
1

CSE544	
Transac-ons:	 Concurrency	 Control	

Lectures	 #5-‐6	
Thursday,	 January	 20,	 2011	

Tuesday,	 January	 25,	 2011	

Dan Suciu -- 544, Winter 2011

Reading	 Material	 for	 Lectures	 5-‐7	
Main	 textbook	 (Ramakrishnan	 and	 Gehrke):	
•  Chapters	 16,	 17,	 18	
Mike	 Franklin’s	 paper	

More	 background	 material:	 Garcia-‐Molina,	
Ullman,	 Widom:	

•  Chapters	 17.2,	 17.3,	 17.4	
•  Chapters	 18.1,	 18.2,	 18.3,	 18.8,	 18.9	

Dan Suciu -- 544, Winter 2011 2

3

Transactions
•  The problem: An application must perform

several writes and reads to the database,
as a unity

•  Solution: multiple actions of the application
are bundled into one unit called
Transaction

Dan Suciu -- 544, Winter 2011

Turing Awards to Database
Researchers

•  Charles Bachman 1973 for CODASYL

•  Edgar Codd 1981 for relational
databases

•  Jim Gray 1998 for transactions

4 Dan Suciu -- 544, Winter 2011

The Need for Transactions
•  What can go wrong ?

– System crashes
– Anomalies during concurrent access: three

are famous

5 Dan Suciu -- 544, Winter 2011

6

Crashes

What’s wrong ?

Client 1:

UPDATE Accounts
SET balance= balance - 500
WHERE name= ‘Fred’

UPDATE Accounts
SET balance = balance + 500
WHERE name= ‘Joe’

Crash !

Dan Suciu -- 544, Winter 2011

Three Famous Anomalies

•  Lost update – what is it ?

•  Dirty read – what is it ?

•  Inconsistent read – what is it ?

Dan Suciu -- 544, Winter 2011 7

8

The Three Famous anomalies
•  Lost update

–  Two tasks T and T’ both modify the same data
–  T and T’ both commit
–  Final state shows effects of only T, but not of T’

•  Dirty read
–  T reads data written by T’ while T’ has not committed
–  What can go wrong: T’ write more data (which T has

already read), or T’ aborts

•  Inconsistent read
–  One task T sees some but not all changes made by T’

9

1st Famous Anomaly: Lost
Updates

Client 1:
 UPDATE Customer
 SET rentals= rentals + 1
 WHERE cname= ‘Fred’

Two people attempt to rent two movies for Fred,
from two different terminals. What happens ?

Client 2:
 UPDATE Customer
 SET rentals= rentals + 1
 WHERE cname= ‘Fred’

Dan Suciu -- 544, Winter 2011

10

2nd Famous Anomaly: Dirty
Reads

Client 1: transfer $100 acc1 acc2
X = Account1.balance
Account2.balance += 100

If (X>=100) Account1.balance −=100
else { /* rollback ! */
 account2.balance −= 100
 println(“Denied !”)

What’s wrong ?

Dan Suciu -- 544, Winter 2011

Client 2: transfer $100 acc2 acc3
Y = Account2.balance
Account3.balance += 100

If (Y>=100) Account2.balance −=100
else { /* rollback ! */
 account3.balance −= 100
 println(“Denied !”)

11

3rd Famous Anomaly: Inconsistent
Read

Client 1: move from gizmogadget

UPDATE Products
SET quantity = quantity + 5
WHERE product = ‘gizmo’

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

Client 2: inventory….

SELECT sum(quantity)
FROM Product

Dan Suciu -- 544, Winter 2011

12

Transactions: Definition
•  A transaction = one or more operations,

which reflects a single real-world transition
–  Happens completely or not at all; all-or-nothing

•  Examples
–  Transfer money between accounts
–  Rent a movie; return a rented movie
–  Purchase a group of products
–  Register for a class (either waitlisted or allocated)

•  By using transactions, all previous problems
disappear Dan Suciu -- 544, Winter 2011

Transactions in Applications

Dan Suciu -- 544, Winter 2011 13

START TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

May be omitted:
first SQL query

starts txn

In ad-hoc SQL: each statement = one transaction

14

ACID Properties
•  Atomic

–  What is it ?

