
CSE544
Query Optimization

Tuesday-Thursday,
February 8th-10th, 2011

Dan Suciu -- 544, Winter 2011 1

Outline

•  Chapter 15 in the textbook

Dan Suciu -- 544, Winter 2011 2

Dan Suciu -- 544, Winter 2011 3

Query Optimization Algorithm
•  Enumerate alternative plans

•  Compute estimated cost of each plan
– Compute number of I/Os
– Compute CPU cost

•  Choose plan with lowest cost
– This is called cost-based optimization

Dan Suciu -- 544, Winter 2011 4

Example

•  Some statistics
–  T(Supplier) = 1000 records
–  T(Supply) = 10,000 records
–  B(Supplier) = 100 pages
–  B(Supply) = 100 pages
–  V(Supplier,scity) = 20, V(Supplier,state) = 10
–  V(Supply,pno) = 2,500
–  Both relations are clustered

•  M = 10

Supplier(sid, sname, scity,
sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

Dan Suciu -- 544, Winter 2011 5

Physical Query Plan 1

Supplier Supply

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Block-nested loop)

(On the fly)

(On the fly)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Dan Suciu -- 544, Winter 2011 6

Physical Query Plan 1

Supplier Supply

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Block-nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)/M
= 100 + 10 * 100
= 1,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Dan Suciu -- 544, Winter 2011 7

Supplier Supply

sid = sid

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2

(3)

(4)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Dan Suciu -- 544, Winter 2011 8

Supplier Supply

sid = sid

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2
Total cost
= 100 + 100 * 1/20 * 1/10 (1)
+ 100 + 100 * 1/2500 (2)
+ 2 (3)
+ 0 (4)
Total cost ≈ 204 I/Os

(3)

(4)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Supply Supplier

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Index lookup on sid)
Doesn’t matter if clustered or not

(On the fly)

(1) σ pno=2

(Index lookup on pno)
Assume: clustered

Physical Query Plan 3

(Use index)

(2)

(3)

(4)

(On the fly)

9

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Supply Supplier

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Index lookup on sid)
Doesn’t matter if clustered or not

(On the fly)

(1) σ pno=2

(Index lookup on pno)
Assume: clustered

Physical Query Plan 3

(Use index)

(2)

(3)

(4)

(On the fly)

4 tuples

10

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Supply Supplier

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Index lookup on sid)
Doesn’t matter if clustered or not

(On the fly)

(1) σ pno=2

(Index lookup on pno)
Assume: clustered

Physical Query Plan 3
Total cost
= 1 (1)
+ 4 (2)
+ 0 (3)
+ 0 (3)
Total cost ≈ 5 I/Os

(Use index)

(2)

(3)

(4)

(On the fly)

4 tuples

11

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Dan Suciu -- 544, Winter 2011 12

Simplifications

•  In the previous examples, we assumed
that all index pages were in memory

•  When this is not the case, we need to
add the cost of fetching index pages
from disk

13

Lessons

1.  Need to consider several physical plan
–  even for one, simple logical plan

2.  No plan is best in general
–  need to have statistics over the data
–  the B’s, the T’s, the V’s

Dan Suciu -- 544, Winter 2011

The Contract of the Optimizer

•  High-quality execution plans for all
queries,

•  While taking relatively small
optimization time, and

•  With limited additional input such as
histograms.

Dan Suciu -- 544, Winter 2011 14

Dan Suciu -- 544, Winter 2011 15

Query Optimization

Three major components:

1.  Search space

2.  Algorithm for enumerating query plans

3.  Cardinality and cost estimation

History of Query Optimization

•  First query optimizer was for System R,
from IBM, in 1979

•  It had all three components in place, and
defined the architecture of query
optimizers for years to come

•  You will see often references to System R
•  Read Section 15.6 in the book

Dan Suciu -- 544, Winter 2011 16

1. Search Space

•  This is the set of all alternative plans
that are considered by the optimizer

•  Defined by the set of algebraic laws and
the set of plans used by the optimizer

•  Will discuss these laws next

Dan Suciu -- 544, Winter 2011 17

Left-Deep Plans and
Bushy Plans

Dan Suciu -- 544, Winter 2011 18

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today

Dan Suciu -- 544, Winter 2011 19

Relational Algebra Laws

•  Selections
–  Commutative: σc1(σc2(R)) = σc2(σc1(R))
–  Cascading: σc1∧c2(R) = σc2(σc1(R))

