
Principles of Database Systems
CSE 544p

Lecture #1
January 6th, 2011

1 Dan Suciu -- 544, Winter 2011

Staff

•  Instructor: Dan Suciu
– CSE 662, suciu@cs.washington.edu

Office hours: Tuesdays, 1:30-2:30

•  TAs:
– Prasang Upadhyaya,

prasang@cs.washington.edu

Dan Suciu -- 544, Winter 2011 2

Class Format
•  Lectures Tuesday/Thursday 12-1:20

•  Reading assignments

•  3 Homework Assignments

•  A mini-research project

3 Dan Suciu -- 544, Winter 2011

Announcements

•  No classes on:
– January 4 (Tuesday)
– January 18 (Tuesday)
– March 10 (Thursday)

•  We will make up for these classes; watch
for further announcements

Dan Suciu -- 544, Winter 2011 4

Textbook and Papers
•  Official Textbook:

–  Database Management Systems. 3rd Ed., by
Ramakrishnan and Gehrke. McGraw-Hill.

–  Book available on the Kindle too
–  Use it to read background material

•  Other Books
–  Foundations of Databases, by Abiteboul, Hull,

Vianu
–  Finite Model Theory, by Libkin

5 Dan Suciu -- 544, Winter 2011

Textbook and Papers

•  About 8 papers to read
– Mix of old seminal papers and new papers
– Papers available online on class website
– Most papers available on Kindle
– Some papers come from the “red book” [no

need to get it]

6 Dan Suciu -- 544, Winter 2011

Resources

•  Web page:
http://www.cs.washington.edu/education/
courses/cse544/11wi/
–  Lectures will be available here
–  Reading assignments, papers
–  Homework assignments
–  Announcements about the projects

•  Mailing list (see Webpage):
– Announcements, group discussions
– Please subscribe

7 Dan Suciu -- 544, Winter 2011

Content of the Class
•  Foundations

– SQL, Relational calculus, Data Models, Views,
Transactions

•  Systems
– Storage, query execution, query optimization, size

estimation, parallel data processing
•  Advanced Topics

– Query languages and complexity classes, query
containment, semijoin reductions, datalog
(fixpoint semantics, magic sets, negation, modern
applications of datalog), data provenance, data
privacy, probabilistic databases

Dan Suciu -- 544, Winter 2011 8

Goals of the Class
This is a CSE graduate level class !
•  Goal:

–  Familiarity with database systems (postgres)
–  Appreciation of the impact of theory
–  Comfort in using data management in your research

•  Goal:
–  Study key algorithms/techniques for massive data

processing/analysis (sequential and/or parallel)
•  Goal:

–  Exposure to some modern data management topics
(provenance, privacy, probabilistic data)

Dan Suciu -- 544, Winter 2011 9

Evaluation
•  Class participation 10%

–  Paper readings and discussions
•  Paper reviews 15%: Individual

–  Due by the beginning of each lecture
–  Reading questions are posted on class website

•  Assignments 45%:
–  HW1: Using a DBMS (SQL, views, indexes, etc.)
–  HW2: Building a simple DBMS (groups of 1-2)
–  HW3: Theory

•  Project 30%: Groups of 1-3
–  Small research or engineering. Start thinking now!

Dan Suciu -- 544, Winter 2011 10

Class Participation 10%
•  An important part of your grade

•  Because
– We would like you to study the material, read

papers, and think about the topics throughout the
quarter

•  Expectations
– Ask questions, raise issues, think critically
–  Learn to express your opinion
– Respect other people’s opinions

Dan Suciu -- 544, Winter 2011 11

Paper Reviews 15%
•  Between 1/2 page and 1 page in length

–  Summary of the main points of the paper
–  Critical discussion of the paper

•  Reading questions
–  For some papers, we will post reading questions to help you

figure out what to focus on when reading the paper
–  Please address these questions in your reviews

•  Grading: credit/no-credit
–  You can skip one review without penalty
–  MUST submit review BEFORE lecture
–  Individual assignments (but feel free to discuss paper with

others)

Dan Suciu -- 544, Winter 2011 12

Assignments 45%

•  HW1: Posted already on the Website
–  Install postres on your computer
– Download a fun research data set (NELL)
– Setup your NELL database
– Practice SQL, relational calculus, views,

constraints
•  HW2: Build a simple DBMS
•  HW3: Theory

13 Dan Suciu -- 544, Winter 2011
We	 will	 accept	 late	 assignments	 with	 valid	 excuse	

Project 30%
•  Teams: 1-3 students

•  Topics: choose one of:
–  A list of mini-research topics (see Website)
–  Come up with your own (related to your own research or

interests, but must be related to databases; must involve either
research or significant engineering)