•  Consistent
–  What is it ?

•  Isolated
–  What is it ?

•  Durable
–  What is it ?

Dan Suciu -- 544, Winter 2011

15

ACID Properties
•  Atomic

–  State shows either all the effects of txn, or none of
them

•  Consistent
–  Txn moves from a state where integrity holds, to

another where integrity holds
•  Isolated

–  Effect of txns is the same as txns running one after
another (ie looks like batch mode)

•  Durable
–  Once a txn has committed, its effects remain in the

database
Dan Suciu -- 544, Winter 2011

Concurrency Control

Multiple concurrent transactions T1, T2, …

They read/write common elements A1, A2, …

How can we prevent unwanted interference ?

16

The SCHEDULER is responsible for that
Dan Suciu -- 544, Winter 2011

Schedules

Dan Suciu -- 544, Winter 2011 17

A schedule is a sequence
of interleaved actions
from all transactions

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

18 Dan Suciu -- 544, Winter 2011

A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

19 Dan Suciu -- 544, Winter 2011

Serializable Schedule

20

A schedule is serializable if it is
equivalent to a serial schedule

Dan Suciu -- 544, Winter 2011

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s) This is NOT a serial schedule,

but is serializable
21 Dan Suciu -- 544, Winter 2011

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

22 Dan Suciu -- 544, Winter 2011

Serializable Schedules

The role of the scheduler is to ensure that
the schedule is serializable

Dan Suciu -- 544, Winter 2011 23

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

Serializable Schedules

The role of the scheduler is to ensure that
the schedule is serializable

Dan Suciu -- 544, Winter 2011 24

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may do serial schedules only

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

25 Dan Suciu -- 544, Winter 2011 We don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

Ignoring Details

Assume worst case updates:
We never commute actions done by transactions

As a consequence, we only care about reads
and writes

Transaction = sequence of R(A)’s and W(A)’s

Dan Suciu -- 544, Winter 2011 26

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Conflicts

Write-Read – WR
Read-Write – RW
Write-Write – WW

Dan Suciu -- 544, Winter 2011 27

Conflicts

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

28 Dan Suciu -- 544, Winter 2011 A “conflict” means: you can’t swap the two operations

Conflict Serializability
A schedule is conflict serializable if it can
be transformed into a serial schedule by a
series of swappings of adjacent non-
conflicting actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
Build a graph of all transactions Ti

Edge from Ti to Tj if Ti makes an action that
conflicts with one of Tj and comes first

The test: if the graph has no cycles, then it is
conflict serializable !

30 Dan Suciu -- 544, Winter 2011

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

31 Dan Suciu -- 544, Winter 2011

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

32 Dan Suciu -- 544, Winter 2011

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

33 Dan Suciu -- 544, Winter 2011

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B

34 Dan Suciu -- 544, Winter 2011

View Equivalence

A serializable schedule need not be
conflict serializable, even under the “worst
case update” assumption

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

35 Dan Suciu -- 544, Winter 2011

View Equivalence

A serializable schedule need not be
conflict serializable, even under the “worst
case update” assumption

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

36 Dan Suciu -- 544, Winter 2011

No…

View Equivalence

A serializable schedule need not be
conflict serializable, even under the “worst
case update” assumption

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

37 Dan Suciu -- 544, Winter 2011 Equivalent, but not conflict-equivalent

View Equivalence

38

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Dan Suciu -- 544, Winter 2011 Serializable, but not conflict serializable

View Equivalence

Two schedules S, S’ are view equivalent if:
•  If T reads an initial value of A in S, then T

also reads the initial value of A in S’
•  If T reads a value of A written by T’ in S,

then T also reads a value of A written by
T’ in S’

•  If T writes the final value of A in S, then it
writes the final value of A in S’

39 Dan Suciu -- 544, Winter 2011

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
If a schedule is conflict serializable, then it
is also view serializable
But not vice versa

Dan Suciu -- 544, Winter 2011 40

Schedules with Aborted
Transactions

When a transaction aborts, the recovery
manager undoes its updates
But some of its updates may have
affected other transactions !

