## CSE544 Database Statistics

Tuesday, February $15^{\text {th }}, 2011$

## Outline

- Chapter 15 in the textbook


## Query Optimization

## Three major components:

1. Search space
2. Algorithm for enumerating query plans
3. Cardinality and cost estimation

## 3. Cardinality and Cost Estimation

- Collect statistical summaries of stored data
- Estimate size (=cardinality) in a bottom-up fashion
- This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
- Hand-written formulas, similar to those we used for computing the cost of each physical operator


## Statistics on Base Data

- Collected information for each relation
- Number of tuples (cardinality)
- Indexes, number of keys in the index
- Number of physical pages, clustering info
- Statistical information on attributes
- Min value, max value, number distinct values
- Histograms
- Correlations between columns (hard)
- Collection approach: periodic, using sampling


## Size Estimation Problem

## S = SELECT list FROM R1, ..., Rn WHERE cond $_{1}$ AND cond 2 AND . . . AND cond ${ }_{k}$

Given $T(R 1), T(R 2), \ldots, T(R n)$
Estimate T(S)
How can we do this ? Note: doesn't have to be exact.

## Size Estimation Problem

## S = SELECT list <br> FROM R1, ..., Rn <br> WHERE cond ${ }_{1}$ AND cond 2 AND . . . AND cond ${ }_{k}$

Remark: $T(S) \leq T(R 1) \times T(R 2) \times \ldots \times T(R n)$

## Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors


## Example

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A $<40$
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B=S.B is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$
Selectivity of R.A $<40$ is $1 / 2$
What is the estimated size of the query output?

## Rule of Thumb

- If selectivities are unknown, then: selectivity factor $=1 / 10$ [System R, 1979]


## Using Data Statistics

- Condition is $A=c \quad / *$ value selection on $R$ */
- Selectivity $=1 / \mathrm{V}(\mathrm{R}, \mathrm{A})$
- Condition is $\mathrm{A}<\mathrm{c}$ /* range selection on R */
- Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A)) T(R)$
- Condition is $\mathrm{A}=\mathrm{B}$

$$
/ * R \bowtie_{A=B} S * /
$$

- Selectivity = $1 / \max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))$
- (will explain next)


## Assumptions

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$, then the set of $A$ values of $R$ is included in the set of $B$ values of $S$
- Note: this indeed holds when $A$ is a foreign key in $R$, and $B$ is a key in $S$
- Preservation of values: for any other attribute C , $\mathrm{V}\left(\mathrm{R} \bowtie_{A=B} \mathrm{~S}, \mathrm{C}\right)=\mathrm{V}(\mathrm{R}, \mathrm{C}) \quad(\operatorname{or} \mathrm{V}(\mathrm{S}, \mathrm{C}))$


## Selectivity of $R \bowtie_{A=B} S$

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$

- Each tuple $t$ in $R$ joins with $T(S) / V(S, B)$ tuple(s) in $S$
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

In general: $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$

## Size Estimation for Join

Example:

- $T(R)=10000, T(S)=20000$
- $V(R, A)=100, V(S, B)=200$
- How large is $R \bowtie_{A=B} S$ ?


## Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)


## Histograms

## Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}(\text { Empolyee })=?
$$

## Histograms

## Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}(\text { Empolyee })=?
$$



Estimate $=25000 / 50=500$ Estimate $=25000 * 6 / 60=2500$

## Histograms

## Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}(\text { Empolyee })=?
$$

| Age: | $0 . .20$ | $20 . .29$ | $30-39$ | $40-49$ | $50-59$ | $>60$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuples | 200 | 800 | 5000 | 12000 | 6500 | 500 |

## Histograms

## Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}(\text { Empolyee })=?
$$

| $\square$ |  | $\square$ | $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age: | $0 . .20$ | $20 . .29$ | $30-39$ | $40-49$ | $50-59$ | $>60$ |
| Tuples | 200 | 800 | 5000 | 12000 | 6500 | 500 |

Estimate $=1200 \quad$ Estimate $=2 * 80+5 * 500=266019$

## Types of Histograms

- How should we determine the bucket boundaries in a histogram ?


## Types of Histograms

- How should we determine the bucket boundaries in a histogram ?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms


## Employee(ssn, name, age)

## Histograms

Eq-width:

| Age: | $0 . .20$ | $20 . .29$ | $30-39$ | $40-49$ | $50-59$ | $>60$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuples | 200 | 800 | 5000 | 12000 | 6500 | 500 |

Eq-depth:

| Age: | $0 . .20$ | $20 . .29$ | $30-39$ | $40-49$ | $50-59$ | $>60$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuples | 1800 | 2000 | 2100 | 2200 | 1900 | 1800 |

Compressed: store separately highly frequent values: $(48,1900)$

## Some Definitions

- [loannidis: The history of histograms, 2003]
- Relation R, attribute $X$
- Value set of R.X is $V=\left\{v_{1}<v_{2}<\ldots<v_{n}\right\}$
- Spread of $v_{k}$ is $\mathrm{s}_{\mathrm{k}}=\mathrm{v}_{\mathrm{k}+1}-\mathrm{v}_{\mathrm{k}}$
- Frequency $f_{k}=$ \# of tuples with R.X= $v_{k}$
- Area $a_{k}=s_{k} \times f_{k}$


## V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use Voptimal histograms or some variations


## V-Optimal Histograms

## Formally:

- The data distribution of R.X is:

$$
-\mathrm{T}=\left\{\left(\mathrm{v}_{1}, \mathrm{f}_{1}\right), \ldots,\left(\mathrm{v}_{\mathrm{n}}, \mathrm{f}_{\mathrm{n}}\right)\right\}
$$

- A histogram for R.X with $\beta$ buckets is:

$$
-H=\left\{\left(u_{1}, e_{1}\right), \ldots,\left(u_{\beta}, e_{\beta}\right)\right\}
$$

- The estimation at point $x$ is: $e(x)=e_{i}$, where $u_{i} \leq x<u_{i+1}$


## V-Optimal Histograms

## Formally:

- The v-optimal histogram with $\beta$ buckets is the histogram $\mathrm{H}=\left\{\left(\mathrm{u}_{1}, \mathrm{~g}_{1}\right), \ldots,\left(\mathrm{u}_{\beta}, \mathrm{f}_{\beta}\right)\right\}$ that minimizes:

$$
\Sigma_{i=1, n}\left|e\left(v_{i}\right)-f_{i}\right|^{2}
$$

- Can be computed using dynamic programming


## Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY?
- Not updated during database update, but recomputed periodically
- WHY ?
- Multidimensional histograms rarely used
- WHY ?


## Summary of Query Optimization

- Three parts:
- search space, algorithms, size/cost estimation
- Ideal goal: find optimal plan. But
- Impossible to estimate accurately
- Impossible to search the entire space
- Goal of today's optimizers:
- Avoid very bad plans

