or 0,1cac»o(R)

 Conventional database:
— Cost = B(R)

» Parallel database with P processors:
—Cost=B(R)/P

Parallel Selection

Different processors do the work:
* Round robin partition: all servers do the work
* Hash partition:

— One server for 0,-,(R),
— All servers for 0,1.a<,2(R)

* Range partition: one server does the work

Data Partitioning Revisited

What are the pros and cons ?

* Round robin
— Good load balance but always needs to read all the data

« Hash based partitioning

— Good load balance but works only for equality predicates
and full scans

« Range based partitioning

— Works well for range predicates but can suffer from data
skew

Parallel Group By: ya sum@)(R)

Step 1: server i partitions chunk R, using a
hash function h(t.A): Ry, Ry, ..., Rip;

Step 2: server i sends partition R; to server |

Step 3: server j computes Y g m@) ON
ROJ, R1J, "y RP'1,J

Cost of Parallel Group By

Recall conventional cost = 3B(R)
« Step 1: Cost = B(R)/P 1/O operations

« Step 2: Cost = (P-1)/P B(R) blocks are sent
— Network costs << |/O costs

« Step 3: Cost =2 B(R)/P
— When can we reduce itto 0 ?

Total = 3B(R) / P + communication costs

Parallel Join: R>,_5 S

Step 1
* For all servers in [0,k], server i partitions chunk R,
using a hash function h(t A): Rip, Rip, --s Rip

* For all servers in [k+1,P], server | partltlons chunk

S; using a hash function h(t.A): Sp; S, ---» Rip

Step 2:
« Server i sends partition R, to server u
* Server | sends partition S;, to server u

Steps 3: Server u computes the join of R;, with S;,

Cost of Parallel Join

« Step 1: Cost = (B(R) + B(S))/P

« Step 2: 0
— (P-1)/P (B(R) + B(S)) blocks are sent, but we
assume network costs to be << disk I/O costs

« Step 3:
— Cost = 0 if small table fits in memory: B(S)/P <=M
— Cost = 4(B(R)+B(S))/P otherwise

Parallel Query Plans

« Same relational operators

* Add special split and merge operators

— Handle data routing, buffering, and flow
control

 Example: exchange operator

— Inserted between consecutive operators in the
qguery plan

Map Reduce

* Google: paper published 2004
* Free variant: Hadoop

* Map-reduce = high-level programming
model and implementation for large-scale
parallel data processing

Data Model

Files !
Afile =abagof (key, value) pairs
A map-reduce program:

* Input: a bag of (inputkey, wvalue)pairs
* Qutput: a bag of (outputkey, wvalue)pairs

Step 1: the MAP Phase

User provides the MAP-function:
* |Input: one (input key, value)

 Quput: bag of (intermediate key,
value) pairs

System applies the map function in parallel
toall (input key, wvalue) pairsinthe
iInput file

Step 2: the REDUCE Phase

User provides the REDUCE function:

* Input: (intermediate key, bag of
values)

* Qutput: bag of output values

System groups all pairs with the same
intermediate key, and passes the bag of
values to the REDUCE function

Example

« Counting the number of occurrences of
each word in a large collection of

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, “1”): reduce(String key, lterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

Dan Suciu -- 544, Winter 2011 29

MAP REDUCE
(k1,v1) > (i1, w1)
(k2,v2) M (12, w2)
(k3,v3) (i3, w3)

Dan Suciu -- 544, Winter 2011

30

Map = GROUP BY,
Reduce = Aggregate

R(documentKey, word)

SELECT word, sum(1)
FROM R
GROUP BY word

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M
map tasks, keeps track of their progress

Workers write their output to local disk,
partition into R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

MR Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader-—Map —.>:Combine:——> M—»‘ Reduce \
l filel

HDFS

Interesting Implementation Details

« Worker failure:
— Master pings workers periodically,

— If down then reassigns its splits to all other
workers = good load balance

 Choice of M and R:

— Larger is better for load balancing
— Limitation: master needs O(MxR) memory

Interesting Implementation Details

Backup tasks:

 Straggler = a machine that takes unusually
long time to complete one of the last tasks.
EgQ:
— Bad disk forces frequent correctable errors
(30MB/s - 1MB/s)
— The cluster scheduler has scheduled other tasks
on that machine
» Stragglers are a main reason for slowdown

* Solution. pre-emptive backup execution of
the last few remaining in-progress tasks

Map-Reduce Summary

» Hides scheduling and parallelization
details
 However, very limited queries

— Difficult to write more complex tasks
— Need multiple map-reduce operations

e Solution:
OHON bIG-Latin !

