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Outline 

•  Chapter 15 in the textbook 
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Query Optimization Algorithm 
•  Enumerate alternative plans 

•  Compute estimated cost of each plan 
– Compute number of I/Os 
– Compute CPU cost 

•  Choose plan with lowest cost 
– This is called cost-based optimization 
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Example 

•  Some statistics 
–  T(Supplier) = 1000 records 
–  T(Supply) = 10,000 records 
–  B(Supplier) = 100 pages 
–  B(Supply) = 100 pages 
–  V(Supplier,scity) = 20, V(Supplier,state) = 10 
–  V(Supply,pno) = 2,500 
–  Both relations are clustered 

•  M = 10 

Supplier(sid, sname, scity, 
sstate) 
Supply(sid, pno, quantity) 

SELECT sname 
FROM Supplier x, Supply y 
WHERE x.sid = y.sid 
    and  y.pno = 2 
    and x.scity = ‘Seattle’ 
    and x.sstate = ‘WA’ 
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Physical Query Plan 1 

Supplier Supply 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Block-nested loop) 

(On the fly) 

(On the fly) 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 
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Physical Query Plan 1 

Supplier Supply 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Block-nested loop) 

(On the fly) 

(On the fly) Selection and project on-the-fly 
-> No additional cost. 

Total cost of plan is thus cost of join: 
= B(Supplier)+B(Supplier)*B(Supply)/M 
= 100 + 10 * 100 
= 1,100 I/Os 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 
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Supplier Supply 

sid = sid 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(On the fly) 

(2) σ pno=2 

(Scan 
 write to T1) 

Physical Query Plan 2 

(3) 

(4) 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 
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Supplier Supply 

sid = sid 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(On the fly) 

(2) σ pno=2 

(Scan 
 write to T1) 

Physical Query Plan 2 
Total cost 
= 100 + 100 * 1/20 * 1/10 (1) 
+ 100 + 100 * 1/2500 (2) 
+ 2 (3) 
+ 0 (4) 
Total cost  ≈  204 I/Os 

(3) 

(4) 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 



Supply Supplier 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Index lookup on sid) 
Doesn’t matter if clustered or not 

(On the fly) 

(1) σ pno=2 

(Index lookup on pno ) 
Assume: clustered 

Physical Query Plan 3 

(Use index) 

(2) 

(3) 

(4) 

(On the fly) 
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B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 



Supply Supplier 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Index lookup on sid) 
Doesn’t matter if clustered or not 

(On the fly) 

(1) σ pno=2 

(Index lookup on pno ) 
Assume: clustered 

Physical Query Plan 3 

(Use index) 

(2) 

(3) 

(4) 

(On the fly) 

4 tuples 
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B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 



Supply Supplier 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Index lookup on sid) 
Doesn’t matter if clustered or not 

(On the fly) 

(1) σ pno=2 

(Index lookup on pno ) 
Assume: clustered 

Physical Query Plan 3 
Total cost 
= 1 (1) 
+ 4 (2) 
+ 0 (3) 
+ 0 (3) 
Total cost  ≈  5 I/Os 

(Use index) 

(2) 

(3) 

(4) 

(On the fly) 

4 tuples 
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B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 
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Simplifications 

•  In the previous examples, we assumed 
that all index pages were in memory 

•  When this is not the case, we need to 
add the cost of fetching index pages 
from disk 
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Lessons 

1.  Need to consider several physical plan 
–  even for one, simple logical plan 

2.  No plan is best in general 
–  need to have statistics over the data 
–  the B’s, the T’s, the V’s 
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The Contract of the Optimizer 

•  High-quality execution plans for all 
queries,  

•  While taking relatively small 
optimization time, and 

•  With limited additional input such as 
histograms. 
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Query Optimization 

Three major components: 

1.  Search space 

2.  Algorithm for enumerating query plans 

3.  Cardinality and cost estimation 



History of Query Optimization 

•  First query optimizer was for System R, 
from IBM, in 1979 

•  It had all three components in place, and 
defined the architecture of query 
optimizers for years to come 

•  You will see often references to System R 
•  Read Section 15.6 in the book 
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1. Search Space 

•  This is the set of all alternative plans 
that are considered by the optimizer 

•  Defined by the set of algebraic laws and 
the set of plans used by the optimizer 

•  Will discuss these laws next 
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Left-Deep Plans and 
Bushy Plans 
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R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 

System R considered only left deep plans,  
and so do some optimizers today 
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Relational Algebra Laws 

•  Selections 
–  Commutative: σc1(σc2(R)) = σc2(σc1(R)) 
–  Cascading:  σc1∧c2(R) = σc2(σc1(R)) 