41 Dan Suciu -- 544, Winter 2011

Schedules with Aborted
Transactions

42

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Dan Suciu -- 544, Winter 2011 Cannot abort T1 because cannot undo T2

Recoverable Schedules

A schedule is recoverable if:
It is conflict-serializable, and
Whenever a transaction T commits, all
transactions who have written elements
read by T have already committed

43 Dan Suciu -- 544, Winter 2011

Recoverable Schedules

44

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Abort
Commit

Nonrecoverable Recoverable

Cascading Aborts

If a transaction T aborts, then we need to
abort any other transaction T’ that has
read an element written by T

A schedule is said to avoid cascading
aborts if whenever a transaction read an
element, the transaction that has last
written it has already committed.

45 Dan Suciu -- 544, Winter 2011

Avoiding Cascading Aborts

46

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

Without cascading aborts

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

With cascading aborts

Review of Schedules

Serializability

Serial
Serializable
Conflict serializable
View serializable

Recoverability

Recoverable
Avoiding cascading
deletes

47 Dan Suciu -- 544, Winter 2011

Review Questions

What is a schedule ?
What is a serializable schedule ?
What is a conflict ?
What is a conflict-serializable schedule ?
What is a view-serializable schedule ?
What is a recoverable schedule ?
When does a schedule avoid cascading
aborts ? Dan Suciu -- 544, Winter 2011 48

Scheduler

The scheduler is the module that schedules
the transaction’s actions, ensuring
serializability
Two main approaches

Pessimistic scheduler: uses locks
Optimistic scheduler: time stamps, validation

49 Dan Suciu -- 544, Winter 2011

Pessimistic Scheduler

Simple idea:
Each element has a unique lock
Each transaction must first acquire the
lock before reading/writing that element
If the lock is taken by another transaction,
then wait
The transaction must release the lock(s)

50 Dan Suciu -- 544, Winter 2011

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

51 Dan Suciu -- 544, Winter 2011

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

52 Dan Suciu -- 544, Winter 2011

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 53

But…
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

54 Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

The 2PL rule:

In every transaction, all lock requests
must preceed all unlock requests

This ensures conflict serializability ! (will
prove this shortly)

55 Dan Suciu -- 544, Winter 2011

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 56

Two Phase Locking (2PL)

57

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)L2(A)
L2(A)U2(B)
U2(B)L3(B)
L3(B)U3(C)
U3(C)L1(C)
L1(C)U1(A)

Contradiction

A New Problem:
Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 58

What about Aborts?

2PL enforces conflict-serializable
schedules
But does not enforce recoverable
schedules

59 Dan Suciu -- 544, Winter 2011

Strict 2PL

Strict 2PL: All locks held by a transaction are
released when the transaction is completed
Schedule is recoverable

Transactions commit only after all transactions
whose changes they read also commit

Schedule avoids cascading aborts
Transactions read only after the txn that wrote that
element committed

Schedule is strict: read book
Dan Suciu -- 544, Winter 2011 60

Lock Modes
Standard:
S = shared lock (for READ)
X = exclusive lock (for WRITE)
Lots of fancy locks:
U = update lock

Initially like S
Later may be upgraded to X

I = increment lock (for A := A + something)
Increment operations commute 61

62

Lock Granularity
Fine granularity locking (e.g., tuples)

High concurrency
High overhead in managing locks

Coarse grain locking (e.g., tables, predicate locks)
Many false conflicts
Less overhead in managing locks

Alternative techniques
Hierarchical locking (and intentional locks) [commercial DBMSs]
Lock escalation

Dan Suciu -- 544, Winter 2011

Deadlocks

Trasaction T1 waits for a lock held by T2;
But T2 waits for a lock held by T3;
While T3 waits for
. . .
. . .and T73 waits for a lock held by T1 !!