•  Deliverables (see Website for dates)
–  Project proposal
–  Milestone report
–  Final presentation
–  Final report

•  Amount of work may vary widely between groups

Dan Suciu -- 544, Winter 2011 14

Agenda for Today

•  Brief overview of a traditional database
systems

•  SQL

Dan Suciu -- 544, Winter 2011 15

For	 Tuesday:	 please	 read	 the	 slides	 on	 SQL;	

Skip	 the	 parts	 on	 the	 Rela@onal	 Calculus	 and	
Monotone	 Queries	 –	 we	 will	 discuss	 them	 on	 Tuesday	

Databases

What is a database ?

Give examples of databases

16 Dan Suciu -- 544, Winter 2011

Databases

What is a database ?
•  A collection of files storing related data

Give examples of databases
•  Accounts database; payroll database;

UW’s students database; Amazon’s
products database; airline reservation
database

17 Dan Suciu -- 544, Winter 2011

Database Management System

What is a DBMS ?

Give examples of DBMS

Dan Suciu -- 544, Winter 2011 18

Database Management System
What is a DBMS ?
•  A big C program written by someone else that

allows us to manage efficiently a large
database and allows it to persist over long
periods of time

Give examples of DBMS
•  DB2 (IBM), SQL Server (MS), Oracle,

Sybase
•  MySQL, Postgres, …

Dan Suciu -- 544, Winter 2011 19

Market Shares

From 2006 Gartner report:

•  IBM: 21% market with $3.2BN in sales

•  Oracle: 47% market with $7.1BN in sales

•  Microsoft: 17% market with $2.6BN in sales

20 Dan Suciu -- 544, Winter 2011

An Example

The Internet Movie Database
http://www.imdb.com

•  Entities:
Actors (800k), Movies (400k), Directors, …

•  Relationships:
who played where, who directed what, …

21 Dan Suciu -- 544, Winter 2011

Note
•  In other classes (444, 544p):

– We use IMDB/SQL Server for extensive practice
of SQL

•  In 544:
– We will use NELL/postgres, which is more hands-

on and more researchy
•  If you want to practice more SQL:

–  Let me know and I will arrange for you to have
access to the IMDB database and/or to SQL
Server.

Dan Suciu -- 544, Winter 2011 22

Tables

23 Dan Suciu -- 544, Winter 2011

Actor: Cast:

Movie:

id fName lName gender

195428 Tom Hanks M
645947 Amy Hanks F

. . .

id Name year

337166 Toy Story 1995

.

pid mid

195428 337166
. . .

SQL

24

SELECT *
FROM Actor

Dan Suciu -- 544, Winter 2011

SQL

25

SELECT count(*)
FROM Actor

This is an aggregate query

Dan Suciu -- 544, Winter 2011

SQL

26

SELECT *
FROM Actor
WHERE lName = ‘Hanks’

This is a selection query

Dan Suciu -- 544, Winter 2011

SQL

27

SELECT *
FROM Actor, Casts, Movie
WHERE lname='Hanks' and Actor.id = Casts.pid
 and Casts.mid=Movie.id and Movie.year=1995

This query has selections and joins

Dan Suciu -- 544, Winter 2011

817k actors, 3.5M casts, 380k movies;
How can it be so fast ?

28

How Can We Evaluate the Query ?

Actor: Cast: Movie:
id fName lName gender

. . . Hanks

. . .

id Name year

. . . 1995

. . .

pid mid

. . .

. . .

Plan 1: [in class]

Plan 2: [in class]
Dan Suciu -- 544, Winter 2011

29

Evaluating Tom Hanks

Actor Cast Movie

σlName=‘Hanks’ σyear=1995

Actor Cast Movie

σlName=‘Hanks’ σyear=1995

Dan Suciu -- 544, Winter 2011

Optimization and Query Execution

•  Indexes: on Actor.lName, on Movie.year

•  Query optimization
– Access path selection
–  Join order

•  Statistics

•  Multiple implementations of joins

30 Dan Suciu -- 544, Winter 2011

Types of Usages for Databases

•  OLTP (online-transaction-processing)
– Many updates: transactions are critical
– Many “point queries”: retrieve the record with

a given key.

