CSE544
 Query Optimization

Tuesday-Thursday,
February $8^{\text {th }}-10^{\text {th }}, 2011$

Outline

- Chapter 15 in the textbook

Query Optimization Algorithm

- Enumerate alternative plans
- Compute estimated cost of each plan
- Compute number of I/Os
- Compute CPU cost
- Choose plan with lowest cost
- This is called cost-based optimization

Example

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

- Some statistics
- T(Supplier) = 1000 records
- T(Supply) = 10,000 records
- B(Supplier) $=100$ pages
- B(Supply) = 100 pages
- $\mathrm{V}($ Supplier,scity $)=20, \mathrm{~V}($ Supplier,state $)=10$
- $V($ Supply,pno $)=2,500$
- Both relations are clustered
- $M=10$

$$
\begin{aligned}
& B(\text { Supplier })=100 \\
& B(\text { Supply })=100
\end{aligned}
$$

$$
\text { V(Supplier,scity) = } 20
$$

$$
M=10
$$

Physical Query Plan 1

(On the fly) $\quad \pi$ sname
(On the fly)
$\sigma_{\text {scity='Seattle' } \wedge s s t a t e=' W A ' ~}$ ค pno=2
(Block-nested loop)

Supplier
(File scan)

Supply
(File scan)

Physical Query Plan 1

(On the fly)

$\pi_{\text {sname }}$

Selection and project on-the-fly -> No additional cost.
(On the fly)
$\sigma_{\text {scity }}=‘$ Seattle' \wedge sstate $=‘ W A^{\prime} \wedge$ pno=2
(Block-nested loop)

Supplier
(File scan)

Total cost of plan is thus cost of join:
= B (Supplier) $+\mathrm{B}\left(\right.$ Supplier)* ${ }^{*}$ (Supply)/M
$=100+10$ * 100
$=1,100 \mathrm{I} / \mathrm{Os}$

Supply
(File scan)
$T($ Supplier $)=1000$
$B($ Supplier $)=100$
V(Supplier,scity) $=20$
T (Supply) $=10,000$

Physical Query Plan 2

(On the fly)

π sname

(Sort-merge join) $\sum_{\text {sid }=\text { sid }}$
(Scan write to T1)

(1) $\sigma_{\text {scity }}=$ 'Seattle' \wedge sstate $=$ 'WA'

Supplier
(File scan)
(2) $\sigma_{p n o=2}^{w r}$
(Scan write to T2)

Supply
(File scan)

$B($ Supplier $)=100$
 V(Supplier,scity) $=20$
 B(Supply) $=100$
 V(Supplier,state) $=10$
 $\mathrm{V}($ Supply,pno $)=2,500$
 Physical Query Plan 2

$M=10$

Dhysical Ruery pian 3

(On the fly) (4) $\pi_{\text {sname }}$
(On the fly)
(3) $\sigma_{\text {scity }}=$ 'Seattle' \wedge sstate $=$ ' $W A$ '
(Use index)
(1) σ
(2) sid = sid (Index nested loop)
(1)

Supply
(Index lookup on pno) (Index lookup on sid)
Assume: clustered

Doesn't matter if clustered or not ${ }^{9}$

Dhysical Ruery pian 3

(On the fly) (4) $\pi_{\text {sname }}$
(On the fly)
(3) $\sigma_{\text {scity }}=$ 'Seattle' \wedge sstate $=$ ' $W A$ '
(Use index)
(1) σ

Supply
(Index lookup on pno) (Index lookup on sid)
Assume: clustered

Doesn't matter if clustered or not ${ }^{0}$

Physical Query Plan 3

(On the fly) (4) $\pi_{\text {sname }}$
(On the fly)
(3) $\sigma_{\text {scity }}={ }^{\prime}$ Seattle' \wedge sstate $={ }^{\prime} W A^{\prime}$

Total cost
= 1 (1)
+4 (2)
+0 (3)

+ 0 (3)
Total cost $\approx 5 \mathrm{I} / \mathrm{Os}$
(2) sid = sid (Index nested loop)

Supplier
(Index lookup on pno) (Index lookup on sid)
Assume: clustered

Simplifications

- In the previous examples, we assumed that all index pages were in memory
- When this is not the case, we need to add the cost of fetching index pages from disk

Lessons

1. Need to consider several physical plan

- even for one, simple logical plan

2. No plan is best in general

- need to have statistics over the data
- the B's, the T's, the V's

The Contract of the Optimizer

- High-quality execution plans for all queries,
- While taking relatively small optimization time, and
- With limited additional input such as histograms.