Following Slides courtesy of:
Alan Gates, Yahoo!Research

What is Pig?

* An engine for executing programs on top of Hadoop
« |t provides a language, Pig Latin, to specify these programs

* An Apache open source project
http://hadoop.apache.org/pig/

-38 -

Map-Reduce

« Computation is moved to the data

* A simple yet powerful programming model

— Map: every record handled individually

— Shuffle: records collected by key

— Reduce: key and iterator of all associated values
« User provides:

— input and output (usually files)

— map Java function

— key to aggregate on

— reduce Java function

« Opportunities for more control: partitioning, sorting, partial
aggregations, etc.

@

Map Reduce lllustrated
~

o

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?

{reduce J [reduce J

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
\\\ //,’
N ~
\\ N
Romeo, 1 S <"
Romeo, 1 What, 1
wherefore, 1 mep mep art, 1
art, 1 thou, 1
thou, 1 hurt, 1

Romeo, 1

reduce reduce

2. Q’
L]

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
Romeo, 1 N _*°
Romeo, 1 What, 1
wherefore, 1 mep mep art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
art, (1, 1) reduce reduce Romeo, (1, 1, 1)
hurt (1), wherefore, (1)
thou (1, 1) what, (1)

o

Map Reduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
\\\ //,’
N ~
\\ N
Romeo, 1 S <"
Romeo, 1 What, 1
wherefore, 1 mep mep art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
art, (1, 1) reduce reduce Romeo, (1, 1, 1)
hurt (1), wherefore, (1)
thou (1, 1) what, (1)
art, 2 ,,f’/ “~_ Romeo, 3
hurt, 1 < > wherefore, 1
thou, 2 what, 1

a4 Q’
L]

Making Parallelism Simple

« Sequential reads = good read speeds

 In large cluster failures are guaranteed; Map Reduce
handles retries

« Good fit for batch processing applications that need to touch
all your data:

— data mining
— model tuning

« Bad fit for applications that need to find one particular record

« Bad fit for applications that need to communicate between
processes; oriented around independent units of work

Why use Pig?

Suppose you have [EsadUsers!

user data in one *

file, website data in |

another, and you -

need to find the top ﬁ

5 most visited sites
by users aged 18 -
25.

Countaicks
Onderby ks
Tke'op5

In Map-Reduce

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Tex

import org.apache.hadoop.io.Writable;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobConf

import org.apache.hadoop.mapred.KeyvValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.RecordReader;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.SequenceFileInputFormat;

import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
ublic static class
implements Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable k, Text val,
OutputCollector<Text, Text> oc,
rter reporter) throws IOException {
// Pull the key out

String line = val.toString();
int firstComma = line.indexOf(',');

String key = line.substring(0, firstComma);
string value = line.substring(firstComma + 1);

Text outKey = new Text(key);
// Prepend an index to the value so we know which file

Text outval = new Text("l" + value);
oc.collect(outKey, outval);
¥

3
public static class LoadAndFilterUsers extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text>

public void map(LongWritable k, Text val,

OutputCollector<Text, Text>
Roporter reporter) throws Tomweeption {

// Pull the key out

String line = val.toString();

int firstComma = line.indexOf(',');

string value = line.substring(firstComma + 1);

int age = Integer.parselnt(value);

if (age < 18 || age > 25) return;

string key = line.substring(0, firstComma);

Text outKey = new Text(key);

// Prepend an index to the value so we know which file

// it came from.

Text outval = new Text("2" + value);

oc.collect(outKey, outval);

3

¥
public static class Join extends MapReduceBase
implements Reducer<Text, Text, Text, Text> {

public void reduce(Text key,
Iterator<Text> iter,
OutputCollector<Text, Te:
Roporter reporter) throws IoBweeption
// For each value, figure out which file it's from and
store it
// accordingly.

