
1

CSE544
Query Execution

Thursday, February 2nd, 2011

Dan Suciu -- 544, Winter 2011

Outline

•  Relational Algebra: Ch. 4.2
•  Overview of query evaluation: Ch. 12
•  Evaluating relational operators: Ch. 14

•  Shapiro’s paper

Dan Suciu -- 544, Winter 2011 2

The WHAT and the HOW

•  In SQL we write WHAT we want to get form
the data

•  The database system needs to figure out
HOW to get the data we want

•  The passage from WHAT to HOW goes
through the Relational Algebra

3 Dan Suciu -- 544, Winter 2011 Physical Data Independence

4

SQL = WHAT

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and z.city = ‘Seattle’

Dan Suciu -- 544, Winter 2011 It’s clear WHAT we want, unclear HOW to get it

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

5

Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ	

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

cid=cid

Customer

Π	

σ	

T1(pid,name,price,pid,cid,store)

T2(. . . .)

T4(name,name)

Final answer

T3(. . .)

Temporary tables
T1, T2, . . .

Relational Algebra = HOW

The order is now clearly specified:

6 Dan Suciu -- 544, Winter 2011

Iterate over PRODUCT…
…join with PURCHASE…
…join with CUSTOMER…
…select tuples with Price>100
and City=‘Seattle’…
…eliminate duplicates…
…and that’s the final answer !

Sets v.s. Bags

•  Sets: {a,b,c}, {a,d,e,f}, { }, . . .
•  Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two semantics:
•  Set semantics
•  Bag semantics

7 Dan Suciu -- 544, Winter 2011

Dan Suciu -- 544, Winter 2011

Extended Algebra Operators

•  Union ∪, intersection ∩, difference -
•  Selection σ	

•  Projection Π	

•  Join ⨝
•  Rename ρ	

•  Duplicate elimination δ	

•  Grouping and aggregation γ	

•  Sorting τ	

8

9

Relational Algebra (1/3)
The Basic Five operators:
• Union: ∪
• Difference: -
• Selection: σ
• Projection: Π
•  Join: ⨝

Dan Suciu -- 544, Winter 2011

10

Relational Algebra (2/3)

Derived or auxiliary operators:
• Renaming: ρ
•  Intersection, complement
• Variations of joins

– natural, equi-join, theta join,
semi-join, cartesian product

Dan Suciu -- 544, Winter 2011

Relational Algebra (3/3)

Extensions for bags:
•  Duplicate elimination: δ	

•  Group by: γ	

•  Sorting: τ	

11 Dan Suciu -- 544, Winter 2011

Union and Difference

Dan Suciu -- 544, Winter 2011 12

What do they mean over bags ?

R1 ∪ R2
R1 – R2

13

What about Intersection ?

•  Derived operator using minus

•  Derived using join (will explain later)

Dan Suciu -- 544, Winter 2011

R1 ∩ R2 = R1 – (R1 – R2)

R1 ∩ R2 = R1 ⨝ R2

14

Selection
•  Returns all tuples which satisfy a

condition

•  Examples
–  σSalary > 40000 (Employee)
–  σname = “Smith” (Employee)

•  The condition c can be =, <, ≤, >, ≥, <>
Dan Suciu -- 544, Winter 2011

σc(R)

15

σSalary > 40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Dan Suciu -- 544, Winter 2011

Employee

16

Projection
•  Eliminates columns

•  Example: project social-security number
and names:
–  Π SSN, Name (Employee)
–  Answer(SSN, Name)

Semantics differs over set or over bags
Dan Suciu -- 544, Winter 2011

Π A1,…,An (R)

17

Π Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Dan Suciu -- 544, Winter 2011

Employee

Name Salary
John 20000
John 60000

Bag semantics Set semantics

Which is more efficient to implement ?

