
CSE 544
Data Models and Views

Lecture #4
Wednesday, January 19, 2011

Dan Suciu -- 544, Winter 2011 1

Announcements

•  Projects: please sign up to meet with me
on Friday, between 11-1pm (need about
15’). Before that do this:
– Form team
– Choose project
– Think, so we can have a meaningful

discussion
•  Homework 1: due on Monday, 12pm

(before the lecture)

Wayne State, 1/18/2011 Dan Suciu: Queries on Probabilistic Data 2

CSE 544 - Fall 2009

References

•  M. Stonebraker and J. Hellerstein. What
Goes Around Comes Around. In
"Readings in Database Systems" (aka the
Red Book). 4th ed.

3

Data Model Motivation
•  User is concerned with real-world data

–  Data represents different aspects of user’s business
–  Data typically includes entities and relationships between them
–  Example entities are students, courses, products, clients
–  Example relationships are course registrations, product purchases

•  User somehow needs to define data to be stored in DBMS

•  Data model enables a user to define the data using high-level
constructs without worrying about many low-level details of how
data will be stored on disk

CSE 544 - Fall 2009 4

CSE 544 - Fall 2009

Levels of Abstraction

Disk	

Physical	 Schema	

Conceptual	 Schema	

External	 Schema	 External	 Schema	 External	 Schema	

a.k.a	 logical	 schema	
describes	 stored	 data	
in	 terms	 of	 data	 model	

includes	 storage	 details	
file	 organiza?on	
indexes	

schema	 seen	 	
by	 apps	

5

Classical	 picture.	
Remember	 it	 !	

CSE 544 - Fall 2009

Outline
•  Different types of data

•  Early data models
–  IMS
– CODASYL

•  Physical and logical independence in the
relational model

•  Other data models

6

CSE 544 - Fall 2009

Different Types of Data

•  Structured data
– What is this ? Examples ?

•  Semistructured data
– What is this ?
– Examples ?

•  Unstructured data
– What is this ? Examples ?

7

CSE 544 - Fall 2009

Different Types of Data

•  Structured data
–  All data conforms to a schema. Ex: business data

•  Semistructured data
–  Some structure in the data but implicit and irregular
–  Ex: resume, ads

•  Unstructured data
–  No structure in data. Ex: text, sound, video, images

•  Our focus: structured data & relational DBMSs

8

CSE 544 - Fall 2009

Outline

•  Different types of data

•  Early data models
–  IMS – late 1960’s and 1970’s
–  CODASYL – 1970’s

•  Physical and logical independence in the
relational model

•  Other data models
9

CSE 544 - Fall 2009

Early Proposal 1: IMS

•  What is it ?

10

CSE 544 - Fall 2009

Early Proposal 1: IMS

•  Hierarchical data model

•  Record
–  Type: collection of named fields with data types (+)
–  Instance: must match type definition (+)
–  Each instance must have a key (+)
–  Record types must be arranged in a tree (-)

•  IMS database is collection of instances of record
types organized in a tree

11

CSE 544 - Fall 2009

 IMS Example

•  See Figure 2 in paper “What goes around
comes around”

12

CSE 544 - Fall 2009

Data Manipulation Language: DL/1

•  How does a programmer retrieve data in IMS ?

13

CSE 544 - Fall 2009

Data Manipulation Language: DL/1

•  Each record has a hierarchical sequence key (HSK)
–  Records are totally ordered: depth-first and left-to-right

•  HSK defines semantics of commands:
–  get_next
–  get_next_within_parent

•  DL/1 is a record-at-a-time language
–  Programmer constructs an algorithm for solving the query
–  Programmer must worry about query optimization

14

CSE 544 - Fall 2009

Data storage

•  How is the data physically stored in IMS ?

15

CSE 544 - Fall 2009

Data storage
•  Root records

–  Stored sequentially (sorted on key)
–  Indexed in a B-tree using the key of the record
–  Hashed using the key of the record

•  Dependent records
–  Physically sequential
–  Various forms of pointers

•  Selected organizations restrict DL/1 commands
–  No updates allowed with sequential organization
–  No “get-next” for hashed organization

16

CSE 544 - Fall 2009

Data Independence

•  What is it ?