List<String> first = new ArrayList<String>();
List<String> second = new ArrayList<String>();
while (iter.hasNext()) {
iter.next();
ue = t. tcstrlnq()
if (value.charat(0) N

first.add(value.substring
else second.add(value.substring(1));

i
writable>

reporter.setStatus("OK");

// Do the cross product and collect the values

for (String s first)
(String s2 : second) {
String outval = key + "," + sl + "," + s2;

oc.collect(null, new Text(outval));
reporter.setStatus("OK");

3

}
public static class LoadJoined extends MapReduceBase
implements Mapper<Text, Text, Text, LongWritable> {

public void map(
Text k,
Text val
outputCollector<Text, LongWritable> oc,
Reporter reporter) throws IOException {
1

string line = val.toString();
int firstComma = line.indexOf ('
int secondComma = line.indexOf(',', firstComma)

string ke: line.substring(firstComma, secondComma);
// drop the rest of the record, I don't need it anymore,
// just pass a 1 for the combiner/reducer to sum instead.
Text outKey = new Text(key);
oc.collect(outKey, new LongWritable(1L));

}

¥
public static class ReduceUrls extends MapReduceBase
implements Reducer<Text, LongWritable, WritableComparable,
{

public void reduce(
ext

key
Iteratot<Loan:xtable> iter,
outpufv 11 tableC Writable> oc,

eporter reporter) throws IQExceptlon
/7 naa up all the values we see

long sum =
whlle 41ter hasNesxt () {

iter.next().get()

repottet setstatus ("OK")

oc.collect(key, new LongWritable(sum));
¥
}
public static class LoadClicks extends MapReduceBase
implements Mapper<writableComparable, Writable, LongWritable,
Text> {

public void map(
writableComparable key,
writable
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {
oc.collect((LongWritable)val, (Text)key);
}

>
public static class LimitClicks extends MapReduceBase
implements Reducer<LongWritable, Text, LongWritable, Text> {

int count = 0;
public void reduce(
LongWritable key,
Iterator<Text> iter,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {

// oOnly output the first 100 records

while (count < 100 && iter.hasNext()) {
oc. collect(key, iter.next());
count+
b3
}
¥
public static void main(String[] args) throws IOException {
JobConf lp = new JobConf (MRExample.class);

1p.setJobName("Load Pages”);
1p.setInputFormat (TextInputFormat.class);

1p.setOutputKeyClass (Text.class);
1p.setOutputvalueClass (Text.class);
1p.setMapperClass (LoadPages.class);
FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages M
eOutputFormat.setOutputPath(1lp
new Path("/user/gates/tmp/indexed_pages”));
1p.setNumReduceTasks (0);
Job loadPages = new Job(lp);

JobConf 1fu = new JobConf(MRExample.class);
1fu.setJobName("Load and Filter Users");
1fu.setInputFormat (TextInputFormat.class);
1fu.setOutputKeyClass(Text.class
1fu.setOutputvalueClass(Text.class);
1fu.setMapperClass (LoadAndFilterUsers.class);
FileInputFormat.addInputPath(1lfu, new
Path("/user/gates/users"));
FileOutputFormat.setOutputPath(lfu
new Path("/user/gates/tmp/filtered users”));

1fu.setNumReduceTasks (0);
Job loadUsers = new Job(lfu);

JobConf join = new JobConf(MRExample class);
join.setJobName("Join User: s");
Join. setInputrormat (KeyvalueToxtInpatFormat.class);
join.setoutputKeyClass (Text.class);
join.setoutputvalueClass(Text.class);
join.setMapperClass (IdentityMapper.class);
join.setReducerClass(Join.class);
FileInputFormat.addInputPath(join, new
/user/gates/tmp/indexed_pages"));
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users
FileOutputFormat.setOutputPath(join, new
Path("/user/gates/tmp/joined"));
join.setNumReduceTasks (50) ;
Job joinJob = new Job(join);
joinJob.addDependingJob (loadPages) ;
joinJob.addDependingJob (loadUsers) ;

Path(

JobConf group = new JobConf(MRExample.class);
group.setJobName ("Group URLs
group. setInputFormat(KeyValueTextInputFormat.class);
group.setOutputKeyClass (Text.class);
group.setOutputValueClass(LongWritable.class);
group.setOutputFormat (SequenceFileOutputFormat.class);
group.setMapperClass (LoadJoined.class)
group.setCombinerClass (ReduceUrls.class);
group.setReducerClass (ReduceUrls.class);
FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
group.setNumReduceTasks (50) ;
Job groupJob = new Job(group);
groupJob.addDependingJob(joinJob) ;