18

Cartesian Product

•  Each tuple in R1 with each tuple in R2

•  Very rare in practice; mainly used to
express joins

Dan Suciu -- 544, Winter 2011

R1 × R2

19 Dan Suciu -- 544, Winter 2011

Name SSN
John 999999999
Tony 777777777

Employee

EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee ✕ Dependent

Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

20

Renaming

•  Changes the schema, not the instance

•  Example:
–  ρN, S(Employee) Answer(N, S)

Dan Suciu -- 544, Winter 2011

ρ B1,…,Bn (R)

21

Natural Join

•  Meaning: R1⨝ R2 = ΠA(σ(R1 × R2))

•  Where:
– The selection σ checks equality of all

common attributes
– The projection eliminates the duplicate

common attributes

Dan Suciu -- 544, Winter 2011

R1 ⨝ R2

Natural Join

Dan Suciu -- 544, Winter 2011 22

A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
ΠABC(σR.B=S.B(R × S))

23

Natural Join

•  Given the schemas R(A, B, C, D), S(A, C,
E), what is the schema of R ⨝ S ?

•  Given R(A, B, C), S(D, E), what is R ⨝ S ?

•  Given R(A, B), S(A, B), what is R ⨝ S ?

Dan Suciu -- 544, Winter 2011

24

Theta Join

•  A join that involves a predicate

•  Here θ can be any condition

Dan Suciu -- 544, Winter 2011

R1 ⨝θ R2 = σ θ (R1 × R2)

25

Eq-join

•  A theta join where θ is an equality

•  This is by far the most used variant of
join in practice

Dan Suciu -- 544, Winter 2011

R1 ⨝A=B R2 = σA=B (R1 × R2)

So Which Join Is It ?

•  When we write R ⨝ S we usually mean
an eq-join, but we often omit the
equality predicate when it is clear from
the context

26 Dan Suciu -- 544, Winter 2011

27

Semijoin

•  Where A1, …, An are the attributes in R

Dan Suciu -- 544, Winter 2011

R ⋉C S = Π A1,…,An (R ⨝C S)

Formally, R ⋉C S means this: retain from R only those
tuples that have some matching tuple in S
•  Duplicates in R are preserved
•  Duplicates in S don’t matter

Semijoins in Distributed
Databases

28

SSN Name Stuff
.

EmpSSN DepName Age Stuff
.

Employee
Dependent

network

Employee ⨝SSN=EmpSSN (σ age>71 (Dependent))

Task: compute the query with minimum amount of data transfer

Assumptions: Very few Employees have dependents.
Very few dependents have age > 71.
“Stuff” is big.

Semijoins in Distributed
Databases

29

SSN Name Stuff
.

EmpSSN DepName Age Stuff
.

Employee
Dependent

network

Employee ⨝SSN=EmpSSN (σ age>71 (Dependent))

T(SSN) = Π SSN σ age>71 (Dependents)

Semijoins in Distributed
Databases

30

SSN Name Stuff
.

EmpSSN DepName Age Stuff
.

Employee
Dependent

network

R = Employee ⨝SSN=EmpSSN T
 = Employee ⋉SSN=EmpSSN (σ age>71 (Dependents))

T(SSN) = Π SSN σ age>71 (Dependents)

Employee ⨝SSN=EmpSSN (σ age>71 (Dependent))

Semijoins in Distributed
Databases

31

SSN Name Stuff
.

EmpSSN DepName Age Stuff
.

Employee
Dependent

network

T(SSN) = Π SSN σ age>71 (Dependents)

R = Employee ⋉SSN=EmpSSN T

Answer = R ⨝SSN=EmpSSN Dependents

Employee ⨝SSN=EmpSSN (σ age>71 (Dependent))

Joins R US

•  The join operation in all its variants (eq-
join, natural join, semi-join, outer-join) is
at the heart of relational database
systems

•  WHY ?