•  Decision-Support
– Many aggregate/group-by queries.
– Sometimes called data warehouse

Dan Suciu -- 544, Winter 2011 31

Take-home Message 1
•  Translating WHAT to HOW:

–  SQL = query language = WHAT we want
–  Relational algebra = algorithm = HOW to get it
–  In essence, RDBMS are about translating WHAT to HOW

•  Query languages capture complexity classes:
–  Query languages = WHAT; complexity class =HOW
–  Examples:

•  Relational calculus = AC0

•  Relational calculus + transitive closure = LOGSPACE
•  Datalog (inflationary fixpoint) = PTIME
•  Datalog (partial fixpoint) = PSPACE

–  Choice of query language: tradeoff between expressiveness and
optimizations

Dan Suciu -- 544, Winter 2011 32

Recovery

•  Transfer $100 from account #4662 to #7199:

33 Dan Suciu -- 544, Winter 2011

X = Read(Account_1);
X.amount = X.amount - 100;
Write(Account_1, X);

Y = Read(Account_2);
Y.amount = Y.amount + 100;
Write(Account_2, Y);

Recovery

•  Transfer $100 from account #4662 to #7199:

34

X = Read(Account_1);
X.amount = X.amount - 100;
Write(Account_1, X);

Y = Read(Account_2);
Y.amount = Y.amount + 100;
Write(Account_2, Y);

CRASH !

Dan Suciu -- 544, Winter 2011
What is the problem ?

Concurrency Control

•  How to overdraft your account:

35

X = Read(Account);
if (X.amount > 100)
 { dispense_money();
 X.amount = X.amount – 100;
 }
else error(“Insufficient funds”);

X = Read(Account);
if (X.amount > 100)
 { dispense_money();
 X.amount = X.amount – 100;
 }
else error(“Insufficient funds”);

User 1 User 2

Dan Suciu -- 544, Winter 2011 What can go wrong ?

Transactions
•  Recovery

•  Concurrency control

ACID =
•  Atomicity (= recovery)
•  Consistency
•  Isolation (= concurrency control)
•  Durability

36 Dan Suciu -- 544, Winter 2011

Take-home Message 2
•  Transactions: the single most important functionality of

commercial database systems
•  Single-update transactions: some applications need

only storage engines supporting single-update
transactions
–  E.g. key-value stores
–  OLTP queries only; no decision support
–  The No-SQL movement

•  Distributed systems: move away from ACID semantics
to weaker isolation levels
–  This is the focus of active research today

•  In 544: we will cover only traditional topics in
transaction management: recovery and concurrency

Dan Suciu -- 544, Winter 2011 37

Client/Server Database Architecture

•  One server: stores the database
–  called DBMS or RDBMS
–  Usually a beefed-up system:

•  You can use CUBIST in this class; better: use your own computer as
server

•  Large databases use a cluster of servers (parallel DBMS)

•  Many clients: run apps and connect to DBMS
–  Interactive: psql (postgres), Management Studio (SQL Server)
–  Java/C++/C#/… applications
–  Connection protocol: ODBC/JDBC

Dan Suciu -- 544, Winter 2011 38

Take-home Message 3
•  Client/Server DBMS have higher startup-cost:

–  Need to first install/startup the server
–  Need to create logical schema, tune the physical schema
–  This is the main reason why some advanced users (scientists,

researchers) stay away from RDBMS
–  After taking 544 you should no longer feel this pain

•  Serverless DBMS:
–  Database system is compiled into the application’s address

space (as a library)
–  E.g. SQL Lite
–  Advantages: easier setup
–  Disadvantages:

•  Very limited concurrency control
•  Often these systems have only limited optimizers

Dan Suciu -- 544, Winter 2011 39

SQL
•  You are expected to learn SQL on your own !

– We discuss only a few constructs in the remaining
minutes of this lecture

– Next lecture we study the relational calculus and
its connection to SQL

•  Resources for learning SQL:
– The slides in this lecture
– The textbook
– Postgres: type \h or \?

•  Start working on HW1 !

Dan Suciu -- 544, Winter 2011 40

41

What You Should Know

•  Data Manipulation Language (DML)
– Querying: SELECT-FROM-WHERE

•  Group-by/aggregate, subqueries (especially with
universal quantifiers !!), NULLs, outer-joins

– Modifying: INSERT/DELETE/UPDATE
•  Data Definition Language (DDL)

– CREATE/ALTER/DROP
– Constraints: will discuss these in class

Dan Suciu -- 544, Winter 2011

42

Tables in SQL

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute names Table name

Tuples or rows

Key

Dan Suciu -- 544, Winter 2011

43

Data Types in SQL

•  Atomic types:
– Characters: CHAR(20), VARCHAR(50)
– Numbers: INT, BIGINT, SMALLINT, FLOAT
– Others: MONEY, DATETIME, …

