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Final Thoughts on Optimization: 
Parameters ! 
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Chaudhuri  “Rethinking the Contract” 



Overview of Today’s Lecture 

•  Parallel databases (Chapter 22.1 – 22.5) 

•  Map/reduce 

•  Pig-Latin 
– Some slides from Alan Gates (Yahoo!

Research) 
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Parallel v.s. Distributed 
Databases 

•  Parallel database system: 
–  Improve performance through parallel 

implementation 
– Will discuss in class 

•  Distributed database system: 
– Data is stored across several sites, each site 

managed by a DBMS capable of running 
independently 

– Will not discuss in class 

Dan Suciu -- 544, Winter 2011                 4 



Parallel DBMSs 
•  Goal 

–  Improve performance by executing multiple 
operations in parallel 

•  Key benefit 
– Cheaper to scale than relying on a single 

increasingly more powerful processor 

•  Key challenge 
– Ensure overhead and contention do not kill 

performance 

Dan Suciu -- 544, Winter 2011                 5 



Performance Metrics  
for Parallel DBMSs 

•  Speedup 
–  More processors  higher speed 
–  Individual queries should run faster 
–  Should do more transactions per second (TPS) 

•  Scaleup 
–  More processors  can process more data 
–  Batch scaleup 

•  Same query on larger input data should take the same time 
–  Transaction scaleup 

•  N-times as many TPS on N-times larger database 
•  But each transaction typically remains small 
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Linear v.s. Non-linear Speedup 
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# processors (=P) 

Speedup 

7 



Linear v.s. Non-linear Scaleup 

# processors (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
– Cost of starting an operation on many 

processors 

•  Interference 
– Contention for resources between processors 

•  Skew 
– Slowest processor becomes the bottleneck 
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Architectures for Parallel 
Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Memory 

Interconnection Network 

P P P 

Global Shared Memory 

D D D 
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Shared Disk 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

•  Most scalable architecture 
– Minimizes interference by minimizing resource 

sharing 
– Can use commodity hardware 

•  Also most difficult to program and manage 

•  Processor = server = node 
•  P = number of nodes 
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Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
– Each query runs on one processor 

•  Inter-operator parallelism 
– A query runs on multiple processors 
– An operator runs on one processor 

•  Intra-operator parallelism 
– An operator runs on multiple processors 
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Horizontal Data Partitioning 
•  Relation R split into P chunks R0, …, RP-1, 

stored at the P nodes 

•  Round robin: tuple ti to chunk (i mod P) 

•  Hash based partitioning on attribute A: 
– Tuple t to chunk h(t.A) mod P 

•  Range based partitioning on attribute A: 
– Tuple t to chunk i if vi-1 < t.A < vi 
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Parallel Selection 

Compute σA=v(R), or σv1<A<v2(R) 

•  Conventional database: 
– Cost = B(R) 

•  Parallel database with P processors: 
– Cost = B(R) / P 
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Parallel Selection 

Different processors do the work: 
•  Round robin partition: all servers do the work 
•  Hash partition:  

– One server for σA=v(R), 
– All servers for σv1<A<v2(R) 

•  Range partition: one server does the work 
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Data Partitioning Revisited 
What are the pros and cons ? 

•  Round robin 
–  Good load balance but always needs to read all the data 

•  Hash based partitioning 
–  Good load balance but works only for equality predicates 

and full scans 

•  Range based partitioning 
–  Works well for range predicates but can suffer from data 

skew 
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Parallel Group By:  γA, sum(B)(R) 

Step 1: server i partitions chunk Ri using a 
hash function h(t.A): Ri0, Ri1, …, Ri,P-1   

Step 2: server i sends partition Rij to server j 

Step 3:  server j computes γA, sum(B) on  
R0j, R1j, …, RP-1,j  
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Cost of Parallel Group By 

Recall conventional cost =  3B(R) 
•  Step 1: Cost = B(R)/P  I/O operations 
•  Step 2: Cost = (P-1)/P B(R) blocks are sent 

– Network costs << I/O costs 
•  Step 3: Cost = 2 B(R)/P 

– When can we reduce it to 0 ? 
Total = 3B(R) / P  + communication costs 
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Parallel Join:  R ⋈A=B S 
Step 1 
•  For all servers in [0,k], server i partitions chunk Ri 

using a hash function h(t.A): Ri0, Ri1, …, Ri,P-1   
•  For all servers in [k+1,P], server j partitions chunk 

