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Outline

* Chapter 15 in the textbook
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Query Optimization Algorithm

 Enumerate alternative plans

» Compute estimated cost of each plan

— Compute number of I/Os
— Compute CPU cost

* Choose plan with lowest cost
— This is called cost-based optimization
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Example

Supplier(sid, sname, scity, SELECT sname
sstate) FROM Supplier x, Supply y
Supply(sid, pno, quantity) WHERE x.sid = y.sid

. y = and y.pno =2

« Some statistics
— T(Supplier) = 1000 records
— T(Supply) = 10,000 records

and x.scity = ‘Seattle’
and x.sstate = ‘WA

— B(Supply) = 100 pages

— V(Supplier,scity) = 20, V(Supplier,state) = 10
— V(Supply,pno) = 2,500

— Both relations are clustered

- M=10

(

— B(Supplier) = 100 pages
(
(
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T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 1

(On the fly) T

sSname

(On the fly)

Y scity=‘Seattle’ nsstate="WA' A pno=2

(Block-nested loop)

==

sid = sid
Supplier Supply
(File scan) (File scan)
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T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10

V(Supply,pno) = 2,500

Physical Query Plan 1

(On the fly) T

sname Selection and project on-the-fly
-> No additional cost.

(On the fly)

Y scity=‘Seattle’ nsstate="WA' A pno=2

Total cost of plan is thus cost of join:

(Block-nested loop)

] = B(Supplier)+B(Supplier)*B(Supply)/M
sid = sid =100+ 10 * 100
/ Rmoo /0s
Supplier Supply
(File scan) (File scan)
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T(Supplier) = 1000
T(Supply) = 10,000

(On the fly)

B(Supplier) = 100
B(Supply) = 100

V(Suppller scity) = 20
V(Supplier,state)

Physical Query Pz

n sname (4)

(Sort-merge join) [~ (3)

sid = sid
(Scan
write to T1) / \ (Scan
(1)o scity="Seattle’ nsstate="WA (2) o pnc\)N glte to
\
Supplier Supply
(File scan) (File scan)

Dan Suciu -- 544, Winter 2011

2 500

lan 2

12)



T(Supplier) = 1000 B(Supplier) = 100 V(Suppherscnty) 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) =
V(Supply,pno) = 2500
Physical Query Plan 2
Total t
(On the fly) T sname  (4) oo

=100 + 100 * 1/20 * 1/10 (1)
+100 + 100 * 1/2500 (2)

+2(3)
(Sort-merge join) [~ (3) +0(4)
sid = sid Total cost = 204 1/0s

(Scan
write to T1) (Scan
(1) Y scity="Seattle’ nsstate="WA (2) pnc\)lzglte o T2)

Supplier Supply

(File scan) (File scan)
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T(Supplier) = 1000 B(Supplier) = 100 V(Suppller scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state)

Physical Queri;ppﬁoaﬁo 3

(Onthefly) 4) =

shame

(On the fly)
3) o

scity="Seattle’ nsstate="WA

S.d sia ~ (Index nested loop)

(Use index) ////

(1) o pno =2

Supply Supplier
(Index lookup on pno ) (Index lookup on sid)
Assume: clustered Doesn’t matter if clustered or not®



T(Supplier) = 1000 B(Supplier) = 100 V(Suppller scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state)

Physical Queri;ppﬁoaﬁo 3

(Onthefly) 4) =

shame

(On the fly)
3) o

scity="Seattle’ nsstate="WA

S.d sia ~ (Index nested loop)

(Use index) /tUpleS
(1) Opno 2

Supply Supplier
(Index lookup on pno ) (Index lookup on sid)
Assume: clustered Doesn’t matter if clustered or not’



T(Supplier) = 1000 B(Supplier) = 100 V(Suppller scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state)

Physical Queri;ppﬁoaﬁo 3

(Onthefly) 4) =

shame

Total cost
=1(1)
(On the fly) +4(2)
3) o scity="Seattle’ Asstate="WA +0(3)
+ 0 (3)
Total cost =
Sld sid - (Index nested loop)
(Use index) /tUP'eS
(1) o pno =2
Supply Supplier