63 Dan Suciu -- 544, Winter 2011

64

Deadlocks
When T1 waits for T2, which waits for T3, which
waits for T4, …, which waits for T1 – cycle !

Deadlock avoidance
Acquire locks in pre-defined order
Acquire all locks at once before starting

Deadlock detection
Timeouts
Wait-for graph (this is what commercial systems use)

Dan Suciu -- 544, Winter 2011

The Locking Scheduler

Task 1:
Add lock/unlock requests to transactions
Examine all READ(A) or WRITE(A) actions
Add appropriate lock requests
Ensure Strict 2PL !

65 Dan Suciu -- 544, Winter 2011

The Locking Scheduler
Task 2:
Execute the locks accordingly
Lock table: a big, critical data structure in a DBMS !
When a lock is requested, check the lock table

Grant, or add the transaction to the element’s wait list

When a lock is released, re-activate a transaction from
its wait list
When a transaction aborts, release all its locks
Check for deadlocks occasionally

66 Dan Suciu -- 544, Winter 2011

Lock Performance

Dan Suciu -- 544, Winter 2011 67

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

68

The Tree Protocol

An alternative to 2PL, for tree structures
E.g. B-trees (the indexes of choice in
databases)

Because
Indexes are hot spots!
2PL would lead to great lock contention

Dan Suciu -- 544, Winter 2011

69

The Tree Protocol
Rules:
The first lock may be any node of the tree
Subsequently, a lock on a node A may only be acquired if the
transaction holds a lock on its parent B
Nodes can be unlocked in any order (no 2PL necessary)
“Crabbing”

First lock parent then lock child
Keep parent locked only if may need to update it
Release lock on parent if child is not full

The tree protocol is NOT 2PL, yet ensures conflict-serializability !

Dan Suciu -- 544, Winter 2011

70

Phantom Problem
So far we have assumed the database to be
a static collection of elements (=tuples)

If tuples are inserted/deleted then the
phantom problem appears

Dan Suciu -- 544, Winter 2011

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

72

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

This is conflict serializable ! What’s wrong ??

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

73

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Not serializable due to phantoms

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

74

Phantom Problem
A “phantom” is a tuple that is invisible during
part of a transaction execution but not all of it.

In our example:
T1: reads list of products
T2: inserts a new product
T1: re-reads: a new product appears !

Dan Suciu -- 544, Winter 2011

Phantom Problem

In a static database:
Conflict serializability implies serializability

In a dynamic database, this may fail due
to phantoms

Strict 2PL guarantees conflict
serializability, but not serializability

75

Dealing With Phantoms

Lock the entire table, or
Lock the index entry for ‘blue’

If index is available
Or use predicate locks

A lock on an arbitrary predicate

Dan Suciu -- 544, Winter 2011 76
Dealing with phantoms is expensive !

77

Degrees of Isolation
Isolation level “serializable” (i.e. ACID)

Golden standard
Requires strict 2PL and predicate locking
But often too inefficient
Imagine there are few update operations and many long read
operations

Weaker isolation levels
Sacrifice correctness for efficiency
Often used in practice (often default)
Sometimes are hard to understand

Dan Suciu -- 544, Winter 2011

78

Degrees of Isolation in SQL

Four levels of isolation
All levels use long-duration exclusive locks
READ UNCOMMITTED: no read locks
READ COMMITTED: short duration read locks
REPEATABLE READ:

Long duration read locks on individual items
SERIALIZABLE:

All locks long duration and lock predicates

Trade-off: consistency vs concurrency
Commercial systems give choice of level

Dan Suciu -- 544, Winter 2011

79

Isolation Levels in SQL
1.  “Dirty reads”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

Dan Suciu -- 544, Winter 2011

Choosing Isolation Level

Trade-off: efficiency vs correctness

DBMSs give user choice of level

80

Beware!!
•  Default level is often NOT serializable
•  Default level differs between DBMSs
•  Some engines support subset of levels!
•  Serializable may not be exactly ACID

Always read docs!