Dan Suciu -- 544, Winter 2011 32

33

Operators on Bags
•  Duplicate elimination δ	

δ(R) = select distinct * from R

•  Grouping γ	

γA,sum(B) (R) = select A,sum(B) from R group by A

•  Sorting τ	

Dan Suciu -- 544, Winter 2011

34

Complex RA Expressions

 Person x Purchase y Person z Product u

 σname=fred σname=gizmo

Π pid Π ssn

y.seller-ssn=z.ssn

y.pid=u.pid

x.ssn=y.buyer-ssn

γ u.name, count(*)

Dan Suciu -- 544, Winter 2011

RA = Dataflow Program

•  Several operations, plus strictly
specified order

•  In RDBMS the dataflow graph is always
a tree

•  Novel applications (s.a. PIG), dataflow
graph may be a DAG

35 Dan Suciu -- 544, Winter 2011

36

Limitations of RA
•  Cannot compute “transitive closure”

•  Find all direct and indirect relatives of Fred
•  Cannot express in RA !!! Need to write Java program
•  Remember the Bacon number ? Needs TC too !

Name1 Name2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse

Nancy Lou Sister

Dan Suciu -- 544, Winter 2011

Steps of the Query Processor

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

37

Dan Suciu -- 544, Winter 2011

Example Database Schema

View: Suppliers in Seattle

38

CREATE VIEW NearbySupp AS	

SELECT sno, sname	

FROM Supplier	

WHERE scity='Seattle' AND sstate='WA'	

Supplier(sno,sname,scity,sstate)	

Part(pno,pname,psize,pcolor)	

Supply(sno,pno,price)	

Dan Suciu -- 544, Winter 2011

Example Query

Find the names of all suppliers in Seattle
who supply part number 2

39

SELECT sname FROM NearbySupp	

WHERE sno IN (SELECT sno	

 FROM Supplies	

 WHERE pno = 2)	

Dan Suciu -- 544, Winter 2011

Steps in Query Evaluation
•  Step 0: Admission control

–  User connects to the db with username, password
–  User sends query in text format

•  Step 1: Query parsing
–  Parses query into an internal format
–  Performs various checks using catalog

•  Correctness, authorization, integrity constraints

•  Step 2: Query rewrite
–  View rewriting, flattening, etc.

40

Dan Suciu -- 544, Winter 2011

Rewritten Version of Our
Query

Original query:

Rewritten query:

41

SELECT sname	

FROM NearbySupp	

WHERE sno IN (SELECT sno	

 FROM Supplies	

 WHERE pno = 2)	

SELECT S.sname	

FROM Supplier S, Supplies U	

WHERE S.scity='Seattle' AND S.sstate='WA’	

AND S.sno = U.sno	

AND U.pno = 2;

Dan Suciu -- 544, Winter 2011

Continue with Query
Evaluation

•  Step 3: Query optimization
–  Find an efficient query plan for executing the query

•  A query plan is
–  Logical query plan: an extended relational algebra tree
–  Physical query plan: with additional annotations at each

node
•  Access method to use for each relation
•  Implementation to use for each relational operator

42

Dan Suciu -- 544, Winter 2011

Extended Algebra Operators

•  Union ∪, intersection ∩, difference -
•  Selection σ	

•  Projection π	

•  Join ⨝
•  Duplicate elimination δ	

•  Grouping and aggregation γ	

•  Sorting τ	

•  Rename ρ	

43

Dan Suciu -- 544, Winter 2011

Logical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

Π sname

44

Dan Suciu -- 544, Winter 2011

Query Block

•  Most optimizers operate on individual query
blocks

•  A query block is an SQL query with no nesting
–  Exactly one

•  SELECT clause
•  FROM clause

–  At most one
•  WHERE clause
•  GROUP BY clause
•  HAVING clause

45

Dan Suciu -- 544, Winter 2011

Typical Plan for Block (1/2)

R S

join condition

σ selection condition

π fields

join condition

…

SELECT-PROJECT-JOIN
Query

...