(Index lookup on pno ) (Index lookup on sid)

51/0s

Assume: clustered Doesn’t matter if clustered or not’



Simplifications

* In the previous examples, we assumed
that all index pages were in memory

 When this is not the case, we need to
add the cost of fetching index pages
from disk
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Lessons

1. Need to consider several physical plan
— even for one, simple logical plan

2. No plan is best in general

— need to have statistics over the data
— the B’s, the T's, the V’s
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The Contract of the Optimizer

» High-quality execution plans for all
queries,

* While taking relatively small
optimization time, and

« With limited additional input such as
histograms.
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Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation
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History of Query Optimization

First query optimizer was for System R,
from IBM, in 1979

It had all three components in place, and
defined the architecture of query
optimizers for years to come

You will see often references to System R
Read Section 15.6 in the book
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1. Search Space

* This is the set of all alternative plans
that are considered by the optimizer

* Defined by the set of algebraic laws and
the set of plans used by the optimizer

 WIill discuss these laws next
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Left-Deep Plans and
Bushy Plans

/\

SR TN
/\ RB/\R1 /\

R3 R1

Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today 18




Relational Algebra Laws

« Selections
— Commutative: o,(0.,(R)) = 0.,(0.1(R))
— Cascading: 0;,c(R) = 045(044(R))
* Projections
« Joins
— Commutativity : R XS =S X R
— Associativity: RX (SX T)=(RXS)X T
— Distributivity: RX(SUT) = (RXS)U(RXT)
— Outer joins get more complicated
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Example

Which plan is more efficient ?
RX(SXT) or ( RXS)XT?

* Assumptions:
— Every join selectivity is 10%
* Thatis: T(RX S)=0.1*T(R) * T(S) etc.
— B(R)=100, B(S) = 50, B(T)=500
— All joins are main memory joins

— All intermediate results are materialized
Dan Suciu -- 544, Winter 2011
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Example
 Example: R(A, B, C, D), S(E, F, G)

O r=3(RXpg S) =

O a=5 AND G=9 (R X p=g S) =

Dan Suciu -- 544, Winter 2011
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Simple Laws

[Iy(R X S) = I,(ITp(R) X Iy(S))
I1,,(ITy(R)) = II\,(R) /* note thatM & N */

. Example R(A,B,C,D), S(E, F, G)
[pg (R X pog S) = 11, (I1,(R) M p_g I1,(S))
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Laws for Group-by and Join

YA, agg(D)(R(AaB) X g=c S(C,D)) =
1A, agg(D)(R(A’B) X B=C (YC, agg(D)S(CaD)))

These are very powerful laws.
They were introduced only in the 90’s.
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“Semantic Optimizations” =
Laws that use a Constraint

Product(pid, pname, price, cid)

Company(cid, cname, city, state)

I1

(Product X,y Company) = I1 (Product)

pid, price pid, price

Need a second constraint for this law to hold. Which ?
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Example —

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

CREATE VIEW CheapProductCompany
SELECT *

FROM Product x, Company y
WHERE x.cid = y.cid and x.price < 100

FROM CheapProductCompany FROM Product

SELECT pname, price j> SELECT pname, price
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Law of Semijoins

Recall the definition of a semijoin:

* Where the schemas are:
— Input: R(A1,...An), S(B1,...,Bm)
— Output: T(A1,...,An)

* The law of semijoins is:

R X S=(RxS) X S

Dan Suciu -- 544, Winter 2011
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Laws with Semijoins

* Very important in parallel databases

» Often combined with Bloom Filters (next
lecture)

* Read pp. 747 in the textbook
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Semijoin Reducer

« Given a query: Q= R, XR,X...XR,

;e : R, =R, X R

* A semijoin reducer for Q is i i j1
Rz =R X Ry

Rlp = Rip X RJD

such that the query is equivalent to:

* A full reducer is such that no dangling tuples remain

Dan Suciu -- 544, Winter 2011
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Example

 Example:
Q = R(A,B) X S(B,C)

* A semijoin reducer is:

R,(A,B) = R(A,B) x S(B,C)

* The rewritten query is:

Q = R,(A,B) X S(B,C)

29



Why Would We Do This ?