•  Record (aka tuple)
– Has atomic attributes

•  Table (relation)
– A set of tuples

Dan Suciu -- 544, Winter 2011

44

Simple SQL Query

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT *
FROM Product
WHERE category=‘Gadgets’

Product

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks “selection”
Dan Suciu -- 544, Winter 2011

45

Simple SQL Query
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer
SingleTouch $149.99 Canon
MultiTouch $203.99 Hitachi

“selection” and
“projection”

Dan Suciu -- 544, Winter 2011

46

Details
•  Case insensitive:

SELECT = Select = select

Product = product

BUT: ‘Seattle’ ≠ ‘seattle’

•  Constants:

‘abc’ - yes

“abc” - no

Dan Suciu -- 544, Winter 2011

47

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category
Gadgets
Gadgets

Photography
Household

Category
Gadgets

Photography
Household

Dan Suciu -- 544, Winter 2011

48

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list.

Ordering is ascending, unless you specify the DESC keyword.

Dan Suciu -- 544, Winter 2011

49

SELECT Category
FROM Product
ORDER BY PName

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

?
SELECT DISTINCT category
FROM Product
ORDER BY category

SELECT DISTINCT category
FROM Product
ORDER BY PName

?
?

Dan Suciu -- 544, Winter 2011

50

Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key

Foreign
key

Dan Suciu -- 544, Winter 2011

51

Joins

Product (PName, Price, Category, Manufacturer)
Company (CName, stockPrice, Country)

Find all products under $200 manufactured in
Japan;
return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’
 AND Price <= 200

Join
between Product

and Company

Dan Suciu -- 544, Winter 2011

52

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

PName Price

SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’
 AND Price <= 200

Dan Suciu -- 544, Winter 2011

53

Tuple Variables

SELECT DISTINCT pname, address
FROM Person, Company
WHERE worksfor = cname

Which
address ?

Person(pname, address, worksfor)
Company(cname, address)

SELECT DISTINCT Person.pname, Company.address
FROM Person, Company
WHERE Person.worksfor = Company.cname

SELECT DISTINCT x.pname, y.address
FROM Person AS x, Company AS y
WHERE x.worksfor = y.cname

Dan Suciu -- 544, Winter 2011

54

In Class

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all Chinese companies that manufacture
products both in the ‘toy’ category

SELECT cname

FROM

WHERE

Dan Suciu -- 544, Winter 2011

55

In Class

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all Chinese companies that manufacture
products both in the ‘electronic’ and ‘toy’ categories

SELECT cname

FROM

WHERE

Dan Suciu -- 544, Winter 2011

56

Meaning (Semantics) of SQL
Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer ∪ {(a1,…,ak)}
return Answer

Dan Suciu -- 544, Winter 2011

57

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

Using the Formal Semantics

If S ≠ ∅ and T ≠ ∅
then returns R ∩ (S ∪ T)
else returns ∅	

What do these queries compute ?

SELECT DISTINCT R.A
FROM R, S
WHERE R.A=S.A

Returns R ∩ S

Dan Suciu -- 544, Winter 2011

58

Joins Introduce Duplicates

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all countries that manufacture some product in
the ‘Gadgets’ category.

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=‘Gadgets’

Dan Suciu -- 544, Winter 2011

59

Joins Introduce Duplicates

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Country

 USA

USA
Duplicates !

Remember to
add DISTINCT

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=‘Gadgets’

Dan Suciu -- 544, Winter 2011

60

Subqueries
•  A subquery is another SQL query nested inside

a larger query
•  Such inner-outer queries are called nested

queries
•  A subquery may occur in:

1.  A SELECT clause
2.  A FROM clause
3.  A WHERE clause

Dan Suciu -- 544, Winter 2011

Rule of thumb: avoid writing nested queries when possible;
keep in mind that sometimes it’s impossible

61

1. Subqueries in SELECT

Product (pname, price, company)
Company(cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
 FROM Company Y
 WHERE Y.cname=X.company)
FROM Product X

What happens if the subquery returns more than one city ?

Dan Suciu -- 544, Winter 2011

62

1. Subqueries in SELECT

Product (pname, price, company)
Company(cname, city)

Whenever possible, don’t use a nested queries:

= We have
“unnested”
the query

Dan Suciu -- 544, Winter 2011

SELECT pname, (SELECT city FROM Company WHERE cname=company)
FROM Product

SELECT pname, city
FROM Product, Company
WHERE cname=company

63

1. Subqueries in SELECT

Product (pname, price, company)
Company(cname, city)

Compute the number of products made in each city

SELECT DISTINCT city, (SELECT count(*)
 FROM Product
 WHERE cname=company)
FROM Company

Better: we can unnest by using a GROUP BY

Dan Suciu -- 544, Winter 2011

64

2. Subqueries in FROM

Product (pname, price, company)
Company(cname, city)

Find all products whose prices is > 20 and < 30

SELECT X.city
FROM (SELECT * FROM Product AS Y WHERE Y.price > 20) AS X
WHERE X.price < 30

Unnest this query !