•  Projections
•  Joins

–  Commutativity : R ⋈ S = S ⋈ R
–  Associativity: R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T
–  Distributivity: R ⨝ (S ∪ T) = (R ⨝ S) ∪ (R ⨝ T)
–  Outer joins get more complicated

Example

•  Assumptions:
– Every join selectivity is 10%

•  That is: T(R ⨝ S) = 0.1 * T(R) * T(S) etc.
– B(R)=100, B(S) = 50, B(T)=500
– All joins are main memory joins
– All intermediate results are materialized

Dan Suciu -- 544, Winter 2011 20

Which plan is more efficient ?
R ⨝ (S ⨝ T) or (R ⨝ S) ⨝ T ?

21

Example

•  Example: R(A, B, C, D), S(E, F, G)
 σ F=3 (R ⨝ D=E S) = ?
 σ A=5 AND G=9 (R ⨝ D=E S) = ?

Dan Suciu -- 544, Winter 2011

22

Simple Laws

•  Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R ⨝ D=E S) = Π ? (Π?(R) ⨝ D=E Π?(S))

Dan Suciu -- 544, Winter 2011

ΠM(R ⨝ S) = ΠM(ΠP(R) ⨝ ΠQ(S))
ΠM(ΠN(R)) = ΠM(R) /* note that M ⊆ N */

Laws for Group-by and Join

Dan Suciu -- 544, Winter 2011 23

γA, agg(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, agg(D)(R(A,B) ⨝ B=C (γC, agg(D)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

“Semantic Optimizations” =
Laws that use a Constraint

Dan Suciu -- 544, Winter 2011 24

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Foreign key

Need a second constraint for this law to hold. Which ?

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product)

Example

Dan Suciu -- 544, Winter 2011 25

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Foreign key

CREATE VIEW CheapProductCompany
 SELECT *
 FROM Product x, Company y
 WHERE x.cid = y.cid and x.price < 100

SELECT pname, price
FROM CheapProductCompany

SELECT pname, price
FROM Product

26

Law of Semijoins

Recall the definition of a semijoin:
•  R ⋉ S = Π A1,…,An (R ⨝ S)
•  Where the schemas are:

–  Input: R(A1,…An), S(B1,…,Bm)
– Output: T(A1,…,An)

•  The law of semijoins is:

Dan Suciu -- 544, Winter 2011

R ⨝ S = (R ⋉ S) ⨝ S

Laws with Semijoins

•  Very important in parallel databases
•  Often combined with Bloom Filters (next

lecture)
•  Read pp. 747 in the textbook

Dan Suciu -- 544, Winter 2011 27

28

Semijoin Reducer
•  Given a query:

•  A semijoin reducer for Q is

such that the query is equivalent to:

•  A full reducer is such that no dangling tuples remain

Q = Rk1 ⨝ Rk2 ⨝ . . . ⨝ Rkn

Ri1 = Ri1 ⋉ Rj1
Ri2 = Ri2 ⋉ Rj2

.
Rip = Rip ⋉ Rjp

Dan Suciu -- 544, Winter 2011

Q = R1 ⨝ R2 ⨝ . . . ⨝ Rn

29

Example

•  Example:

•  A semijoin reducer is:

•  The rewritten query is:

Q = R(A,B) ⨝ S(B,C)

R1(A,B) = R(A,B) ⋉ S(B,C)

Q = R1(A,B) ⨝ S(B,C)

30

Why Would We Do This ?

•  Large attributes:

•  Expensive side computations
Q = R(A, B, D, E, F,…) ⨝ S(B, C, M, K, L, …)

Q = γA,B,count(*)R(A,B,D) ⨝ σC=value(S(B,C))

R1(A,B,D) = R(A,B,D) ⋉ σC=value(S(B,C))
Q = γA,B,count(*)R1(A,B,D) ⨝ σC=value(S(B,C))

31

Semijoin Reducer

•  Example:

•  A semijoin reducer is:

•  The rewritten query is:

Q = R(A,B) ⨝ S(B,C)

R1(A,B) = R(A,B) ⋉ S(B,C)

Are there dangling tuples ?