» Large attributes:

Q=R(A,B, D,E,F...)XS(B,C, M,K, L, ...)

* Expensive side computations

Q= YA,B,count(*)R(A’BaD) X c)-C=value(S(B’C))

R(A,B,D) = R(A,B,D) X Opeye(S(B,C))
Q = VA,B,count(*)R1(A’B,D) X O-C=value(S(BaC))
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Semijoin Reducer

 Example:
Q = R(A,B) X S(B,C)

* A semijoin reducer is:
R,(A,B) = R(A,B) x S(B,C)

* The rewritten query is:
Q = R,(A,B) X S(B,C)

Are there dangling tuples ?
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Semijoin Reducer

 Example:
Q = R(A,B) X S(B,C)

A full semijoin reducer is:

(AB) = R(A,B)x S(B,C)
/(B,C) = S(B,C) ¥ Ry(A,B)

R
S

* The rewritten query is:
Q:- R(AB)X S, (B,C)

No more dangling tuples
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Semijoin Reducer

* More complex example:
Q = R(A,B) X S(B,C) X T(C,D,E)

* A full reducer is:

S'(B,C) := S(B,C) % R(A,B)
T°(C,D,E) := T(C,D,E) x S(B,C)
S”(B,C) := S'(B,C) x T'(C,D,E)
R'(A,B) := R(A,B) x S”(B,C)

Q= R'(AB)XS"(B,C) X T(C,D,E)

33



Semijoin Reducer

 Example:

Q = R(A,B) X S(B,C) X T(A,C)

* Doesn'’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”
[Database Theory, by Abiteboul, Hull, Vianu]

Dan Suciu -- 544, Winter 2011
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Example with Semijoins

Emp(eid, ename, sal, did) [Chaudhuri’98]
Dept(did, dname, budget)

DeptAvgSal(did, avgsal) /* view */

View:

Query:

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal

FROM Emp E, Dept D, DepAvgSal V

WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

Goal: compute only the necessary part of the view
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Example with Semijoins

Emp(eid, ename, sal, did) [Chaudhuri’98]
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

CREATE VIEW LimitedAvgSal As (
New view SELECT E.did, Avg(E.Sal) AS avgsal
: FROM Emp E, Dept D
uses a reducer:
WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

SELECT E.eid, E.sal
New query: FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal T




Example with Semijoins

Emp(eid, ename, sal, did) _
Dept(did, dname, budget) [Chaudhuri"98]

DeptAvgSal(did, avgsal) /* view */

Full reducer:

CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)




Example with Semijoins

New query:

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

Dan Suciu -- 544, Winter 2011
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Pruning the Search Space

* Prune entire sets of plans that are
unpromising

* The choice of partial plans influences how
effective we can prune
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Complete Plans

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40
l>4
\ X
/ \ Pruning is
/ \ 5 difficult
A<4° here.
GAI<4O \
R

Dan Suciu -- 544, Winter 2011 40



Bottom-up Partial Plans

R(A,B) SELECT *

S(B,C) FROMR,S, T

T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40
Pruning can be done / a
more efficiently \

A SRS
AI<40 / \ AI<40 / \ A’<4o _____
S T R R S

R



Top-down Partial Plans

[\

SELECT *

FROMR, S

WHERE R.B=S.B
and R.A<40

T

SELECT *
FROMR, S, T

WHERE R.B=S.B and S.C=T.C and R.A<40

/7
/T
SELECT * S
FROM R

WHERE R.A<40

O <40

SELECTR.A, T.D

FROMR, S, T

WHERE R.B=S.B
and S.C=T.C
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Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation

Dan Suciu -- 544, Winter 2011
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2. Plan Enumeration Algorithms

« System R (in class)
— Join reordering — dynamic programming
— Access path selection
— Bottom-up; simple; limited
 Modern database optimizers (will not discuss)
— Rule-based: database of rules (x 100s)
— Dynamic programming

— Top-down; complex; extensible
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Join Reordering

System R [1979]

« Push all selections down (=early) in the query plan
« Pull all projections up (=late) in the query plan
 What remains are joins:

