CSE544 Database Architecture

Tuesday, February 1st, 2011

Where We Are

- What we have already seen
 - Overview of the relational model
 - Motivation and where model came from
 - Physical and logical independence
 - How to query a database
 - Relational calculus
 - SQL
 - Transactions
- Where we go from here
 - How can we efficiently implement this model?

References

- Anatomy of a database system. J. Hellerstein and M. Stonebraker. In Red Book (4th ed).
- Operating system support for database management. Michael Stonebraker. Communications of the ACM. Vol 24. Number 7. July 1981. Also in Red Book (3rd ed and 4th ed).

Outline

DBMS architecture

- Main components of a modern DBMS
- Process models
- Storage models
- Query processor (we will cover this part in lecture 6)

DBMS Architecture

Admission Control

Connection Mgr

Process Manager

Access Methods

Lock Manager

Storage Manager

Parser

Query Rewrite

Optimizer

Executor

Query Processor

Buffer Manager

Log Manager

Disk Space Mgr

Replication Services

Memory Mgr

Admin Utilities

Shared Utilities

[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.

Process Model

Why not simply queue all user requests? (and serve them one at the time)

Alternatives

- 1. Process per connection
- 2. Server process (thread per connection)
 - OS threads or DBMS threads
- 3. Server process with I/O process

Advantages and problems of each model?

Process Per Connection

Overview

DB server forks one process for each client connection

Advantages

- Easy to implement (OS time-sharing, OS isolation, debuggers, etc.)
- Provides more physical memory than a single process can use

Drawbacks

- Need OS-supported "shared memory" (for lock table, for buffer pool)
 - Since all processes access the same data on disk, need concurrency control
- Not scalable: memory overhead and expensive context switches

Server Process

Overview

DB assigns one thread per connection (from a thread pool)

Advantages

- Shared structures can simply reside on the heap
- Threads are lighter weight than processes (memory, context switching)

Drawbacks

- Concurrent programming is hard to get right (race conditions, deadlocks)
- Portability issues can arise when using OS threads
- Big problem: entire process blocks on synchronous I/O calls
 - Solution 1: OS provides asynchronous I/O (true in modern OS)
 - Solution 2: Use separate process(es) for I/O tasks

DBMS Threads vs OS Threads

Why do DBMSs implement their own threads?

- Legacy: originally, there were no OS threads
- Portability: OS thread packages are not completely portable
- Performance: fast task switching

Drawbacks

- Replicating a good deal of OS logic
- Need to manage thread state, scheduling, and task switching

How to map DBMS threads onto OS threads or processes?

- Rule of thumb: one OS-provided dispatchable unit per physical device
- See page 9 and 10 of Hellerstein and Stonebraker's paper
 Dan Suciu -- 544, Winter 2011

Historical Perspective (1981)

- See paper: "OS Support for Database Management"
- No OS threads
- No shared memory between processes
 - Makes one process per user hard to program
- Some OSs did not support many to one communication
 - Thus forcing the one process per user model
- No asynchronous I/O
 - But inter-process communication expensive
 - Makes the use of I/O processes expensive
- Common original design: DBMS threads

Commercial Systems

Oracle

- Unix default: process-per-user mode
- Unix: DBMS threads multiplexed across OS processes
- Windows: DBMS threads multiplexed across OS threads

DB2

- Unix: process-per-user mode
- Windows: OS thread-per-user

SQL Server

- Windows default: OS thread-per-user
- Windows: DBMS threads multiplexed across OS threads

Admission Control

Why does a DBMS need admission control?

When does DBMS perform admission control?

Admission Control

- Why does a DBMS need admission control?
 - To avoid thrashing and provide "graceful degradation" under load
- When does DBMS perform admission control?
 - In the dispatcher process: want to drop clients as early as possible to avoid wasting resources on incomplete requests
 - Before query execution: delay queries to avoid thrashing

Outline

- History of database management systems
- DBMS architecture
 - Main components of a modern DBMS
 - Process models
 - Storage models
 - Query processor

Storage Model

- Problem: DBMS needs spatial and temporal control over storage
 - Spatial control for performance
 - Temporal control for correctness and performance

Alternatives

- Use "raw" disk device interface directly
- Use OS files

Spatial Control Using "Raw" Disk Device Interface

Overview

DBMS issues low-level storage requests directly to disk device

Advantages

- DBMS can ensure that important queries access data sequentially
- Can provide highest performance

Disadvantages

- Requires devoting entire disks to the DBMS
- Reduces portability as low-level disk interfaces are OS specific
- Many devices are in fact "virtual disk devices"

Spatial Control Using OS Files

Overview

DBMS creates one or more very large OS files

Advantages

Allocating large file on empty disk can yield good physical locality

Disadvantages

- OS can limit file size to a single disk
- OS can limit the number of open file descriptors
- But these drawbacks have mostly been overcome by modern OSs

Historical Perspective (1981)

- Recognizes mismatch problem between OS files and DBMS needs
 - If DBMS uses OS files and OS files grow with time, blocks get scattered
 - OS uses tree structure for files but DBMS needs its own tree structure
- Other proposals at the time
 - Extent-based file systems
 - Record management inside OS

Commercial Systems

- Most commercial systems offer both alternatives
 - Raw device interface for peak performance
 - OS files more commonly used
- In both cases, we end-up with a DBMS file abstraction implemented on top of OS files or raw device interface

Temporal Control Buffer Manager

Correctness problems

- DBMS needs to control when data is written to disk in order to provide transactional semantics (we will study transactions later)
- OS buffering can delay writes, causing problems when crashes occur

Performance problems

- OS optimizes buffer management for general workloads
- DBMS understands its workload and can do better.
- Areas of possible optimizations
 - Page replacement policies
 - Read-ahead algorithms (physical vs logical)
 - Deciding when to flush tail of write-ahead log to disk

Historical Perspective (1981)

- Problems with OS buffer pool management long recognized
 - Accessing OS buffer pool involves an expensive system call
 - Faster to access a DBMS buffer pool in user space
 - LRU replacement does not match DBMS workload
 - DBMS can do better
 - OS can do only sequential prefetching, DBMS knows which page it needs next and that page may not be sequential
 - DBMS needs ability to control when data is written to disk

Commercial Systems

- DBMSs implement their own buffer pool managers
- Modern filesystems provide good support for DBMSs
 - Using large files provides good spatial control
 - Using interfaces like the mmap suite
 - Provides good temporal control
 - Helps avoid double-buffering at DBMS and OS levels

Outline

- History of database management systems
- DBMS architecture
 - Main components of a modern DBMS
 - Process models
 - Storage models
 - Query processor (will go over the query processor in lecture 7)

DBMS Architecture

Admission Control

Connection Mgr

Process Manager

Access Methods

Lock Manager

Storage Manager

Parser

Query Rewrite

Optimizer

Executor

Query Processor

Buffer Manager

Log Manager

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

Shared Utilities

[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.

Summary

- Past few weeks: transactions
- Today: overview of architecture of a DBMS
- Next few weeks
 - Storage and indexing
 - Query execution
 - Query optimization
 - Distribution
 - Parallel processing