17

CSE 544 - Fall 2009

Data Independence
•  Physical data independence: Applications are insulated

from changes in physical storage details

•  Logical data independence: Applications are insulated
from changes to logical structure of the data

•  Why are these properties important?
–  Reduce program maintenance as
–  Logical database design changes over time
–  Physical database design tuned for performance

18

CSE 544 - Fall 2009

IMS Limitations
•  Tree-structured data model

–  Redundant data, existence depends on parent, artificial structure

•  Record-at-a-time user interface
–  User must specify algorithm to access data

•  Very limited physical independence
–  Phys. organization limits possible operations
–  Application programs break if organization changes

•  Provides some logical independence
–  DL/1 program runs on logical database
–  Difficult to achieve good logical data independence with a tree model

19

CSE 544 - Fall 2009

Early Proposal 2: CODASYL

• What is it ?

20

CSE 544 - Fall 2009

Early Proposal 2: CODASYL
•  Networked data model

•  Primitives are also record types with keys (+)
•  Network model is more flexible than hierarchy(+)

–  Ex: no existence dependence
•  Record types are organized into network (-)

–  A record can have multiple parents
–  Arcs between records are named
–  At least one entry point to the network

•  Record-at-a-time data manipulation language (-)

21

CSE 544 - Fall 2009

CODASYL Example
•  See Figure 5 in paper “What goes around comes around”

22

CSE 544 - Fall 2009

CODASYL Limitations
•  No physical data independence

–  Application programs break if organization changes

•  No logical data independence
–  Application programs break if organization changes

•  Very complex
•  Programs must “navigate the hyperspace”
•  Load and recover as one gigantic object

23

CSE 544 - Fall 2009

Outline
•  Different types of data

•  Early data models
–  IMS
– CODASYL

•  Physical and logical independence in the
relational model

•  Other data models

24

CSE 544 - Fall 2009

Relational Model Overview

•  Proposed by Ted Codd in 1970

•  Motivation: better logical and physical
data independence

25

Relational Model Overview

•  Defines logical schema only
– No physical schema

•  Set-at-a-time query language

Wayne State, 1/18/2011 Dan Suciu: Queries on Probabilistic Data 26

CSE 544 - Fall 2009

Physical Independence
•  Definition: Applications are insulated from

changes in physical storage details

•  Early models (IMS and CODASYL): No

•  Relational model: Yes
– Yes through set-at-a-time language: algebra or

calculus
– No specification of what storage looks like
– Administrator can optimize physical layout

27

CSE 544 - Fall 2009

Physical Independence
•  Definition: Applications are insulated from

changes in physical storage details

•  Early models (IMS and CODASYL): No

•  Relational model: Yes
– Yes through set-at-a-time language: algebra or

calculus
– No specification of what storage looks like
– Administrator can optimize physical layout

28

CSE 544 - Fall 2009

Logical Independence
•  Definition: Applications are insulated from

changes to logical structure of the data

•  Early models
–  IMS: some logical independence
– CODASYL: no logical independence

•  Relational model
– Yes through views

29

Great Debate
•  Pro relational

–  What where the arguments ?

•  Against relational
–  What where the arguments ?

•  How was it settled ?

CSE 544 - Fall 2009 30

Great Debate
•  Pro relational

–  CODASYL is too complex
–  CODASYL does not provide sufficient data independence
–  Record-at-a-time languages are too hard to optimize
–  Trees/networks not flexible enough to represent common cases

•  Against relational
–  COBOL programmers cannot understand relational languages
–  Impossible to represent the relational model efficiently
–  CODASYL can represent tables

•  Ultimately settled by the market place

CSE 544 - Fall 2009 31

CSE 544 - Fall 2009

Outline

•  Different types of data

•  Early data models
–  IMS
–  CODASYL

•  Physical and logical independence in the
relational model

•  Other data models
32

Other Data Models
•  Entity-Relationship: 1970’s

–  Successful in logical database design (next lecture)
•  Extended Relational: 1980’s
•  Semantic: late 1970’s and 1980’s
•  Object-oriented: late 1980’s and early 1990’s

–  Address impedance mismatch: relational dbs OO
languages

–  Interesting but ultimately failed (several reasons, see
paper)

•  Object-relational: late 1980’s and early 1990’s
–  User-defined types, ops, functions, and access methods

•  Semi-structured: late 1990’s to the present

CSE 544 - Fall 2009 33

CSE 544 - Fall 2009

Summary
•  Data independence is desirable

–  Both physical and logical
–  Early data models provided very limited data

independence
–  Relational model facilitates data independence

•  Set-at-a-time languages facilitate phys. indep. [more next
lecture]

•  Simple data models facilitate logical indep. [more next lecture]
•  Flat models are also simpler, more flexible
•  User should specify what they want not how to get it

–  Query optimizer does better job than human

•  New data model proposals must
–  Solve a “major pain” or provide significant performance

gains

34

Views

Dan Suciu -- 544, Winter 2011 35

Views are relations, but may not be physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
 SELECT name, project
 FROM Employee
 WHERE department = ‘Development’

Example

Dan Suciu -- 544, Winter 2011 36

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price) “virtual table”

Dan Suciu -- 544, Winter 2011 37

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

We can later use the view:

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

Types of Views

•  Virtual views:
– Pros/cons ???