SELECT list
FROM R1, ..., Rn
WHERE cond,; AND cond, AND . .. AND cond,

Dan Suciu -- 544, Winter 2011
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SELECT list
FROM R1,...,Rn
WHERE cond,; AND cond, AND . . . AND cond,

Join Reordering

Dynamic programming

* For each subquery Q &{R1, ..., Rn},
compute the optimal join order for Q

o Store results in a table: 2"-1 entries
— Often much fewer entries
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SELECT list
FROM R1,...,Rn
WHERE cond,; AND cond, AND . . . AND cond,

Join Reordering

Step 1: For each {R;} do:

* Initialize the table entry for {R} with the cheapest
access path for R,

Step 2: For each subset Q C {R,, ..., R} do:

« For every partitionQ=Q U Q”

» Lookup optimal plan for Q" and for Q" in the table

« Compute the cost of the plan Q" X Q”

 Store the cheapest plan Q' X Q" in table entry for Q
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Reducing the Search Space

Restriction 1: only left linear trees (no bushy)

Restriction 2: no trees with cartesian product

R(A,B) X S(B,C) X T(C,D)

Plan: (R(A,B)XT(C,D)) X S(B,C)
has a cartesian product.
Most query optimizers will not consider it

Dan Suciu -- 544, Winter 2011
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Access Path Selection

* Access path: a way to retrieve tuples from a table

— Afile scan
— An index plus a matching selection condition

Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition

— Example: Supplier(sid,sname,scity,sstate)

— B+-tree index on (scity,sstate)

* matches scity='Seattle’
* does not match sid=3, does not match sstate="WA’

Dan Suciu -- 544, Winter 2011

49



Access Path Selection

« Supplier(sid,sname,scity,sstate)
« Selection condition: sid > 300 A scity="Seattle’

* Indexes: B+-tree on sid and B+-tree on scity

Dan Suciu -- 544, Winter 2011

50



Access Path Selection

Supplier(sid,sname,scity,sstate)
Selection condition: sid > 300 A scity="Seattle’
Indexes: B+-tree on sid and B+-tree on scity

Which access path should we use?

Dan Suciu -- 544, Winter 2011
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Access Path Selection

Supplier(sid,sname,scity,sstate)

Selection condition: sid > 300 A scity="Seattle’
Indexes: B+-tree on sid and B+-tree on scity
Which access path should we use?

We should pick the most selective access path
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Access Path Selectivity

* Access path selectivity is the number of pages
retrieved if we use this access path
— Most selective retrieves fewest pages

* As we saw earlier, for equality predicates
— Selection on equality: o,_(R)
— V(R, a) = # of distinct values of attribute a
— 1/V(R,a) is thus the reduction factor
— Clustered index on a: cost B(R)/V(R,a)
— Unclustered index on a: cost T(R)/V(R,a)
— (we are ignoring 1/O cost of index pages for simplicity)
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Other Decisions for the
Optimization Algorithm

 How much memory to allocate to each
operator

* Pipeline or materialize (next)
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Materialize Intermediate
Results Between Operators

/\
/\

/K

@shTable < S \

repeat read(R, x)
y < join(HashTable, x)
write(V1, y)

HashTable € T

repeat read(V1,y)
z < join(HashTable, y)
write(V2, z)

HashTable < U
repeat read(V2, z)

u < join(HashTable, z)

\\ write(Answer, u) /
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Materialize Intermediate
Results Between Operators

Question in class
Given B(R), B(S), B(T), B(U)
« What is the total cost of the plan ?

— Cost =

 How much main memory do we need ?
— M=

Dan Suciu -- 544, Winter 2011
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Pipeline Between Operators

/
| /\

/K

HashTable2 < T

HashTable3 < U

repeat read(R, x)
y € join(HashTable1, x)
z < join(HashTable2, y)
u < join(HashTable3, z)

\ write(Answer, u) /

X\ /HashTabIe1 < S \
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Pipeline Between Operators

Question in class
Given B(R), B(S), B(T), B(U)
« What is the total cost of the plan ?

— Cost =

 How much main memory do we need ?
— M=
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Pipeline in Bushy Trees

/ \
P
/ S / \

S T | X Y
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Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation
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