Sj using a hash function h(t.A): Sj0, Sj1, …, Rj,P-1   

Step 2:  
•  Server i sends partition Riu to server u 
•  Server j sends partition Sju to server u 

Steps 3: Server u computes the join of Riu with Sju 
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Cost of Parallel Join 

•  Step 1:  Cost = (B(R) + B(S))/P 

•  Step 2:  0 
–  (P-1)/P (B(R) + B(S)) blocks are sent, but we 

assume network costs to be << disk I/O costs 

•  Step 3: 
– Cost = 0 if small table fits in memory: B(S)/P <=M 
– Cost = 4(B(R)+B(S))/P otherwise 
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Parallel Query Plans 

•  Same relational operators 

•  Add special split and merge operators 
– Handle data routing, buffering, and flow 

control 

•  Example: exchange operator  
–  Inserted between consecutive operators in the 

query plan 
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Map Reduce 

•  Google: paper published 2004 
•  Free variant: Hadoop 

•  Map-reduce = high-level programming 
model and implementation for large-scale 
parallel data processing 

25 Dan Suciu -- 544, Winter 2011                 



Data Model 

Files ! 

A file = a bag of (key, value) pairs 

A map-reduce program: 
•  Input: a bag of (inputkey, value)pairs 
•  Output: a bag of (outputkey, value)pairs 
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Step 1: the MAP Phase 

User provides the MAP-function: 
•  Input: one (input key, value) 
•  Ouput: bag of (intermediate key, 
value)pairs 

System applies the map function in parallel 
to all (input key, value) pairs in the 
input file 
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Step 2: the REDUCE Phase 

User provides the REDUCE function: 
•  Input: (intermediate key, bag of 
values) 

•  Output: bag of output values 
System groups all pairs with the same 

intermediate key, and passes the bag of 
values to the REDUCE function 
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Example 

•  Counting the number of occurrences of 
each word in a large collection of 
documents 

29 

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”): reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 
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30 

(k1,v1) 

(k2,v2) 

(k3,v3) 

. . . . 

(i1, w1) 

(i2, w2) 

(i3, w3) 

. . . . 

MAP REDUCE 
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Map = GROUP BY, 
Reduce = Aggregate 

31 

SELECT word, sum(1) 
FROM R 
GROUP BY word 

R(documentKey, word) 
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Implementation 

•  There is one master node 
•  Master partitions input file into M splits, by key 
•  Master assigns workers (=servers) to the M 

map tasks, keeps track of their progress 
•  Workers write their output to local disk, 

partition into R regions 
•  Master assigns workers to the R reduce tasks 
•  Reduce workers read regions from the map 

workers’ local disks  
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Local storage ` 

MR Phases 



Interesting Implementation Details 
•  Worker failure: 

– Master pings workers periodically, 
–  If down then reassigns its splits to all other 

workers  good load balance 
•  Choice of M and R: 

– Larger is better for load balancing 
– Limitation: master needs O(M×R) memory 

34 Dan Suciu -- 544, Winter 2011                 



Interesting Implementation Details 
Backup tasks: 
•   Straggler = a machine that takes unusually 

long time to complete one of the last tasks. 
Eg: 
– Bad disk forces frequent correctable errors 

(30MB/s  1MB/s) 
– The cluster scheduler has scheduled other tasks 

on that machine 
•  Stragglers are a main reason for slowdown 
•  Solution: pre-emptive backup execution of 

the last few remaining in-progress tasks 
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Map-Reduce Summary 

•  Hides scheduling and parallelization 
details 

•  However, very limited queries 
– Difficult to write more complex tasks 
– Need multiple map-reduce operations 

•  Solution: 
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PIG-Latin ! 



Following Slides courtesy of: 
Alan Gates, Yahoo!Research 
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What is Pig? 

•  An engine for executing programs on top of Hadoop 
•  It provides a language, Pig Latin, to specify these programs  
•  An Apache open source project 

http://hadoop.apache.org/pig/ 
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Map-Reduce 

•  Computation is moved to the data 
•  A simple yet powerful programming model 

–  Map: every record handled individually 
–  Shuffle:  records collected by key 
–  Reduce:  key and iterator of all associated values 

•  User provides: 
–  input and output (usually files) 
–  map Java function 
–  key to aggregate on 
–  reduce Java function 

•  Opportunities for more control:  partitioning, sorting, partial 
aggregations, etc. 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt? 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

art, (1, 1) 
hurt (1), 
thou (1, 1) 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 

Romeo, (1, 1, 1) 
wherefore, (1) 
what, (1) 
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Map Reduce Illustrated 

map 

reduce 

map 

reduce 

Romeo, Romeo, wherefore art thou Romeo? 