Q = R1(A,B) ⨝ S(B,C)

32

Semijoin Reducer

•  Example:

•  A full semijoin reducer is:

•  The rewritten query is:

Q = R(A,B) ⨝ S(B,C)

R1(A,B) = R(A,B) ⋉ S(B,C)
S1(B,C) = S(B,C) ⋉ R1(A,B)

Q :- R1(A,B) ⨝ S1 (B,C)

No more dangling tuples

33

Semijoin Reducer

•  More complex example:

•  A full reducer is:
Q = R(A,B) ⨝ S(B,C) ⨝ T(C,D,E)

S’(B,C) := S(B,C) ⋉ R(A,B)
T’(C,D,E) := T(C,D,E) ⋉ S(B,C)
S’’(B,C) := S’(B,C) ⋉ T’(C,D,E)
R’(A,B) := R (A,B) ⋉ S’’(B,C)

Q = R’(A,B) ⨝ S’’(B,C) ⨝ T’(C,D,E)

34

Semijoin Reducer
•  Example:

•  Doesn’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”
[Database Theory, by Abiteboul, Hull, Vianu]

Q = R(A,B) ⨝ S(B,C) ⨝ T(A,C)

Dan Suciu -- 544, Winter 2011

Example with Semijoins

35

CREATE VIEW DepAvgSal As (
 SELECT E.did, Avg(E.Sal) AS avgsal
 FROM Emp E
 GROUP BY E.did)

[Chaudhuri’98] Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did

 AND E.age < 30 AND D.budget > 100k
 AND E.sal > V.avgsal

View:

Query:

Goal: compute only the necessary part of the view

Example with Semijoins

36

CREATE VIEW LimitedAvgSal As (
 SELECT E.did, Avg(E.Sal) AS avgsal
 FROM Emp E, Dept D

 WHERE E.did = D.did AND D.buget > 100k
 GROUP BY E.did)

[Chaudhuri’98]

New view
uses a reducer:

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did

 AND E.age < 30 AND D.budget > 100k
 AND E.sal > V.avgsal

New query:

Example with Semijoins

37

CREATE VIEW PartialResult AS
 (SELECT E.eid, E.sal, E.did
 FROM Emp E, Dept D
 WHERE E.did=D.did AND E.age < 30
 AND D.budget > 100k)

CREATE VIEW Filter AS
 (SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
 (SELECT E.did, Avg(E.Sal) AS avgsal
 FROM Emp E, Filter F
 WHERE E.did = F.did GROUP BY E.did)

[Chaudhuri’98]

Full reducer:

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

38

Example with Semijoins

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

Dan Suciu -- 544, Winter 2011

New query:

Pruning the Search Space

•  Prune entire sets of plans that are
unpromising

•  The choice of partial plans influences how
effective we can prune

Dan Suciu -- 544, Winter 2011 39

Complete Plans

Dan Suciu -- 544, Winter 2011 40

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

Pruning is
difficult
here.

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

41

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

Pruning can be done
more efficiently

Top-down Partial Plans

42

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

Dan Suciu -- 544, Winter 2011 43

Query Optimization

Three major components:

1.  Search space

2.  Algorithm for enumerating query plans

3.  Cardinality and cost estimation

2. Plan Enumeration Algorithms

•  System R (in class)
– Join reordering – dynamic programming
– Access path selection
– Bottom-up; simple; limited

•  Modern database optimizers (will not discuss)
– Rule-based: database of rules (x 100s)
– Dynamic programming
– Top-down; complex; extensible

Dan Suciu -- 544, Winter 2011 44

45

Join Reordering
System R [1979]
•  Push all selections down (=early) in the query plan
•  Pull all projections up (=late) in the query plan
•  What remains are joins:

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

Dan Suciu -- 544, Winter 2011

46

Join Reordering

Dynamic programming

•  For each subquery Q ⊆{R1, …, Rn},
compute the optimal join order for Q

•  Store results in a table: 2n-1 entries
– Often much fewer entries

Dan Suciu -- 544, Winter 2011

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

Join Reordering

Step 1: For each {Ri} do:
•  Initialize the table entry for {Ri} with the cheapest

access path for Ri

Step 2: For each subset Q ⊆ {R1, …, Rn} do:
•  For every partition Q = Q’ ∪ Q’’
•  Lookup optimal plan for Q’ and for Q’’ in the table
•  Compute the cost of the plan Q’ ⨝ Q’’
•  Store the cheapest plan Q’ ⨝ Q’’ in table entry for Q