•  Projections 
•  Joins 

–  Commutativity : R ⋈ S = S ⋈ R  
–  Associativity: R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T  
–  Distributivity: R ⨝ (S ∪ T)  =  (R ⨝ S) ∪ (R ⨝ T) 
–  Outer joins get more complicated 



Example 

•  Assumptions: 
– Every join selectivity is 10% 

•  That is: T(R ⨝ S) = 0.1 * T(R) * T(S)  etc. 
– B(R)=100, B(S) = 50, B(T)=500 
– All joins are main memory joins 
– All intermediate results are materialized 
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Which plan is more efficient ? 
R ⨝ (S ⨝ T)  or  (R ⨝ S) ⨝ T ? 
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Example 

•  Example:  R(A, B, C, D), S(E, F, G) 
 σ F=3 (R ⨝ D=E S) =                                     ? 
 σ A=5 AND G=9 (R ⨝ D=E S) =                         ? 

Dan Suciu -- 544, Winter 2011        
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Simple Laws 

•  Example R(A,B,C,D), S(E, F, G) 
ΠA,B,G(R ⨝ D=E S) = Π ? (Π?(R) ⨝ D=E Π?(S))  
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ΠM(R ⨝ S) = ΠM(ΠP(R) ⨝ ΠQ(S)) 
ΠM(ΠN(R)) = ΠM(R)   /* note that M ⊆ N */ 



Laws for Group-by and Join 
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γA, agg(D)(R(A,B) ⨝ B=C S(C,D)) =   
     γA, agg(D)(R(A,B) ⨝ B=C (γC, agg(D)S(C,D))) 

These are very powerful laws. 
They were introduced only in the 90’s. 



“Semantic Optimizations” = 
Laws that use a Constraint 
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Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 

Foreign key 

Need a second constraint for this law to hold. Which ? 

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product) 



Example 
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Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 

Foreign key 

CREATE VIEW CheapProductCompany 
     SELECT * 
     FROM Product x, Company y 
     WHERE x.cid = y.cid and x.price < 100 

SELECT pname, price 
FROM CheapProductCompany 

SELECT pname, price 
FROM Product 



26 

Law of Semijoins 

Recall the definition of a semijoin: 
•  R ⋉ S  = Π A1,…,An (R  ⨝  S) 
•  Where the schemas are: 

–  Input: R(A1,…An),  S(B1,…,Bm) 
– Output: T(A1,…,An) 

•  The law of semijoins is: 
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R  ⨝  S = (R ⋉ S)  ⨝  S 



Laws with Semijoins 

•  Very important in parallel databases 
•  Often combined with Bloom Filters (next 

lecture) 
•  Read pp. 747 in the textbook 

Dan Suciu -- 544, Winter 2011        27 



28 

Semijoin Reducer 
•  Given a query: 

•  A semijoin reducer for Q is  

such that the query is equivalent to: 

•  A full reducer is such that no dangling tuples remain 

Q =  Rk1  ⨝ Rk2 ⨝ . . . ⨝ Rkn  

Ri1  = Ri1 ⋉  Rj1 
Ri2  = Ri2 ⋉  Rj2 

. . . . . 
Rip  = Rip ⋉  Rjp 
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Q =  R1  ⨝ R2 ⨝ . . . ⨝ Rn 
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Example 

•  Example: 

•  A semijoin reducer is: 

•  The rewritten query is: 

Q = R(A,B) ⨝ S(B,C) 

R1(A,B) = R(A,B) ⋉ S(B,C) 

Q = R1(A,B) ⨝ S(B,C) 



30 

Why Would We Do This ? 

•  Large attributes: 

•  Expensive side computations 
Q = R(A, B,  D, E, F,…) ⨝ S(B, C,  M, K, L, …) 

Q = γA,B,count(*)R(A,B,D) ⨝ σC=value(S(B,C)) 

R1(A,B,D) = R(A,B,D) ⋉ σC=value(S(B,C)) 
Q = γA,B,count(*)R1(A,B,D) ⨝ σC=value(S(B,C)) 
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Semijoin Reducer 

•  Example: 

•  A semijoin reducer is: 

•  The rewritten query is: 

Q = R(A,B) ⨝ S(B,C) 

R1(A,B) = R(A,B) ⋉ S(B,C) 

Are there dangling tuples ? 