Romeo, 1 
Romeo, 1 
wherefore, 1 
art, 1 
thou, 1 
Romeo, 1 

art, (1, 1) 
hurt (1), 
thou (1, 1) 

art, 2 
hurt, 1 
thou, 2 

What, art thou hurt? 

What, 1 
art, 1 
thou, 1 
hurt, 1 

Romeo, (1, 1, 1) 
wherefore, (1) 
what, (1) 

Romeo, 3 
wherefore, 1 
what, 1 
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Making Parallelism Simple 

•  Sequential reads = good read speeds 
•  In large cluster failures are guaranteed; Map Reduce 

handles retries 
•  Good fit for batch processing applications that need to touch 

all your data: 
–  data mining 
–  model tuning 

•  Bad fit for applications that need to find one particular record 
•  Bad fit for applications that need to communicate between 

processes; oriented around independent units of work 
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Why use Pig? 

   Suppose you have 
user data in one 
file, website data in 
another, and you 
need to find the top 
5 most visited sites 
by users aged 18 - 
25. 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 
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In Map-Reduce 
import java.io.IOException; 
import java.util.ArrayList; 
import java.util.Iterator; 
import java.util.List; 
 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.io.Writable; 
import org.apache.hadoop.io.WritableComparable; 
import org.apache.hadoop.mapred.FileInputFormat; 
import org.apache.hadoop.mapred.FileOutputFormat; 
import org.apache.hadoop.mapred.JobConf; 
import org.apache.hadoop.mapred.KeyValueTextInputFormat; 
import org.apache.hadoop.mapred.Mapper; 
import org.apache.hadoop.mapred.MapReduceBase; 
import org.apache.hadoop.mapred.OutputCollector; 
import org.apache.hadoop.mapred.RecordReader; 
import org.apache.hadoop.mapred.Reducer; 
import org.apache.hadoop.mapred.Reporter; 
import org.apache.hadoop.mapred.SequenceFileInputFormat; 
import org.apache.hadoop.mapred.SequenceFileOutputFormat; 
import org.apache.hadoop.mapred.TextInputFormat; 
import org.apache.hadoop.mapred.jobcontrol.Job; 
import org.apache.hadoop.mapred.jobcontrol.JobControl; 
import org.apache.hadoop.mapred.lib.IdentityMapper; 
 
public class MRExample { 
    public static class LoadPages extends MapReduceBase 
        implements Mapper<LongWritable, Text, Text, Text> { 
 
        public void map(LongWritable k, Text val, 
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // Pull the key out 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            String key = line.substring(0, firstComma); 
            String value = line.substring(firstComma + 1); 
            Text outKey = new Text(key); 
            // Prepend an index to the value so we know which file 
            // it came from. 
            Text outVal = new Text("1" + value); 
            oc.collect(outKey, outVal); 
        } 
    } 
    public static class LoadAndFilterUsers extends MapReduceBase 
        implements Mapper<LongWritable, Text, Text, Text> { 
 
        public void map(LongWritable k, Text val, 
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // Pull the key out 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            String value = line.substring(firstComma + 1); 
            int age = Integer.parseInt(value); 
            if (age < 18 || age > 25) return; 
            String key = line.substring(0, firstComma); 
            Text outKey = new Text(key); 
            // Prepend an index to the value so we know which file 
            // it came from. 
            Text outVal = new Text("2" + value); 
            oc.collect(outKey, outVal); 
        } 
    } 
    public static class Join extends MapReduceBase 
        implements Reducer<Text, Text, Text, Text> { 
 
        public void reduce(Text key, 
                Iterator<Text> iter,  
                OutputCollector<Text, Text> oc, 
                Reporter reporter) throws IOException { 
            // For each value, figure out which file it's from and 
store it 
            // accordingly. 
            List<String> first = new ArrayList<String>(); 
            List<String> second = new ArrayList<String>(); 
 
            while (iter.hasNext()) { 
                Text t = iter.next(); 
                String value = t.toString(); 
                if (value.charAt(0) == '1') 
first.add(value.substring(1)); 
                else second.add(value.substring(1)); 