46

Dan Suciu -- 544, Winter 2011

Typical Plan For Block (2/2)

γ fields, sum/count/min/max(fields)

σhaving-ondition

σ selection condition

join condition

… …
47

Dan Suciu -- 544, Winter 2011

How about Subqueries?
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100

48

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Dan Suciu -- 544, Winter 2011

How about Subqueries?
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100

49

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Dan Suciu -- 544, Winter 2011

How about Subqueries?
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100

50

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and Q.sno not in
 SELECT P.sno
 FROM Supply P
 WHERE P.price > 100

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Dan Suciu -- 544, Winter 2011

How about Subqueries?

51

Un-nesting

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and Q.sno not in
 SELECT P.sno
 FROM Supply P
 WHERE P.price > 100

(SELECT Q.sno
 FROM Supplier Q
 WHERE Q.sstate = ‘WA’)
 EXCEPT
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Dan Suciu -- 544, Winter 2011

How about Subqueries?

Supply

σsstate=‘WA’

Supplier

σPrice > 100

52

(SELECT Q.sno
 FROM Supplier Q
 WHERE Q.sstate = ‘WA’)
 EXCEPT
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

−

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Finally…

Dan Suciu -- 544, Winter 2011

Physical Query Plan

•  Logical query plan with extra annotations

•  Access path selection for each relation
–  Use a file scan or use an index

•  Implementation choice for each operator

•  Scheduling decisions for operators
53

Dan Suciu -- 544, Winter 2011

Physical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

54

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Dan Suciu -- 544, Winter 2011

Final Step in Query
Processing

•  Step 4: Query execution
–  How to synchronize operators?
–  How to pass data between operators?

•  What techniques are possible?
–  One thread per query
–  Iterator interface
–  Pipelined execution
–  Intermediate result materialization

55

Dan Suciu -- 544, Winter 2011

Iterator Interface
•  Each operator implements this interface
•  Interface has only three methods
•  open()

–  Initializes operator state
–  Sets parameters such as selection condition

•  get_next()
–  Operator invokes get_next() recursively on its inputs
–  Performs processing and produces an output tuple

•  close(): cleans-up state
56

Dan Suciu -- 544, Winter 2011

Pipelined Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

57

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Dan Suciu -- 544, Winter 2011

Pipelined Execution

•  Applies parent operator to tuples directly as
they are produced by child operators

•  Benefits
–  No operator synchronization issues
–  Saves cost of writing intermediate data to disk
–  Saves cost of reading intermediate data from disk
–  Good resource utilizations on single processor

•  This approach is used whenever possible

58

Dan Suciu -- 544, Winter 2011

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

59

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Intermediate Tuple
Materialization

•  Writes the results of an operator to an
intermediate table on disk

•  No direct benefit but
•  Necessary data is larger than main memory
•  Necessary when operator needs to examine

the same tuples multiple times

Dan Suciu -- 544, Winter 2011 60

61

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

Will discuss several basic physical operators,
with a focus on join

Dan Suciu -- 544, Winter 2011

62

Question in Class
Logical operator:
Supply(sno,pno,price) ⨝pno=pno Part(pno,pname,psize,pcolor)

Propose three physical operators for the join, assuming the
tables are in main memory:

1. 
2. 
3. 

Dan Suciu -- 544, Winter 2011

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

63

Question in Class
Logical operator:
Supply(sno,pno,price) ⨝pno=pno Part(pno,pname,psize,pcolor)

Propose three physical operators for the join, assuming the
tables are in main memory:

1.  Nested Loop Join
2.  Merge join
3.  Hash join

Dan Suciu -- 544, Winter 2011

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

1. Nested Loop Join

64

for S in Supply do {
 for P in Part do {
 if (S.pno == P.pno) output(S,P);
 }
}

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Supply = outer relation
Part = inner relation
Note: sometimes
terminology is switched

Would it be more efficient to
choose Part=inner, Supply=outer ?
What if we had an index on Part.pno ?