Q = R1(A,B) ⨝ S(B,C) 
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Semijoin Reducer 

•  Example: 

•  A full semijoin reducer is: 

•  The rewritten query is: 

Q = R(A,B) ⨝ S(B,C) 

R1(A,B)  =  R(A,B) ⋉ S(B,C) 
S1(B,C)  =  S(B,C) ⋉ R1(A,B)  

Q :- R1(A,B) ⨝ S1 (B,C) 

No more dangling tuples 
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Semijoin Reducer 

•  More complex example: 

•  A full reducer is: 
Q = R(A,B) ⨝ S(B,C) ⨝ T(C,D,E) 

S’(B,C) := S(B,C) ⋉ R(A,B) 
T’(C,D,E) := T(C,D,E) ⋉ S(B,C) 
S’’(B,C) := S’(B,C) ⋉ T’(C,D,E) 
R’(A,B) := R (A,B) ⋉ S’’(B,C) 

Q =  R’(A,B) ⨝ S’’(B,C) ⨝ T’(C,D,E) 
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Semijoin Reducer 
•  Example:  

•  Doesn’t have a full reducer (we can reduce forever) 

Theorem a query has a full reducer iff it is “acyclic” 
[Database Theory, by Abiteboul, Hull, Vianu] 

Q = R(A,B) ⨝ S(B,C) ⨝ T(A,C) 
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Example with Semijoins 
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CREATE VIEW DepAvgSal As ( 
 SELECT E.did, Avg(E.Sal) AS avgsal 
 FROM Emp E 
 GROUP BY E.did) 

[Chaudhuri’98] Emp(eid, ename, sal, did) 
Dept(did, dname, budget) 
DeptAvgSal(did, avgsal) /* view */ 

SELECT E.eid, E.sal 
FROM Emp E, Dept D, DepAvgSal V 
WHERE E.did = D.did AND E.did = V.did 

 AND E.age < 30 AND D.budget > 100k 
 AND E.sal > V.avgsal 

View: 

Query: 

Goal: compute only the necessary part of the view 



Example with Semijoins 

36 

CREATE VIEW LimitedAvgSal As ( 
 SELECT E.did, Avg(E.Sal) AS avgsal 
 FROM Emp E, Dept D 

             WHERE E.did = D.did AND D.buget > 100k 
 GROUP BY E.did) 

[Chaudhuri’98] 

New view 
uses a reducer: 

Emp(eid, ename, sal, did) 
Dept(did, dname, budget) 
DeptAvgSal(did, avgsal) /* view */ 

SELECT E.eid, E.sal 
FROM Emp E, Dept D, LimitedAvgSal V 
WHERE E.did = D.did AND E.did = V.did 

 AND E.age < 30 AND D.budget > 100k 
 AND E.sal > V.avgsal 

New query: 



Example with Semijoins 

37 

CREATE VIEW PartialResult AS 
 (SELECT E.eid, E.sal, E.did 
 FROM Emp E, Dept D 
 WHERE E.did=D.did AND E.age < 30 
 AND D.budget > 100k) 

CREATE VIEW Filter AS 
 (SELECT DISTINCT P.did FROM PartialResult P) 

CREATE VIEW LimitedAvgSal AS 
 (SELECT E.did, Avg(E.Sal) AS avgsal 
 FROM Emp E, Filter F 
 WHERE E.did = F.did GROUP BY E.did) 

[Chaudhuri’98] 

Full reducer: 

Emp(eid, ename, sal, did) 
Dept(did, dname, budget) 
DeptAvgSal(did, avgsal) /* view */ 
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Example with Semijoins 

SELECT P.eid, P.sal 
FROM PartialResult P, LimitedDepAvgSal V 
WHERE P.did = V.did AND P.sal > V.avgsal 
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New query: 



Pruning the Search Space 

•  Prune entire sets of plans that are 
unpromising 

•  The choice of partial plans influences how 
effective we can prune 
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Complete Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

⨝ 

S σA<40 

R 

⨝ 

T 

⨝ 

S 

σA<40 

R 

⨝ 

T 

Pruning is 
difficult 
here. 

R(A,B) 
S(B,C) 
T(C,D) 



Bottom-up Partial Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

R S T 

⨝ 

S σA<40 

R 

⨝ 

R S 

⨝ 

S σA<40 

R 

⨝ 

T 

….. 

Pruning can be done 
more efficiently 



Top-down Partial Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

T 
⨝ 

S 

⨝ 

T 

….. 

SELECT R.A, T.D 
FROM R, S, T 
WHERE R.B=S.B 
        and S.C=T.C 

SELECT * 
FROM R, S 
WHERE R.B=S.B 
        and R.A < 40 SELECT * 

FROM R 
WHERE R.A < 40 
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Query Optimization 

Three major components: 

1.  Search space 

2.  Algorithm for enumerating query plans 

3.  Cardinality and cost estimation 



2. Plan Enumeration Algorithms 

•  System R (in class) 
– Join reordering – dynamic programming 
– Access path selection 
– Bottom-up; simple; limited 

•  Modern database optimizers (will not discuss) 
– Rule-based: database of rules (x 100s) 
– Dynamic programming 
– Top-down; complex; extensible 