                reporter.setStatus("OK"); 
            } 
 
            // Do the cross product and collect the values 
            for (String s1 : first) { 
                for (String s2 : second) { 
                    String outval = key + "," + s1 + "," + s2; 
                    oc.collect(null, new Text(outval)); 
                    reporter.setStatus("OK"); 
                } 
            } 
        } 
    } 
    public static class LoadJoined extends MapReduceBase 
        implements Mapper<Text, Text, Text, LongWritable> { 
 
        public void map( 
                Text k, 
                Text val, 
                OutputCollector<Text, LongWritable> oc, 
                Reporter reporter) throws IOException { 
            // Find the url 
            String line = val.toString(); 
            int firstComma = line.indexOf(','); 
            int secondComma = line.indexOf(',', firstComma); 
            String key = line.substring(firstComma, secondComma); 
            // drop the rest of the record, I don't need it anymore, 
            // just pass a 1 for the combiner/reducer to sum instead. 
            Text outKey = new Text(key); 
            oc.collect(outKey, new LongWritable(1L)); 
        } 
    } 
    public static class ReduceUrls extends MapReduceBase 
        implements Reducer<Text, LongWritable, WritableComparable, 
Writable> { 
 
        public void reduce( 
                Text key, 
                Iterator<LongWritable> iter,  
                OutputCollector<WritableComparable, Writable> oc, 
                Reporter reporter) throws IOException { 
            // Add up all the values we see 
 
            long sum = 0; 
            while (iter.hasNext()) { 
                sum += iter.next().get(); 
                reporter.setStatus("OK"); 
            } 
 
            oc.collect(key, new LongWritable(sum)); 
        } 
    } 
    public static class LoadClicks extends MapReduceBase 
        implements Mapper<WritableComparable, Writable, LongWritable, 
Text> { 
 
        public void map( 
                WritableComparable key, 
                Writable val, 
                OutputCollector<LongWritable, Text> oc, 
                Reporter reporter) throws IOException { 
            oc.collect((LongWritable)val, (Text)key); 
        } 
    } 
    public static class LimitClicks extends MapReduceBase 
        implements Reducer<LongWritable, Text, LongWritable, Text> { 
 
        int count = 0; 
        public void reduce( 
            LongWritable key, 
            Iterator<Text> iter, 
            OutputCollector<LongWritable, Text> oc, 
            Reporter reporter) throws IOException { 
 
            // Only output the first 100 records 
            while (count < 100 && iter.hasNext()) { 
                oc.collect(key, iter.next()); 
                count++; 
            } 
        } 
    } 
    public static void main(String[] args) throws IOException { 
        JobConf lp = new JobConf(MRExample.class); 
        lp.setJobName("Load Pages"); 
        lp.setInputFormat(TextInputFormat.class); 

        lp.setOutputKeyClass(Text.class); 
        lp.setOutputValueClass(Text.class); 
        lp.setMapperClass(LoadPages.class); 
        FileInputFormat.addInputPath(lp, new 
Path("/user/gates/pages")); 
        FileOutputFormat.setOutputPath(lp, 
            new Path("/user/gates/tmp/indexed_pages")); 
        lp.setNumReduceTasks(0); 
        Job loadPages = new Job(lp); 
 
        JobConf lfu = new JobConf(MRExample.class); 
        lfu.setJobName("Load and Filter Users"); 
        lfu.setInputFormat(TextInputFormat.class); 
        lfu.setOutputKeyClass(Text.class); 
        lfu.setOutputValueClass(Text.class); 
        lfu.setMapperClass(LoadAndFilterUsers.class); 
        FileInputFormat.addInputPath(lfu, new 
Path("/user/gates/users")); 
        FileOutputFormat.setOutputPath(lfu, 
            new Path("/user/gates/tmp/filtered_users")); 
        lfu.setNumReduceTasks(0); 
        Job loadUsers = new Job(lfu); 
 
        JobConf join = new JobConf(MRExample.class); 
        join.setJobName("Join Users and Pages"); 
        join.setInputFormat(KeyValueTextInputFormat.class); 
        join.setOutputKeyClass(Text.class); 
        join.setOutputValueClass(Text.class); 
        join.setMapperClass(IdentityMapper.class); 
        join.setReducerClass(Join.class); 
        FileInputFormat.addInputPath(join, new 
Path("/user/gates/tmp/indexed_pages")); 
        FileInputFormat.addInputPath(join, new 
Path("/user/gates/tmp/filtered_users")); 
        FileOutputFormat.setOutputPath(join, new 
Path("/user/gates/tmp/joined")); 
        join.setNumReduceTasks(50); 
        Job joinJob = new Job(join); 
        joinJob.addDependingJob(loadPages); 
        joinJob.addDependingJob(loadUsers); 
 