Dan Suciu -- 544, Winter 2011

It’s more complicated…
•  Each operator implements this interface
•  open()
•  get_next()
•  close()

65

Main Memory Nested Loop
Join Revisited

66

open () {
 Supply.open();
 Part.open();
 S = Supply.get_next();
}

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

get_next() {
 repeat {
 P= Part.get_next();
 if (P== NULL)
 { Part.close();
 S= Supply.get_next();
 if (S== NULL) return NULL;
 Part.open();
 P= Part.get_next();
 }
 until (S.pno == P.pno);
 return (S, P)
}

close () {
 Supply.close ();
 Part.close ();
}

ALL operators need to be implemented this way !

BRIEF Review of Hash Tables

67

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

50
3

10
3

76 66
6

48

50
3

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

BRIEF Review of Hash Tables

•  insert(k, v) = inserts a key k with value v

•  Many values for one key
– Hence, duplicate k’s are OK

•  find(k) = returns the list of all values v
associated to the key k

Dan Suciu -- 544, Winter 2011 68

2. Hash Join (main memory)

69

for S in Supply do insert(S.pno, S);

for P in Part do {
 LS = find(P.pno);
 for S in LS do { output(S, P); }
}

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Recall: need to rewrite as open, get_next, close

Build
phase

Probing

Supply=outer
Part=inner

3. Merge Join (main memory)

70

Part1 = sort(Part, pno);
Supply1 = sort(Supply,pno);
P=Part1.get_next(); S=Supply1.get_next();

While (P!=NULL and S!=NULL) {
 case:
 P.pno > S.pno: P = Part1.get_next();
 P.pno < S.pno: S = Supply1.get_next();
 P.pno == S.pno { output(P,S);
 S = Supply1.get_next();
 }
}

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Why ???

71

Main Memory Group By

Grouping:
 Product(name, department, quantity)
	
γdepartment, sum(quantity) (Product)

 Answer(department, sum)

Main memory hash table
Question: How ?

Dan Suciu -- 544, Winter 2011

72

Duplicate Elimination IS
Group By

Duplicate elimination δ(R) is the same as
group by γ(R) WHY ???

•  Hash table in main memory

•  Cost: B(R)
•  Assumption: B(δ(R)) <= M

Dan Suciu -- 544, Winter 2011

Selections, Projections

•  Selection = easy, check condition on
each tuple at a time

•  Projection = easy (assuming no
duplicate elimination), remove
extraneous attributes from each tuple

Dan Suciu -- 544, Winter 2011 73

Dan Suciu -- 544, Winter 2011

Review (1/2)
•  Each operator implements this interface
•  open()

–  Initializes operator state
–  Sets parameters such as selection condition

•  get_next()
–  Operator invokes get_next() recursively on its inputs
–  Performs processing and produces an output tuple

•  close()
–  Cleans-up state

74

Review (2/2)

•  Three algorithms for main memory join:
– Nested loop join
– Hash join
– Merge join

•  Algorithms for selection, projection,
group-by

Dan Suciu -- 544, Winter 2011 75

If |R| = m and |S| = n,
what is the asymptotic
complexity for
computing R ⋈ S ?

External Memory Algorithms

•  Data is too large to fit in main memory

•  Issue: disk access is 3-4 orders of
magnitude slower than memory access

•  Assumption: runtime dominated by # of
disk I/O’s; will ignore the main memory
part of the runtime

Dan Suciu -- 544, Winter 2011 76

77

Cost Parameters
The cost of an operation = total number of I/Os
Cost parameters:

•  B(R) = number of blocks for relation R
•  T(R) = number of tuples in relation R
•  V(R, a) = number of distinct values of attribute a
•  M = size of main memory buffer pool, in blocks

Dan Suciu -- 544, Winter 2011

Facts: (1) B(R) << T(R):
 (2) When a is a key, V(R,a) = T(R)
 When a is not a key, V(R,a) << T(R)

Ad-hoc Convention

•  We assume that the operator reads the
data from disk

•  We assume that the operator does not
write the data back to disk (e.g.:
pipelining)

•  Thus:

Dan Suciu -- 544, Winter 2011 78

Any main memory join algorithms for R ⋈ S: Cost = B(R)+B(S)