Dan Suciu -- 544, Winter 2011        44 



45 

Join Reordering 
System R [1979] 
•  Push all selections down (=early) in the query plan 
•  Pull all projections up (=late) in the query plan 
•  What remains are joins: 

SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 
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Join Reordering 

Dynamic programming 

•  For each subquery Q ⊆{R1, …, Rn}, 
compute the optimal join order for Q 

•  Store results in a table: 2n-1 entries 
– Often much fewer entries 
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SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 



Join Reordering 

Step 1: For each {Ri} do: 
•  Initialize the table entry for {Ri} with the cheapest 

access path for Ri 

Step 2: For each subset Q ⊆ {R1, …, Rn} do: 
•  For every partition Q = Q’ ∪ Q’’ 
•  Lookup optimal plan for Q’ and  for Q’’ in the table 
•  Compute the cost of the plan Q’ ⨝ Q’’ 
•  Store the cheapest plan Q’ ⨝ Q’’ in table entry for Q 
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SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 
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Reducing the Search Space  

Restriction 1: only left linear trees (no bushy) 

Restriction 2: no trees with cartesian product 

Dan Suciu -- 544, Winter 2011        

R(A,B) ⨝ S(B,C) ⨝ T(C,D) 

Plan: (R(A,B)⨝T(C,D))  ⨝  S(B,C) 
has a cartesian product. 
Most query optimizers will not consider it 



Access Path Selection 
•  Access path: a way to retrieve tuples from a table 

–  A file scan 
–  An index plus a matching selection condition 

•  Index matches selection condition if it can be used to 
retrieve just tuples that satisfy the condition 
–  Example: Supplier(sid,sname,scity,sstate) 
–  B+-tree index on (scity,sstate)  

•  matches scity=‘Seattle’ 
•  does not match sid=3, does not match sstate=‘WA’ 
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Access Path Selection 
•  Supplier(sid,sname,scity,sstate) 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 

•  Indexes: B+-tree on sid and B+-tree on scity 
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Access Path Selection 
•  Supplier(sid,sname,scity,sstate) 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 

•  Indexes: B+-tree on sid and B+-tree on scity 

•  Which access path should we use? 
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Access Path Selection 
•  Supplier(sid,sname,scity,sstate) 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 

•  Indexes: B+-tree on sid and B+-tree on scity 

•  Which access path should we use? 

•  We should pick the most selective access path 



Dan Suciu -- 544, Winter 2011        53 

Access Path Selectivity 
•  Access path selectivity is the number of pages 

retrieved if we use this access path 
–  Most selective retrieves fewest pages 

•  As we saw earlier, for equality predicates 
–  Selection on equality: σa=v(R) 
–  V(R, a) = # of distinct values of attribute a 
–  1/V(R,a) is thus the reduction factor 
–  Clustered index on a:  cost B(R)/V(R,a) 
–  Unclustered index on a: cost T(R)/V(R,a) 
–  (we are ignoring I/O cost of index pages for simplicity) 



Other Decisions for the 
Optimization Algorithm 

•  How much memory to allocate to each 
operator 

•  Pipeline or materialize (next) 
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Materialize Intermediate 
Results Between Operators 

⋈ 

⋈ 

⋈ T 

R S 

U 

HashTable  S 
repeat  read(R, x) 

 y  join(HashTable, x) 
 write(V1, y) 

HashTable  T 
repeat  read(V1, y) 

 z  join(HashTable, y) 
 write(V2, z) 

HashTable  U 
repeat  read(V2, z) 

 u  join(HashTable, z) 
 write(Answer, u) 

V1 

V2 
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Materialize Intermediate 
Results Between Operators 

Question in class 

Given B(R), B(S), B(T), B(U) 

•  What is the total cost of the plan ? 
–  Cost =  

•  How much main memory do we need ? 
–  M =  

Dan Suciu -- 544, Winter 2011        



57 

Pipeline Between Operators 

⋈ 

⋈ 

⋈ T 

R S 

U 

HashTable1  S 
HashTable2  T 
HashTable3  U 
repeat  read(R, x) 

 y  join(HashTable1, x)  
 z  join(HashTable2, y) 
 u  join(HashTable3, z) 
 write(Answer, u) 
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Pipeline Between Operators 
Question in class 

Given B(R), B(S), B(T), B(U) 

•  What is the total cost of the plan ? 
–  Cost =  

•  How much main memory do we need ? 
–  M =  
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Pipeline in Bushy Trees 
⋈ 

⋈ 

⋈ 

X R S 

⋈ 

⋈ Z

Y 

⋈ 

V 

T 

⋈ 

I 
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Query Optimization 

Three major components: 

1.  Search space 

2.  Algorithm for enumerating query plans 

3.  Cardinality and cost estimation 