Query Optimization

Three major components:

1. Search space
2. Algorithm for enumerating query plans
3. Cardinality and cost estimation

History of Query Optimization

- First query optimizer was for System R, from IBM, in 1979
- It had all three components in place, and defined the architecture of query optimizers for years to come
- You will see often references to System R
- Read Section 15.6 in the book

1. Search Space

- This is the set of all alternative plans that are considered by the optimizer
- Defined by the set of algebraic laws and the set of plans used by the optimizer
- Will discuss these laws next

Left-Deep Plans and Bushy Plans

System R considered only left deep plans, and so do some optimizers today

Relational Algebra Laws

- Selections
- Commutative: $\sigma_{\mathrm{c} 1}\left(\sigma_{\mathrm{c} 2}(\mathrm{R})\right)=\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(\mathrm{R})\right)$
- Cascading: $\sigma_{\mathrm{c} 1 \wedge \mathrm{c} 2}(\mathrm{R})=\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(\mathrm{R})\right)$
- Projections
- Joins
- Commutativity : $R \bowtie S=S \bowtie R$
- Associativity: $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
- Distributivity: $R \bowtie(S \cup T)=(R \bowtie S) \cup(R \bowtie T)$
- Outer joins get more complicated

Example

Which plan is more efficient?

 $R \bowtie(S \bowtie T)$ or $(R \bowtie S) \bowtie T$?- Assumptions:
- Every join selectivity is 10\%
- That is: $T(R \bowtie S)=0.1$ * $T(R)$ * $T(S)$ etc.
$-B(R)=100, B(S)=50, B(T)=500$
- All joins are main memory joins
- All intermediate results are materialized

Example

- Example: R(A, B, C, D), S(E, F, G)

$$
\begin{aligned}
& \sigma_{F=3}\left(R \bowtie_{D=E} S\right)= \\
& \sigma_{A=5 \text { AND G=9 }}\left(R \bowtie_{D=E} S\right)=
\end{aligned} ?
$$

Simple Laws

$\Pi_{\mathrm{M}}(\mathrm{R} \bowtie \mathrm{S})=\Pi_{\mathrm{M}}\left(\Pi_{\mathrm{P}}(\mathrm{R}) \bowtie \Pi_{\mathrm{Q}}(\mathrm{S})\right)$ $\Pi_{M}\left(\Pi_{N}(R)\right)=\Pi_{M}(R) / *$ note that $M \subseteq N *$

- Example R(A,B,C,D), S(E, F, G)

$$
\Pi_{A, B, G}\left(R \bowtie_{D=E} S\right)=\Pi_{?}\left(\Pi_{?}(R) \bowtie_{D=E} \Pi_{?}(S)\right)
$$

Laws for Group-by and Join

$$
\begin{aligned}
& \gamma_{A, \operatorname{agg}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)= \\
& \quad \gamma_{A, \operatorname{agg}(D)}\left(R(A, B) \bowtie_{B=C}\left(\gamma_{C, \operatorname{agg}(D)} S(C, D)\right)\right)
\end{aligned}
$$

These are very powerful laws. They were introduced only in the 90's.

"Semantic Optimizations" = Laws that use a Constraint

Product(pid, pname, price, cid) Company(cid, cname, city, state)

$\Pi_{\text {pid, price }}\left(\right.$ Product $\bowtie_{\text {cid }=\text { cid }}$ Company $)=\Pi_{\text {pid, price }}$ (Product)

Need a second constraint for this law to hold. Which?

Example

Foreign key

Product(pid, pname, price, cid) Company(cid, cname, city, state)

```
CREATE VIEW CheapProductCompany
    SELECT *
    FROM Product x, Company y
    WHERE x.cid = y.cid and x.price < 100
```

SELECT pname, price FROM CheapProductCompany

SELECT pname, price FROM Product

Law of Semijoins

Recall the definition of a semijoin:

- $R \ltimes S=\Pi_{A 1, \ldots, A n}(R \bowtie S)$
- Where the schemas are:
- Input: R(A1, ..An), S(B1,...Bm)
- Output: T(A1,...,An)
- The law of semijoins is:

$$
R \bowtie S=(R \ltimes S) \bowtie S
$$

Laws with Semijoins

- Very important in parallel databases
- Often combined with Bloom Filters (next lecture)
- Read pp. 747 in the textbook

Semijoin Reducer

- Given a query: $\quad Q=R_{1} \bowtie R_{2} \bowtie \ldots \bowtie R_{n}$
- A semijoin reducer for Q is