JobConf topl00 = new JobConf (MRExample.class);
topl00.setJobName("Top 100 sites”);
topl00.setInputFormat (SequenceFileInputFormat.class);
+topl00.setOutputKeyClass (LongWritable.class);
topl00.setOoutputValueClass (Text.class);
+topl00.setOutputFormat ileOutputFormat.class);
topl00.setMapperClass (LoadClicks.class);
topl00.setCombinerClass (LimitClicks.class);
topl00.setReducerClass (LimitClicks.class);
FileInputFormat.addInputPath(topl00, new
Path("/user/gates/tmp/grouped”));
FileOutputFormat.setOutputPath(topl00, new
/user/gates/topl00sitesforusersl8to25"));

Path(

limit.addDependingJob (groupJob) ;

JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");
jc.addJob(loadPages) ;

jc.addJob (groupJob) ;
jc.addJob(limit);
je.run();

170 lines of code, 4 hours to write

-47 -

In Pig Latin

Users
Fltrd

load ‘users’ as (name, age):;

filter Users by

age >= 18 and age <= 25;

Pages = load ‘pages’ as (user, url);

Jnd = join Fltrd by name, Pages by user;

Grpd = group Jnd by url;

smmd = foreach Grpd generate group,
COUNT (Jnd) as clicks;

Srtd = order Smmd by clicks desc;

Topb = limit Srtd 5;

store Topb into ‘topbsites’;

9 lines of code, 15 minutes to write

o

But can it fly?

8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

|

7.6

Pig Performance vs Map-Reduce

2.5

1.8 1.6 15

14 1.2 1.0
I B BN RN

1

Sep 11 08 Nov 11 Jan 20 09Feb 23 09Apr 20 09Jun 28 09 Aug 28 Oct 18 09

08 09

-49 -

Essence of Pig

« Map-Reduce is too low a level to program, SQL too high

» Pig Latin, a language intended to sit between the two:

Imperative
Provides standard relational transforms (join, sort, etc.)

Schemas are optional, used when available, can be defined at
runtime

User Defined Functions are first class citizens

Opportunities for advanced optimizer but optimizations by
programmer also possible

@

Script

o QW

load
filter —> Parser

group
foreach

Logical Plan =

relational algebra

Logical Plan

Plan standard
optimizations

MapReduce

\ 4

Logical Plan

Launcher

Jar to
hadoop

'

Map-Reduce Plan

Semantic .| Logical
Checks Optimizer
Logical Plan
Physical Logical to
ToMR Physical
Translator| Physical Plan | Translator
Physical Plan =

Map-Reduce Plan =
physical operators
broken into Map,

Combine, and
Reduce stages

-51 -

physical operators

to be executed

Cool Things We’ve Added In the Last Year

« Multiquery — Ability to combine multiple group bys into a
single MR job (0.3)

* Merge join — If data is already sorted on join key, do join via
merge in map phase (0.4)

« Skew join — Hash join for data with skew in join key. Allows
splitting of key across multiple reducers to handle skew.

(0.4)
« Zebra — Contrib project that provides columnar storage of
data (0.4)

« Rework of Load and Store functions to make them much
easier to write (0.7, branched but not released)

« Owl, a metadata service for the grid (committed, will be
released in 0.8).

@

Aka

Fragment Replicate Join “Broakdcast Join”

Pages Users

o

Aka

Fragment Replicate Join “Broakdcast Join”

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;
Pages Users

o

Aka

Fragment Replicate Join “Broakdcast Join”

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;
Pages Users

o

Aka

Fragment Replicate Join “Broakdcast Join”
Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;
4 Map 1 A
Pages Users

N7
NS

Map 2

o

Aka

Fragment Replicate Join “Broakdcast Join”

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = joln Pages by user, Users by name using “replicated”;

4 Map 1 A

Pages Users

Pages Users block 1

o %
- Map 2 A

Pages Users
block 2

N /
&

Pages Users

58- Q’
L

Hash Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
Pages Users

&

Hash Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
Pages Users

&

Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

g Map 1 A

User
block n

NG %
Map 2

Pages Users

Page
block m

\ /
<!

Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

g Map 1 A

(1, user)
User

block n

_ J

Pages Users

Map 2

Page
block m

\J /

-62 -

(2, name)

Hash Join

load

Users =
= Jload

Pages =

Jnd = join Users by name,

Pages

‘users’
‘pages’

Users

as
as

(name, age);
(user, url);

4 A

Map 1

User
block n

_ /
g Map 2 A

Page
block m

Pages by user;

(1, user)

Reducer 1

(1, fred)
(2, fred)
(2, fred)

\J /

-63 -

(2, name)

\ /
Reducer 2\

(1, jane)
(2, jane)

(2, jane)

_

!