1. Isolation Level: Dirty Reads

“Long duration” WRITE locks
Strict 2PL

No READ locks
Read-only transactions are never delayed

81

Possible pbs: dirty and inconsistent reads

Dan Suciu -- 544, Winter 2011

2. Isolation Level: Read
Committed

“Long duration” WRITE locks
Strict 2PL

“Short duration” READ locks
Only acquire lock while reading (not 2PL)

82

Unrepeatable reads
When reading same element twice,
may get two different values

Dan Suciu -- 544, Winter 2011

3. Isolation Level: Repeatable
Read

“Long duration” READ and WRITE locks
Strict 2PL

83

This is not serializable yet !!! Why ?

Dan Suciu -- 544, Winter 2011

4. Isolation Level Serializable

Deals with phantoms too

Dan Suciu -- 544, Winter 2011 84

85

READ-ONLY Transactions
Client 1: START TRANSACTION

 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE FROM Product
 WHERE price <=0.99
 COMMIT

Client 2: SET TRANSACTION READ ONLY
 START TRANSACTION
 SELECT count(*)
 FROM Product

 SELECT count(*)
 FROM SmallProduct
 COMMIT

Can improve
performance

Dan Suciu -- 544, Winter 2011

Optimistic Concurrency
Control Mechanisms

Pessimistic:
Locks

Optimistic
Timestamp based: basic, multiversion
Validation
Snapshot isolation: a variant of both

Dan Suciu -- 544, Winter 2011 86

Timestamps

Each transaction receives a unique
timestamp TS(T)

Could be:

The system’s clock
A unique counter, incremented by the
scheduler

87 Dan Suciu -- 544, Winter 2011

Timestamps

The timestamp order defines
 the serialization order of the transaction

Main invariant:

88

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

Dan Suciu -- 544, Winter 2011

Main Idea

For any two conflicting actions, ensure
that their order is the serialized order:
In each of these cases
wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

When T requests rT(X), need to check TS(U) <= TS(T)

Read too
late ?

Write too
late ?

89 Dan Suciu -- 544, Winter 2011

Timestamps

With each element X, associate
RT(X) = the highest timestamp of any
transaction U that read X
WT(X) = the highest timestamp of any
transaction U that wrote X
C(X) = the commit bit: true when
transaction with highest timestamp that
wrote X committed

If element = page, then these are associated
with each page X in the buffer pool 90

91

Simplified Timestamp-based
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

Transaction wants to read element X
If TS(T) < WT(X) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

Dan Suciu -- 544, Winter 2011

Details

Read too late:
T wants to read X, and TS(T) < WT(X)

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

92 Dan Suciu -- 544, Winter 2011

Details

Write too late:
T wants to write X, and TS(T) < RT(X)

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

93 Dan Suciu -- 544, Winter 2011

Details

Write too late, but we can still handle it:
T wants to write X, and
TS(T) >= RT(X) but WT(X) > TS(T)

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(Thomas’ rule)

94 Dan Suciu -- 544, Winter 2011

View-Serializability

By using Thomas’ rule we do not obtain a
conflict-serializable schedule

But we obtain a view-serializable
schedule

Dan Suciu -- 544, Winter 2011 95

Ensuring Recoverable
Schedules

Recall the definition: if a transaction reads
an element, then the transaction that
wrote it must have already committed
Use the commit bit C(X) to keep track if
the transaction that last wrote X has
committed

96 Dan Suciu -- 544, Winter 2011

Ensuring Recoverable
Schedules

Read dirty data:
T wants to read X, and WT(X) < TS(T)
Seems OK, but…

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

97 Dan Suciu -- 544, Winter 2011

Ensuring Recoverable
Schedules

Thomas’ rule needs to be revised:
T wants to write X, and WT(X) > TS(T)
Seems OK not to write at all, but …

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

98 Dan Suciu -- 544, Winter 2011

Timestamp-based Scheduling

99

Transaction wants to READ element X
If TS(T) < WT(X) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X)