•  Materialized views
– Pros/cons ??

Dan Suciu -- 544, Winter 2011 38

Types of Views

•  Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

•  Materialized views
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data or expensive synchronization

Dan Suciu -- 544, Winter 2011 39

Query Modification

Dan Suciu -- 544, Winter 2011 40

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

View:

Query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

Query Modification

Dan Suciu -- 544, Winter 2011 41

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

Modified query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

Query Modification

Dan Suciu -- 544, Winter 2011 42

SELECT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Modified and unnested query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

Another Example

Dan Suciu -- 544, Winter 2011 43

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

??

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

Answer

Dan Suciu -- 544, Winter 2011 44

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Applications of Virtual Views

•  Physical data independence. E.g.
– Vertical data partitioning
– Horizontal data partitioning

•  Security
– The view reveals only what the users are

allowed to know

Dan Suciu -- 544, Winter 2011 45

Vertical Partitioning
SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
234234 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
 . . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

Vertical Partitioning

Dan Suciu -- 544, Winter 2011 47

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

Vertical Partitioning

Dan Suciu -- 544, Winter 2011 48

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will
be queried by the system ?

Vertical Partitioning
When to do this:
•  When some fields are large, rarely accessed

–  E.g. Picture
•  In distributed databases

–  Customer info site 1, customer orders at site 2
•  In data integration

–  T1 comes from one source
–  T2 comes from a different source

Dan Suciu -- 544, Winter 2011 49

Horizontal Partitioning

50

SSN Name City
234234 Mary Huston
345345 Sue Seattle
345343 Joan Seattle
234234 Ann Portland
-- Frank Spokane

-- Jean Spokane

Customers
SSN Name City
234234 Mary Huston

CustomersInHuston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

SSN Name City
-- Frank Spokane
-- Jean Spokane

CustomersInCanada

Horizontal Partitioning

Dan Suciu -- 544, Winter 2011 51

CREATE VIEW Customers AS
 CustomersInHuston
 UNION ALL
 CustomersInSeattle
 UNION ALL
 . . .

SSN Name City
234234 Mary Huston

CustomersInHuston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

SSN Name City
-- Frank Spokane
-- Jean Spokane

CustomersInCanada

Horizontal Partitioning

Dan Suciu -- 544, Winter 2011 52

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SSN Name City
234234 Mary Huston

CustomersInHuston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

SSN Name City
-- Frank Spokane
-- Jean Spokane

CustomersInCanada Which tables are inspected
by the system ?

Horizontal Partitioning

Dan Suciu -- 544, Winter 2011 53

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

Which tables are inspected
by the system ?

SSN Name City
234234 Mary Huston

CustomersInHuston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

SSN Name City
-- Frank Spokane
-- Jean Spokane

CustomersInCanada

All ! The system doesn’t
know where ‘Seattle’ is

Better

Dan Suciu -- 544, Winter 2011 54

CREATE VIEW Customers AS
 SELECT *, ‘Huston’ AS City
 FROM CustomersInHuston
 UNION ALL
 SELECT *, ‘Seattle’ AS City
 FROM CustomersInSeattle
 UNION ALL
 . . .

SSN Name City
234234 Mary Huston

CustomersInHuston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

SSN Name City
-- Frank Spokane
-- Jean Spokane

CustomersInCanada

Better

Dan Suciu -- 544, Winter 2011 55

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM CusotmersInSeattle

Horizontal Partitioning

Applications:
•  Optimizations:

– E.g. archived applications and active
applications

•  Distributed databases
•  Data integration

Dan Suciu -- 544, Winter 2011 56

SQL Security Model

•  Discretionary access control:
– Users × Tables × {SELECT, INSERT,

UPDATE, …}
– GRANT and REVOKE commands

•  Coarse grained ! Now row-level access
control:
– Each customer is allowed to see his/her own

records
•  Views are quick fix to that

Dan Suciu -- 544, Winter 2011 57

Views and Security

Dan Suciu -- 544, Winter 2011 58

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Customers:
Fred is not
allowed to
see this

How do we grant Fred access
only to Name/Address ?