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i1}}=\mathrm{R}_{\mathrm{i1}} \ltimes \mathrm{R}_{\mathrm{j11}} \\
& \mathrm{R}_{\mathrm{i} 2}=\mathrm{R}_{\mathrm{i} 2} \ltimes \mathrm{R}_{\mathrm{i} 2} \\
& \mathrm{R}_{\mathrm{ip}}=\mathrm{R}_{\mathrm{ip}} \ltimes \mathrm{R}_{\mathrm{ip}}
\end{aligned}
$$

such that the query is equivalent to:

$$
\mathrm{Q}=\mathrm{R}_{\mathrm{k} 1} \bowtie \mathrm{R}_{\mathrm{k} 2} \bowtie \ldots \bowtie R_{\mathrm{kn}}
$$

- A full reducer is such that no dangling tuples remain

Example

- Example:

$$
Q=R(A, B) \bowtie S(B, C)
$$

- A semijoin reducer is:

$$
R_{1}(A, B)=R(A, B) \ltimes S(B, C)
$$

- The rewritten query is:

$$
Q=R_{1}(A, B) \bowtie S(B, C)
$$

Why Would We Do This ?

- Large attributes:

$$
Q=R(A, B, D, E, F, \ldots) \bowtie S(B, C, M, K, L, \ldots)
$$

- Expensive side computations

$$
Q=\gamma_{\left.A, B, \text { count }{ }^{*}\right)} R(A, B, D) \bowtie \sigma_{C=\text { value }}(S(B, C))
$$

$$
\begin{aligned}
& R_{1}(A, B, D)=R(A, B, D) \ltimes \sigma_{C=\text { value }}(S(B, C)) \\
& Q=Y_{A, B, \text { count }(*)} R_{1}(A, B, D) \bowtie \sigma_{C=\text { value }}(S(B, C))
\end{aligned}
$$

Semijoin Reducer

- Example:

$$
Q=R(A, B) \bowtie S(B, C)
$$

- A semijoin reducer is:

$$
R_{1}(A, B)=R(A, B) \times S(B, C)
$$

- The rewritten query is:

$$
\mathrm{Q}=\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

Are there dangling tuples?

Semijoin Reducer

- Example:

$$
Q=R(A, B) \bowtie S(B, C)
$$

- A full semijoin reducer is:

$$
\begin{aligned}
& R_{1}(A, B)=R(A, B) \times S(B, C) \\
& S_{1}(B, C)=S(B, C) \ltimes R_{1}(A, B)
\end{aligned}
$$

- The rewritten query is:

$$
Q:-R_{1}(A, B) \bowtie S_{1}(B, C)
$$

No more dangling tuples

Semijoin Reducer

- More complex example:

$$
Q=R(A, B) \bowtie S(B, C) \bowtie T(C, D, E)
$$

- A full reducer is:

$$
\begin{aligned}
& S^{\prime}(B, C):=S(B, C) \ltimes R(A, B) \\
& T^{\prime}(C, D, E):=T(C, D, E) \ltimes S(B, C) \\
& S^{\prime \prime}(B, C):=S \text { S }(B, C) \ltimes T^{\prime}(C, D, E) \\
& R^{\prime}(A, B):=R(A, B) \ltimes S^{\prime \prime}(B, C)
\end{aligned}
$$

$Q=R^{\prime}(A, B) \bowtie S^{\prime \prime}(B, C) \bowtie T^{\prime}(C, D, E)$

Semijoin Reducer

- Example:

$$
Q=R(A, B) \bowtie S(B, C) \bowtie T(A, C)
$$

- Doesn't have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is "acyclic" [Database Theory, by Abiteboul, Hull, Vianu]

Example with Semijoins

Emp(eid, ename, sal, did)
[Chaudhuri'98]
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */
View:
CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E
GROUP BY E.did)
Query:
SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget $>100 \mathrm{k}$
AND E.sal > V.avgsal

Goal: compute only the necessary part of the view

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

New view uses a reducer:

CREATE VIEW LimitedAvgSal As (SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E, Dept D WHERE E.did = D.did AND D.buget > 100k GROUP BY E.did)

New query:

$$
\begin{aligned}
& \text { SELECT E.eid, E.sal } \\
& \text { FROM Emp E, Dept D, LimitedAvgSal V } \\
& \text { WHERE E.did = D.did AND E.did = V.did } \\
& \text { AND E.age < } 30 \text { AND D.budget > } 100 \mathrm{k} \\
& \text { AND E.sal > V.avgsal } \\
& \hline
\end{aligned}
$$

[Chaudhuri'98]

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
[Chaudhuri'98]
DeptAvgSal(did, avgsal) /* view */
CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)
CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

Example with Semijoins

New query:

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V WHERE P.did = V.did AND P.sal > V.avgsal

Pruning the Search Space

- Prune entire sets of plans that are unpromising
- The choice of partial plans influences how effective we can prune

Complete Plans

R(A,B)
$S(B, C)$
T(C,D)