        JobConf group = new JobConf(MRExample.class); 
        group.setJobName("Group URLs"); 
        group.setInputFormat(KeyValueTextInputFormat.class); 
        group.setOutputKeyClass(Text.class); 
        group.setOutputValueClass(LongWritable.class); 
        group.setOutputFormat(SequenceFileOutputFormat.class); 
        group.setMapperClass(LoadJoined.class); 
        group.setCombinerClass(ReduceUrls.class); 
        group.setReducerClass(ReduceUrls.class); 
        FileInputFormat.addInputPath(group, new 
Path("/user/gates/tmp/joined")); 
        FileOutputFormat.setOutputPath(group, new 
Path("/user/gates/tmp/grouped")); 
        group.setNumReduceTasks(50); 
        Job groupJob = new Job(group); 
        groupJob.addDependingJob(joinJob); 
 
        JobConf top100 = new JobConf(MRExample.class); 
        top100.setJobName("Top 100 sites"); 
        top100.setInputFormat(SequenceFileInputFormat.class); 
        top100.setOutputKeyClass(LongWritable.class); 
        top100.setOutputValueClass(Text.class); 
        top100.setOutputFormat(SequenceFileOutputFormat.class); 
        top100.setMapperClass(LoadClicks.class); 
        top100.setCombinerClass(LimitClicks.class); 
        top100.setReducerClass(LimitClicks.class); 
        FileInputFormat.addInputPath(top100, new 
Path("/user/gates/tmp/grouped")); 
        FileOutputFormat.setOutputPath(top100, new 
Path("/user/gates/top100sitesforusers18to25")); 
        top100.setNumReduceTasks(1); 
        Job limit = new Job(top100); 
        limit.addDependingJob(groupJob); 
 
        JobControl jc = new JobControl("Find top 100 sites for users 
18 to 25"); 
        jc.addJob(loadPages); 
        jc.addJob(loadUsers); 
        jc.addJob(joinJob); 
        jc.addJob(groupJob); 
        jc.addJob(limit); 
        jc.run(); 
    } 
} 

170 lines of code, 4 hours to write 
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In Pig Latin 

Users = load ‘users’ as (name, age); 
Fltrd = filter Users by  
        age >= 18 and age <= 25;  
Pages = load ‘pages’ as (user, url); 
Jnd = join Fltrd by name, Pages by user; 
Grpd = group Jnd by url; 
Smmd = foreach Grpd generate group, 
       COUNT(Jnd) as clicks; 
Srtd = order Smmd by clicks desc; 
Top5 = limit Srtd 5; 
store Top5 into ‘top5sites’; 

9 lines of code, 15 minutes to write 
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But can it fly? 
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Essence of Pig 

•  Map-Reduce is too low a level to program, SQL too high 
•  Pig Latin, a language intended to sit between the two: 

–  Imperative 
–  Provides standard relational transforms (join, sort, etc.) 
–  Schemas are optional, used when available, can be defined at 

runtime 
–  User Defined Functions are first class citizens 
–  Opportunities for advanced optimizer but optimizations by 

programmer also possible 
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How It Works 

Parser 

Script 
A = load 
B = filter 
C = group 
D = foreach 

Logical Plan 
Semantic 
Checks 

Logical Plan 
Logical 
Optimizer 

Logical Plan 

Logical to 
Physical 
Translator Physical Plan 

Physical 
To MR 
Translator 

MapReduce 
Launcher 

Jar to 
hadoop 

Map-Reduce Plan 

Logical Plan ≈ 
relational algebra 

Plan standard 
optimizations 

Physical Plan = 
physical operators 
to be executed 

Map-Reduce Plan =  
physical operators 
broken into Map, 
Combine, and 
Reduce stages 
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Cool Things We’ve Added In the Last Year 

•  Multiquery – Ability to combine multiple group bys into a 
single MR job (0.3) 

•  Merge join – If data is already sorted on join key, do join via 
merge in map phase (0.4) 

•  Skew join – Hash join for data with skew in join key.  Allows 
splitting of key across multiple reducers to handle skew. 
(0.4) 

•  Zebra – Contrib project that provides columnar storage of 
data (0.4) 

•  Rework of Load and Store functions to make them much 
easier to write (0.7, branched but not released) 