Views and Security

Dan Suciu -- 544, Winter 2011 59

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Grant
Fred

access to
this

Customers:
Fred is not
allowed to
see this

CREATE VIEW PublicCustomers
 SELECT Name, Address
 FROM Customers

Views and Security

Dan Suciu -- 544, Winter 2011 60

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Customers: John is
not allowed
to see >0
balances

How do we grant John access
only to delinquent accounts ?

Views and Security

Dan Suciu -- 544, Winter 2011 61

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Customers: John is
not allowed
to see >0
balances

CREATE VIEW BadCreditCustomers
 SELECT *
 FROM Customers
 WHERE Balance < 0

Technical Problems in Virtual Views

•  Simplifying queries over virtual views

•  Updating virtual views

Dan Suciu -- 544, Winter 2011 62

Set v.s. Bag Semantics

Dan Suciu -- 544, Winter 2011 63

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

Set semantics

Bag semantics

Unnesting Queries

•  Inner query: set/bag semantics

•  Outer query: set/bag semantics

•  When can we unnest ?

Dan Suciu -- 544, Winter 2011 64

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

NO

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT DISTINCT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM (SELECT u,v
 FROM R,S WHERE …), T
WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S WHERE …), T
WHERE . . .

NO

Updating Virtual Views

•  V(A1, A2, ..) = view over R1, R2, …

•  Insert/modify/delete in/from V

•  Can we push this to R1, R2, … ?
– Updatable view = yes.
– Non-updatable view = no.

Dan Suciu -- 544, Winter 2011 70

Updatable View

Dan Suciu -- 544, Winter 2011 71

CREATE VIEW Expensive-Product AS
 SELECT pname
 FROM Product
 WHERE price > 100

Purchase(customer, product, store)
Product(pname, price) INSERT

INTO Expensive-Product
VALUES(‘Gizmo’)

Updatable View

Dan Suciu -- 544, Winter 2011 72

CREATE VIEW Expensive-Product AS
 SELECT pname
 FROM Product
 WHERE price > 100

INSERT
INTO Product
VALUES(‘Gizmo’, NULL)

Purchase(customer, product, store)
Product(pname, price) INSERT

INTO Expensive-Product
VALUES(‘Gizmo’)

Updatable View

Dan Suciu -- 544, Winter 2011 73

CREATE VIEW AcmePurchase AS
 SELECT customer, product
 FROM Purchase
 WHERE store = ‘AcmeStore’

INSERT
INTO AcmePurchase
VALUES(‘Joe’, ‘Gizmo’)

Purchase(customer, product, store)
Product(pname, price)

Updatable View

Dan Suciu -- 544, Winter 2011 74

CREATE VIEW AcmePurchase AS
 SELECT customer, product
 FROM Purchase
 WHERE store = ‘AcmeStore’

INSERT
INTO AcmePurchase
VALUES(‘Joe’, ‘Gizmo’)

INSERT
INTO Purchase
VALUES(‘Joe’,’Gizmo’,NULL)

Note
this

Purchase(customer, product, store)
Product(pname, price)

Nonupdatable Views

Dan Suciu -- 544, Winter 2011 75

INSERT INTO CustomerPrice
VALUES(‘Joe’, 200)

? ? ? ? ?

Most views are
non-updateable

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

Query Minimization under Bag
Semantics

Rule 1: If:
•  x, y are tuple variables over the same

table and:
•  The condition x.key = y.key is in the

WHERE clause
Then combine x, y into a single variable
query

Dan Suciu -- 544, Winter 2011 76

Query Minimization under Bag
Semantics

SELECT y.name, x.date
FROM Order x, Product y, Order z
WHERE x.pid = y.pid and y.price < 99 and y.pid = z.pid
 and x.cid = z.cid and z.weight > 150

Order(cid, pid, weight, date)
Product(pid, name, price)

SELECT y.name, x.date
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 99
 and x.weight > 150

Query Minimization under Bag
Semantics

Rule 2: If
•  x ranges over S, y ranges over T, and
•  The condition x.fk = y.key is in the WHERE

clause, and
•  there is a not null constraint on x.fk
•  y is not used anywhere else, and
Then remove T (and y) from the query

Dan Suciu -- 544, Winter 2011 78

Query Minimization under Bag
Semantics

Order(cid, pid, weight, date)
Product(pid, name, price)

SELECT x.cid, x.date
FROM Order x WHERE x.weight > 20

SELECT x.cid, x.date
FROM Order x, Product y
WHERE x.pid = y.pid and x.weight > 20

What	 constraints	
do	 we	 need	 to	 have	
for	 this	 op?miza?on	 ?	