R

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40

Pruning is

 difficult here.
Bottom-up Partial Plans

$R(A, B)$
$S(B, C)$
$T(C, D)$

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40

Top-down Partial Plans

R(A,B)
S(B,C)
$\mathrm{T}(\mathrm{C}, \mathrm{D})$

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40

Query Optimization

Three major components:

1. Search space
2. Algorithm for enumerating query plans
3. Cardinality and cost estimation

2. Plan Enumeration Algorithms

- System R (in class)
- Join reordering - dynamic programming
- Access path selection
- Bottom-up; simple; limited
- Modern database optimizers (will not discuss)
- Rule-based: database of rules (x 100s)
- Dynamic programming
- Top-down; complex; extensible

Join Reordering

System R [1979]

- Push all selections down (=early) in the query plan
- Pull all projections up (=late) in the query plan
- What remains are joins:

```
SELECT list
FROM R1, .., Rn
WHERE cond 1 AND cond 2 AND . . . AND cond
```


SELECT list
 FROM R1, ..., Rn
 WHERE cond $_{1}$ AND cond ${ }_{2}$ AND . . . AND cond $_{\mathrm{k}}$
 Join Reordering

Dynamic programming

- For each subquery $Q \subseteq\{R 1, \ldots, R n\}$, compute the optimal join order for Q
- Store results in a table: $2^{\mathrm{n}}-1$ entries
- Often much fewer entries

```
SELECT list
FROM R1, .., Rn
WHERE cond, AND cond, AND . . . AND cond
```


Join Reordering

Step 1: For each $\left\{\mathrm{R}_{\mathrm{i}}\right\}$ do:

- Initialize the table entry for $\left\{R_{i}\right\}$ with the cheapest access path for R_{i}
Step 2: For each subset $Q \subseteq\left\{R_{1}, \ldots, R_{n}\right\}$ do:
- For every partition $Q=$ Q' \cup Q"
- Lookup optimal plan for Q' and for Q" in the table
- Compute the cost of the plan Q' \bowtie Q"
- Store the cheapest plan Q'』 Q" in table entry for Q

Reducing the Search Space

Restriction 1: only left linear trees (no bushy)

Restriction 2: no trees with cartesian product

$$
R(A, B) \bowtie S(B, C) \bowtie T(C, D)
$$

Plan: $(R(A, B) \bowtie T(C, D)) \bowtie S(B, C)$
has a cartesian product.
Most query optimizers will not consider it

Access Path Selection

- Access path: a way to retrieve tuples from a table
- A file scan
- An index plus a matching selection condition
- Index matches selection condition if it can be used to retrieve just tuples that satisfy the condition
- Example: Supplier(sid,sname,scity,sstate)
- B+-tree index on (scity,sstate)
- matches scity=‘Seattle’
- does not match sid=3, does not match sstate='WA'

Access Path Selection

- Supplier(sid,sname,scity,sstate)
- Selection condition: sid > $300 \wedge$ scity=‘Seattle’
- Indexes: B+-tree on sid and B+-tree on scity

Access Path Selection

- Supplier(sid,sname,scity,sstate)
- Selection condition: sid > $300 \wedge$ scity=‘Seattle’
- Indexes: B+-tree on sid and B+-tree on scity
- Which access path should we use?

Access Path Selection

- Supplier(sid,sname,scity,sstate)
- Selection condition: sid > $300 \wedge$ scity=‘Seattle’
- Indexes: B+-tree on sid and B+-tree on scity
- Which access path should we use?
- We should pick the most selective access path

Access Path Selectivity

- Access path selectivity is the number of pages retrieved if we use this access path
- Most selective retrieves fewest pages
- As we saw earlier, for equality predicates
- Selection on equality: $\sigma_{a=v}(R)$
$-V(R, a)=\#$ of distinct values of attribute a
$-1 / V(R, a)$ is thus the reduction factor
- Clustered index on a : cost $B(R) / V(R, a)$
- Unclustered index on a : cost $T(R) / V(R, a)$
- (we are ignoring I/O cost of index pages for simplicity)

Other Decisions for the Optimization Algorithm

- How much memory to allocate to each operator
- Pipeline or materialize (next)

Materialize Intermediate Results Between Operators

Materialize Intermediate Results Between Operators

Question in class

Given $B(R), B(S), B(T), B(U)$

- What is the total cost of the plan ?
- Cost =
- How much main memory do we need?
$-M=$

Pipeline Between Operators

Pipeline Between Operators

Question in class

Given $B(R), B(S), B(T), B(U)$

- What is the total cost of the plan ?
- Cost =
- How much main memory do we need?
- $M=$

Pipeline in Bushy Trees

Query Optimization

Three major components:

1. Search space
2. Algorithm for enumerating query plans
3. Cardinality and cost estimation