Any main memory grouping γ(R): Cost = B(R)

79

Sequential Scan of a Table R

•  When R is clustered
–  Blocks consists only of records from this table
–  B(R) << T(R)
–  Cost = B(R)

•  When R is unclustered
–  Its records are placed on blocks with other tables
–  B(R) ≈ T(R)
–  Cost = T(R)

Dan Suciu -- 544, Winter 2011

80

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S

•  Cost: T(R) B(S) when S is clustered
•  Cost: T(R) T(S) when S is unclustered

for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

Dan Suciu -- 544, Winter 2011

R=outer relation
S=inner relation

81

Examples

M = 4; R, S are clustered
•  Example 1:

–  B(R) = 1000, T(R) = 10000
–  B(S) = 2, T(S) = 20
–  Cost = ?

•  Example 2:
–  B(R) = 1000, T(R) = 10000
–  B(S) = 4, T(S) = 40
–  Cost = ?

Dan Suciu -- 544, Winter 2011

Can you do better ?

82

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
 for each block br of R do
 for each tuple s in bs
 for each tuple r in br do
 if “r and s join” then output(r,s)

Dan Suciu -- 544, Winter 2011

Terminology alert: book calls S the inner relation

Why not M ?

83

Block Nested-loop Join

. . .
. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

Dan Suciu -- 544, Winter 2011

84

Examples
M = 4; R, S are clustered
•  Example 1:

–  B(R) = 1000, T(R) = 10000
–  B(S) = 2, T(S) = 20
–  Cost = B(S) + B(R) = 1002

•  Example 2:
–  B(R) = 1000, T(R) = 10000
–  B(S) = 4, T(S) = 40
–  Cost = B(S) + 2B(R) = 2004

Dan Suciu -- 544, Winter 2011

Note: T(R) and
T(S) are irrelevant
here.

85

Cost of Block Nested-loop Join

•  Read S once: cost B(S)
•  Outer loop runs B(S)/(M-2) times, and

each time need to read R: costs B(S)B
(R)/(M-2)

Dan Suciu -- 544, Winter 2011

Cost = B(S) + B(S)B(R)/(M-2)

Index Based Selection

Dan Suciu -- 544, Winter 2011 86

SELET *
FROM Movie
WHERE id = ‘12345’

Recall IMDB; assume indexes on Movie.id, Movie.year

SELET *
FROM Movie
WHERE year = ‘1995’

B(Movie) = 10k
T(Movie) = 1M

What is your estimate
of the I/O cost ?

87

Index Based Selection

Selection on equality: σa=v(R)

•  Clustered index on a: cost B(R)/V(R,a)

•  Unclustered index : cost T(R)/V(R,a)

Dan Suciu -- 544, Winter 2011

88

Index Based Selection
•  Example:

•  Table scan (assuming R is clustered):
–  B(R) = 10k I/Os

•  Index based selection:
–  If index is clustered: B(R)/V(R,a) = 100 I/Os
–  If index is unclustered: T(R)/V(R,a) = 10000 I/Os

B(R) = 10k
T(R) = 1M
V(R, a) = 100

cost of σa=v(R) = ?

Dan Suciu -- 544, Winter 2011

Rule of thumb:
don’t build unclustered indexes when V(R,a) is small !

89

Index Based Join

•  R ⨝ S
•  Assume S has an index on the join

attribute
for each tuple r in R do
 lookup the tuple(s) s in S using the index

output (r,s)

Dan Suciu -- 544, Winter 2011

90

Index Based Join

Cost (Assuming R is clustered):

•  If index is clustered: B(R) + T(R)B(S)/V(S,a)
•  If unclustered: B(R) + T(R)T(S)/V(S,a)

Dan Suciu -- 544, Winter 2011

91

Operations on Very Large
Tables

•  Compute R ⋈ S when each is larger
than main memory

•  Two methods:
– Partitioned hash join (many variants)
– Merge-join

•  Similar for grouping
Dan Suciu -- 544, Winter 2011

Partitioned Hash-based
Algorithms

Idea:
•  If B(R) > M, then partition it into smaller files:

 R1, R2, R3, …, Rk

•  Assuming B(R1)=B(R2)=…= B(Rk), we have
 B(Ri) = B(R)/k

•  Goal: each Ri should fit in main memory:
 B(Ri) ≤ M

Dan Suciu -- 544, Winter 2011 92 How big can k be ?