•  Owl, a metadata service for the grid (committed, will be 
released in 0.8). 
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Fragment Replicate Join 

Pages Users 

Aka 
“Broakdcast Join” 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Aka 
“Broakdcast Join” 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Aka 
“Broakdcast Join” 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Map 1 

Map 2 

Aka 
“Broakdcast Join” 
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Fragment Replicate Join 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Map 1 

Map 2 

Users 

Users 

Pages 
block 1 

Pages 
block 2 

Aka 
“Broakdcast Join” 
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Hash Join 

Pages Users 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 

(1, user) 

(2, name) 
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Hash Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

User 
block n 

Map 2 

Page 
block m 

Reducer 1 

Reducer 2 

(1, user) 

(2, name) 

(1, fred) 
(2, fred) 
(2, fred) 

(1, jane) 
(2, jane) 
(2, jane) 
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Skew Join 

Pages Users 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

S
P 

S
P 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

(1, user) 

(2, name) 

S
P 

S
P 
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Skew Join 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “skewed”; 

Map 1 

Pages 
block n 

Map 2 

Users 
block m 

Reducer 1 

Reducer 2 

(1, user) 

(2, name) 

(1, fred, p1) 
(1, fred, p2) 
(2, fred) 

(1, fred, p3) 
(1, fred, p4) 
(2, fred) 

S
P 

S
P 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 
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Merge Join 

Pages Users 
aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

aaron 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
    . 
zach 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “merge”; 

Map 1 

Map 2 

Users 

Users 

Pages 

Pages 

aaron… 
amr 

aaron 
… 

amy… 
barb 

amy 
… 
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Multi-store script 

A = load ‘users’ as (name, age, gender,  
      city, state); 
B = filter A by name is not null; 
C1 = group B by age, gender; 
D1 = foreach C1 generate group, COUNT(B); 
store D into ‘bydemo’; 
C2= group B by state; 
D2 = foreach C2 generate group, COUNT(B); 
store D2 into ‘bystate’; 

load users filter nulls 

group by state 

group by age, 
gender 

apply UDFs 

apply UDFs 

store into 
‘bystate’ 

store into 
‘bydemo’ 
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Multi-Store Map-Reduce Plan 

map filter 

local rearrange 
split 

local rearrange 

reduce 

demux package package 

foreach foreach 
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What are people doing with Pig 

•  At Yahoo ~70% of Hadoop jobs are Pig jobs 
•  Being used at Twitter, LinkedIn, and other companies 
•  Available as part of Amazon EMR web service and Cloudera 

Hadoop distribution 
•  What users use Pig for: 

–  Search infrastructure 
–  Ad relevance 
–  Model training 
–  User intent analysis 
–  Web log processing 
–  Image processing 
–  Incremental processing of large data sets 
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What We’re Working on this Year 

•  Optimizer rewrite 
•  Integrating Pig with metadata 
•  Usability – our current error messages might as well be 

written in actual Latin 
•  Automated usage info collection 
•  UDFs in python 
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Research Opportunities 
•  Cost based optimization – how does current RDBMS technology carry 

over to MR world? 
•  Memory Usage – given that data processing is very memory intensive 

and Java offers poor control of memory usage, how can Pig be written 
to use memory well? 

•  Automated Hadoop Tuning – Can Pig figure out how to configure 
Hadoop to best run a particular script? 

•  Indices, materialized views, etc. – How do these traditional RDBMS 
tools fit into the MR world? 

•  Human time queries – Analysts want access to the petabytes of data 
available via Hadoop, but they don’t want to wait hours for their jobs to 
finish; can Pig find a way to answer analysts question in under 60 
seconds? 

•  Map-Reduce-Reduce – Can MR be made more efficient for multiple 
MR jobs? 

•  How should Pig integrate with workflow systems? 
•  See more:  http://wiki.apache.org/pig/PigJournal 
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Learn More 

•  Visit our website:  http://hadoop.apache.org/pig/ 
•  On line tutorials 

–  From Yahoo, http://developer.yahoo.com/hadoop/tutorial/ 
–  From Cloudera, http://www.cloudera.com/hadoop-training 

•  A couple of Hadoop books are available that include 
chapters on Pig, search at your favorite bookstore 

•  Join the mailing lists: 
–  pig-user@hadoop.apache.org for user questions 
–  pig-dev@hadoop.apache.com for developer issues 

•  Contribute your work, over 50 people have so far 