Dan Suciu -- 544, Winter 2011 47

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

48

Reducing the Search Space

Restriction 1: only left linear trees (no bushy)

Restriction 2: no trees with cartesian product

Dan Suciu -- 544, Winter 2011

R(A,B) ⨝ S(B,C) ⨝ T(C,D)

Plan: (R(A,B)⨝T(C,D)) ⨝ S(B,C)
has a cartesian product.
Most query optimizers will not consider it

Access Path Selection
•  Access path: a way to retrieve tuples from a table

–  A file scan
–  An index plus a matching selection condition

•  Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition
–  Example: Supplier(sid,sname,scity,sstate)
–  B+-tree index on (scity,sstate)

•  matches scity=‘Seattle’
•  does not match sid=3, does not match sstate=‘WA’

Dan Suciu -- 544, Winter 2011 49

Dan Suciu -- 544, Winter 2011 50

Access Path Selection
•  Supplier(sid,sname,scity,sstate)

•  Selection condition: sid > 300 ∧ scity=‘Seattle’

•  Indexes: B+-tree on sid and B+-tree on scity

Dan Suciu -- 544, Winter 2011 51

Access Path Selection
•  Supplier(sid,sname,scity,sstate)

•  Selection condition: sid > 300 ∧ scity=‘Seattle’

•  Indexes: B+-tree on sid and B+-tree on scity

•  Which access path should we use?

Dan Suciu -- 544, Winter 2011 52

Access Path Selection
•  Supplier(sid,sname,scity,sstate)

•  Selection condition: sid > 300 ∧ scity=‘Seattle’

•  Indexes: B+-tree on sid and B+-tree on scity

•  Which access path should we use?

•  We should pick the most selective access path

Dan Suciu -- 544, Winter 2011 53

Access Path Selectivity
•  Access path selectivity is the number of pages

retrieved if we use this access path
–  Most selective retrieves fewest pages

•  As we saw earlier, for equality predicates
–  Selection on equality: σa=v(R)
–  V(R, a) = # of distinct values of attribute a
–  1/V(R,a) is thus the reduction factor
–  Clustered index on a: cost B(R)/V(R,a)
–  Unclustered index on a: cost T(R)/V(R,a)
–  (we are ignoring I/O cost of index pages for simplicity)

Other Decisions for the
Optimization Algorithm

•  How much memory to allocate to each
operator

•  Pipeline or materialize (next)

Dan Suciu -- 544, Winter 2011 54

55

Materialize Intermediate
Results Between Operators

⋈

⋈

⋈ T

R S

U

HashTable  S
repeat read(R, x)

 y  join(HashTable, x)
 write(V1, y)

HashTable  T
repeat read(V1, y)

 z  join(HashTable, y)
 write(V2, z)

HashTable  U
repeat read(V2, z)

 u  join(HashTable, z)
 write(Answer, u)

V1

V2

Dan Suciu -- 544, Winter 2011

56

Materialize Intermediate
Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

•  What is the total cost of the plan ?
–  Cost =

•  How much main memory do we need ?
–  M =

Dan Suciu -- 544, Winter 2011

57

Pipeline Between Operators

⋈

⋈

⋈ T

R S

U

HashTable1  S
HashTable2  T
HashTable3  U
repeat read(R, x)

 y  join(HashTable1, x)
 z  join(HashTable2, y)
 u  join(HashTable3, z)
 write(Answer, u)

Dan Suciu -- 544, Winter 2011

58

Pipeline Between Operators
Question in class

Given B(R), B(S), B(T), B(U)

•  What is the total cost of the plan ?
–  Cost =

•  How much main memory do we need ?
–  M =

Dan Suciu -- 544, Winter 2011

59

Pipeline in Bushy Trees
⋈

⋈

⋈

X R S

⋈

⋈ Z

Y

⋈

V

T

⋈

I
Dan Suciu -- 544, Winter 2011

Dan Suciu -- 544, Winter 2011 60

Query Optimization

Three major components:

1.  Search space

2.  Algorithm for enumerating query plans

3.  Cardinality and cost estimation