Then If C(X) = false then WAIT
 else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Dan Suciu -- 544, Winter 2011

Summary of Timestamp-
based Scheduling

View-serializable

Recoverable
Even avoids cascading aborts

Does NOT handle phantoms
These need to be handled separately, e.g.
predicate locks

100 Dan Suciu -- 544, Winter 2011

Multiversion Timestamp

When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

Let T read an older version, with appropriate
timestamp

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

101 Dan Suciu -- 544, Winter 2011

Details
When wT(X) occurs,

 create a new version, denoted Xt where t = TS(T)

When rT(X) occurs,
 find most recent version Xt such that t < TS(T)
 Notes:

WT(Xt) = t and it never changes
RT(Xt) must still be maintained to check legality of writes

Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

102 Dan Suciu -- 544, Winter 2011

Concurrency Control by
Validation

Each transaction T defines a read set RS(T) and a write
set WS(T)
Each transaction proceeds in three phases:

Read all elements in RS(T). Time = START(T)
Validate (may need to rollback). Time = VAL(T)
Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

103 Dan Suciu -- 544, Winter 2011

Avoid rT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)
IF RS(T) ∩ WS(U) and FIN(U) > START(T)
 (U has validated and U has not finished before T begun)
Then ROLLBACK(T)

conflicts

104 Dan Suciu -- 544, Winter 2011

Avoid wT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?

START(T) VAL(T)
IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
 (U has validated and U has not finished before T validates)
Then ROLLBACK(T)

conflicts

105 Dan Suciu -- 544, Winter 2011

Snapshot Isolation

Another optimistic concurrency control
method

Very efficient, and very popular
Oracle, Postgres, SQL Server 2005

106 Dan Suciu -- 544, Winter 2011

WARNING: Not serializable, yet ORACLE uses
it even for SERIALIZABLE transactions !

Snapshot Isolation Rules

Each transactions receives a timestamp TS(T)

Tnx sees the snapshot at time TS(T) of database

When T commits, updated pages written to disk

Write/write conflicts are resolved by the
“first committer wins” rule

107 Dan Suciu -- 544, Winter 2011

Snapshot Isolation (Details)
Multiversion concurrency control:

Versions of X: Xt1, Xt2, Xt3, . . .
When T reads X, return XTS(T).
When T writes X: if other transaction
updated X, abort

Not faithful to “first committer” rule, because
the other transaction U might have
committed after T. But once we abort T, U
becomes the first committer

108 Dan Suciu -- 544, Winter 2011

What Works and What Not

No dirty reads (Why ?)
No unconsistent reads (Why ?)
No lost updates (“first committer wins”)

Moreover: no reads are ever delayed

However: read-write conflicts not caught !
109 Dan Suciu -- 544, Winter 2011

Write Skew

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Write Skews Can Be Serious
ACIDland had two viceroys, Delta and Rho
Budget had two registers: taXes, and spendYng
They had HIGH taxes and LOW spending…

111

Delta:
 READ(X);
 if X= ‘HIGH’
 then { Y= ‘HIGH’;
 WRITE(Y) }
 COMMIT

Rho:
 READ(Y);
 if Y= ‘LOW’
 then {X= ‘LOW’;
 WRITE(X) }
 COMMIT

… and they ran a deficit ever since.

Tradeoffs
Pessimistic Concurrency Control (Locks):

Great when there are many conflicts
Poor when there are few conflicts

Optimistic Concurrency Control (Timestamps):
Poor when there are many conflicts (rollbacks)
Great when there are few conflicts

Compromise
READ ONLY transactions → timestamps
READ/WRITE transactions → locks

112 Dan Suciu -- 544, Winter 2011

113

Commercial Systems
DB2: Strict 2PL
SQL Server:

Strict 2PL for standard 4 levels of isolation
Multiversion concurrency control for snapshot
isolation

PostgreSQL:
Multiversion concurrency control

Oracle
Snapshot isolation even for SERIALIZABLE