93

Partitioned Hash Algorithms
•  Idea: partition a relation R into M-1 buckets, on disk
•  Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

Dan Suciu -- 544, Winter 2011 Assumption: B(R)/M <= M, i.e. B(R) <= M2

94

Grouping	

•  γ(R) = grouping and aggregation
•  Step 1. Partition R into buckets
•  Step 2. Apply γ to each bucket (may

read in main memory)

•  Cost: 3B(R)
•  Assumption: B(R) <= M2

Dan Suciu -- 544, Winter 2011

95

Partitioned Hash Join
GRACE Join

R ⨝ S
•  Step 1:

–  Hash S into M buckets
–  send all buckets to disk

•  Step 2
–  Hash R into M buckets
–  Send all buckets to disk

•  Step 3
–  Join every pair of buckets

Dan Suciu -- 544, Winter 2011

96

Grace-Join
•  Partition both relations

using hash fn h: R tuples
in partition i will only
match S tuples in partition
i.

  Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition of
S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1
. . .

Dan Suciu -- 544, Winter 2011

97

Grace Join

•  Cost: 3B(R) + 3B(S)
•  Assumption: min(B(R), B(S)) <= M2

Dan Suciu -- 544, Winter 2011

98

External Sorting

•  Problem:
•  Sort a file of size B with memory M
•  Where we need this:

– ORDER BY in SQL queries
– Several physical operators
– Bulk loading of B+-tree indexes.

•  Will discuss only 2-pass sorting, when B < M2

Dan Suciu -- 544, Winter 2011

99

External Merge-Sort: Step 1

•  Phase one: load M bytes in memory, sort

Disk Disk

. .

.
. . .

M

Main memory

Runs of length M bytes
Dan Suciu -- 544, Winter 2011

100

External Merge-Sort: Step 2

•  Merge M – 1 runs into a new run
•  Result: runs of length M (M – 1)≈ M2

Disk Disk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

Main memory

Dan Suciu -- 544, Winter 2011 If B <= M2 then we are done

101

Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) <= M2

Dan Suciu -- 544, Winter 2011

102

Grouping

Grouping: γa, sum(b) (R)
•  Idea: do a two step merge sort, but

change one of the steps

•  Question in class: which step needs to
be changed and how ?

Dan Suciu -- 544, Winter 2011

Cost = 3B(R)
Assumption: B(δ(R)) <= M2

103

Merge-Join

Join R ⨝ S
•  Step 1a: initial runs for R
•  Step 1b: initial runs for S
•  Step 2: merge and join

Dan Suciu -- 544, Winter 2011

104

Merge-Join

Main memory
Disk Disk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

M1 = B(R)/M runs for R
M2 = B(S)/M runs for S
Merge-join M1 + M2 runs;
need M1 + M2 <= M

105

Two-Pass Algorithms Based
on Sorting

Join R ⨝ S
•  If the number of tuples in R matching

those in S is small (or vice versa) we
can compute the join during the merge
phase

•  Total cost: 3B(R)+3B(S)
•  Assumption: B(R) + B(S) <= M2

Dan Suciu -- 544, Winter 2011

106

Summary of External Join
Algorithms

•  Block Nested Loop: B(S) + B(R)*B(S)/M

•  Index Join: B(R) + T(R)B(S)/V(S,a)

•  Partitioned Hash: 3B(R)+3B(S);
– min(B(R),B(S)) <= M2

•  Merge Join: 3B(R)+3B(S)
– B(R)+B(S) <= M2

Dan Suciu -- 544, Winter 2011