Pages Users

64 Q’
L

Skew Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = joln Pages by user, Users by name using “skewed”;
Pages Users

&

Skew Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = joln Pages by user, Users by name using “skewed”;
Pages Users

&

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = joln Pages by user, Users by name using “skewed”;

g Map 1 A

Pages
block n

NG %
Map 2

Pages Users

Users
block m

\J /
Y

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = joln Pages by user, Users by name using “skewed”;

g Map 1 A

Pages S
block n P

_ N

Pages Users

Map 2
Users S
block m P

_ N
-68 - !Ei!

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = joln Pages by user, Users by name using “skewed”;

g Map 1 A

(1, user)

Pages S
block n P

K j\ J
Map 2

Pages Users

Users S
block m P

_ N
-69 - !Ei!

(2, name)

Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;
4] ‘
Map 1 A Reducer 1\
S (1, user)
Pages (1, fred, p1)
P r —>) ’ ’
ages Users block n = (1. fred, p2)
(2, fred)
\ N \ J
\/ﬁ f
Map 2 Reducer 2\
Users |§> | (1, fred, p3)
block m (1, fred, p4)
(2, name) | (2, fred)
NG N N /

o

Merge Join

Pages Users
aaron aaron
zach zach

Merge Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;
Pages Users
aaron aaron
zach zach

&
|

Merge Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;
Pages Users
aaron aaron
zach zach

&

Merge Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;
4 Map 1 A
Pages Users Pages Users
aaron aaron aaron... aaron
\ amr /
4 Map 2 A
Pages Users
: : amy... amy
zach zach barb

N) o

Multi-store script

A = load ‘users’ as (name, age, Jgender,
city, state);

B = filter A by name 1s not null;

Cl = group B by age, gender;

D1 = foreach Cl generate group, COUNT (B);

store D into ‘bydemo’;

C2= group B by state;

D2 = foreach C2 generate group, COUNT (B);

store D2 into ‘bystate’;

group by age,) store into
gender)_)[apply UDFs]_i ‘bydemo’

[load users H filter nulls

) 4

group by state —>[apply UDFs]—> Sf:f;;;;?é?

&

Multi-Store Map-Reduce Plan

filter

{

\
split
local rearrange local rearrange
_ */
\
~

v
/reduce
4
demux
package package
foreach foreach
> /)

What are people doing with Pig

« At Yahoo ~70% of Hadoop jobs are Pig jobs
« Being used at Twitter, LinkedIn, and other companies

* Available as part of Amazon EMR web service and Cloudera
Hadoop distribution

« What users use Pig for:
— Search infrastructure
— Ad relevance
— Model training
— User intent analysis
— Web log processing
— Image processing
— Incremental processing of large data sets

What We’re Working on this Year

* Optimizer rewrite
* Integrating Pig with metadata

« Usability — our current error messages might as well be
written in actual Latin

« Automated usage info collection

 UDFs in python

-78 -

Research Opportunities

» Cost based optimization — how does current RDBMS technology carry
over to MR world?

« Memory Usage — given that data processing is very memory intensive
and Java offers poor control of memory usage, how can Pig be written
to use memory well?

» Automated Hadoop Tuning — Can Pig figure out how to configure
Hadoop to best run a particular script?

* [ndices, materialized views, etc. — How do these traditional RDBMS
tools fit into the MR world?

 Human time queries — Analysts want access to the petabytes of data
available via Hadoop, but they don’t want to wait hours for their jobs to
finish;é:arp Pig find a way to answer analysts question in under 60
seconds”

 Map-Reduce-Reduce — Can MR be made more efficient for multiple
MR jobs?

« How should Pig integrate with workflow systems?
 See more: http://wiki.apache.org/pig/PigJournal

@

Learn More

« Visit our website: http://hadoop.apache.org/pig/
* On line tutorials

— From Yahoo, http://developer.yahoo.com/hadoop/tutorial/

— From Cloudera, http://www.cloudera.com/hadoop-training

« A couple of Hadoop books are available that include
chapters on Pig, search at your favorite bookstore

* Join the mailing lists:

— pig-user@hadoop.apache.org for user questions

— pig-dev@hadoop.apache.com for developer issues

« Contribute your work, over 50 people have so far