Materialized Views

•  The result of the view is materialized

•  May speed up query answering
significantly

•  But the materialized view needs to be
synchronized with the base data

Dan Suciu -- 544, Winter 2011 80

Applications of Materialized Views

•  Indexes

•  Denormalization

•  Semantic caching

Dan Suciu -- 544, Winter 2011 81

Indexes

82

REALLY important to speed up query processing time.

SELECT *
FROM Person
WHERE name = 'Smith'

CREATE INDEX myindex05 ON Person(name)

Person (name, age, city)

May take too long to scan the entire Person table

Now, when we rerun the query it will be much faster

B+ Tree Index

Dan Suciu -- 544, Winter 2011 83

Adam Betty Charles …. Smith ….

We will discuss them in detail in a later lecture.

Creating Indexes

84

Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = 'Seattle'

Helps in:

SELECT *
FROM Person
WHERE city = 'Seattle'

But not in:

CREATE INDEX doubleindex ON
 Person (age, city)

Example:

SELECT *
FROM Person
WHERE age = 55

and even in:

CREATE INDEX W ON Product(weight)
CREATE INDEX P ON Product(price)

Indexes are Materialized Views

SELECT weight, price
FROM Product
WHERE weight > 10
 and price < 100

Product(pid, name, weight, price, …)

W(pid, weight)
P(pid, price)

SELECT x.weight, y.price
FROM W x, P y
WHERE x.weight > 10
 and y.price < 100
 and x.pid = y.pid

Denormalization

•  Compute a view that is the join of several
tables

•  The view is now a relation that is not in
normal form WHY ?

Dan Suciu -- 544, Winter 2011 86

CREATE VIEW CustomerPrice AS
 SELECT *
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

Semantic Caching

•  Queries Q1, Q2, … have been executed,
and their results are stored in main
memory

•  Now we need to compute a new query Q
•  Sometimes we can use the prior results in

answering Q
•  These queries can be seen as

materialized views

87

Technical Challenges in Managing
Views

•  Synchronizing materialized views
– A.k.a. incremental view maintenance,

or incremental view update

•  Answering queries using views

Dan Suciu -- 544, Winter 2011 88

Synchronizing Materialized Views
•  Immediate synchronization = after each

update
•  Deferred synchronization

– Lazy = at query time
– Periodic
– Forced = manual

89

Which one is best for:
indexes, data warehouses, replication ?

Incremental View Update

Dan Suciu -- 544, Winter 2011 90

CREATE VIEW FullOrder AS
 SELECT x.cid,x.pid,x.date,y.name,y.price
 FROM Order x, Product y
 WHERE x.pid = y.pid

UPDATE Product
SET price = price / 2
WHERE pid = ‘12345’

Order(cid, pid, date)
Product(pid, name, price)

UPDATE FullOrder
SET price = price / 2
WHERE pid = ‘12345’

No need to recompute the entire view !

Incremental View Update

91

CREATE VIEW Categories AS
 SELECT DISTINCT category
 FROM Product

DELETE Product
WHERE pid = ‘12345’

Product(pid, name, category, price)

DELETE Categories
WHERE category in
 (SELECT category
 FROM Product
 WHERE pid = ‘12345’)

It doesn’t work ! Why ? How can we fix it ?

Incremental View Update

92

CREATE VIEW Categories AS
 SELECT category, count(*) as c
 FROM Product
 GROUP BY category

DELETE Product
WHERE pid = ‘12345’

Product(pid, name, category, price)

UPDATE Categories
SET c = c-1 WHERE category in
 (SELECT category
 FROM Product
 WHERE pid = ‘12345’);
DELETE Categories
WHERE c = 0

Answering Queries Using Views
•  We have several materialized views:

–  V1, V2, …, Vn
•  Given a query Q

–  Answer it by using views instead of base tables

•  Variation: Query rewriting using views
–  Answer it by rewriting it to another query first

•  Example: if the views are indexes, then we
rewrite the query to use indexes

Dan Suciu -- 544, Winter 2011 93

Rewriting Queries Using Views

94

Purchase(buyer, seller, product, store)
Person(pname, city)

CREATE VIEW SeattleView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y
 WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’

Goal: rewrite this query
in terms of the view

Have this
materialized
view:

Rewriting Queries Using Views

Dan Suciu -- 544, Winter 2011 95

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’

SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Rewriting is not always possible

96

CREATE VIEW DifferentView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y, Product z
 WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer AND
 y.product = z.name AND
 z.price < 100

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’ SELECT buyer, seller

FROM DifferentView
WHERE product= ‘gizmo’

“Maximally
contained
rewriting”