Dan Suciu -- 544, Winter 2011

65

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city
FROM Company
WHERE EXISTS (SELECT *
 FROM Product
 WHERE company = cname and Produc.price < 100)

Existential quantifiers

Using EXISTS:

Dan Suciu -- 544, Winter 2011

66

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

Existential quantifiers

Relational Calculus (a.k.a. First Order Logic)

Dan Suciu -- 544, Winter 2011

{ y | ∃x. Company(x,y) ∧ (∃z. ∃p. Product(z,p,x) ∧ p < 100) }

67

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city
FROM Company
WHERE Company.cname IN (SELECT Product.company
 FROM Product
 WHERE Produc.price < 100)

Existential quantifiers

Using IN

Dan Suciu -- 544, Winter 2011

68

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city
FROM Company
WHERE 100 > ANY (SELECT price
 FROM Product
 WHERE company = cname)

Existential quantifiers

Using ANY:

Dan Suciu -- 544, Winter 2011

69

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential quantifiers are easy !

Existential quantifiers

Now let’s unnest it:

Dan Suciu -- 544, Winter 2011

70

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Universal quantifiers are hard !

Find all cities with companies
 that make only products with price < 100

Universal quantifiers

Dan Suciu -- 544, Winter 2011

71

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Universal quantifiers

Relational Calculus (a.k.a. First Order Logic)

Dan Suciu -- 544, Winter 2011

{ y | ∃x. Company(x,y) ∧ (∀z. ∀p. Product(z,p,x) p < 100) }

Find all cities with companies
 that make only products with price < 100

72

3. Subqueries in WHERE

Dan Suciu -- 544, Winter 2011

{ y | ∃x. Company(x,y) ∧ (∀z. ∀p. Product(z,p,x) p < 100) }

De Morgan’s Laws:
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

{ y | ∃x. Company(x,y) ∧ ¬ (∃z∃p. Product(z,p,x) ∧ p ≥ 100) }

{ y | ∃x. Company(x,y)) } −
{ y | ∃x. Company(x,y) ∧ (∃z∃p. Product(z,p,x) ∧ p ≥ 100) }

¬(A B) = A ∧ ¬B

=

=

73

3. Subqueries in WHERE

2. Find all companies s.t. all their products have price < 100

1. Find the other companies: i.e. s.t. some product ≥ 100

Dan Suciu -- 544, Winter 2011

SELECT DISTINCT Company.city
FROM Company
WHERE Company.cname IN (SELECT Product.company
 FROM Product
 WHERE Produc.price >= 100

SELECT DISTINCT Company.city
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company
 FROM Product
 WHERE Produc.price >= 100

74

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities with companies
 that make only products with price < 100

Universal quantifiers

Using EXISTS:

Dan Suciu -- 544, Winter 2011

SELECT DISTINCT Company.city
FROM Company
WHERE NOT EXISTS (SELECT *
 FROM Product
 WHERE company = cname and Produc.price >= 100)

75

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

SELECT DISTINCT Company.city
FROM Company
WHERE 100 > ALL (SELECT price
 FROM Product
 WHERE company = cname)

Universal quantifiers

Using ALL:

Dan Suciu -- 544, Winter 2011

Find all cities with companies
 that make only products with price < 100

76

Question for Database Fans
and their Friends

• Can we unnest the universal
quantifier query ?

Dan Suciu -- 544, Winter 2011

77

Monotone Queries
•  A query Q is monotone if:

–  Whenever we add tuples to one or more of the tables…
–  … the answer to the query cannot contain fewer tuples

•  Fact: all unnested queries are monotone
–  Proof: using the “nested for loops” semantics

•  Fact: A query a universal quantifier is not monotone

•  Consequence: we cannot unnest a query with a universal
quantifier

Dan Suciu -- 544, Winter 2011

78

Queries that must be nested

•  Queries with universal quantifiers or with
negation

•  The drinkers-bars-beers example next
•  This is a famous example from textbook

on databases by Ullman

Dan Suciu -- 544, Winter 2011

Rule of Thumb:
Non-monotone queries cannot be
unnested. In particular, queries with a
universal quantifier cannot be
unnested

79

The drinkers-bars-beers example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Challenge: write these in SQL

Find drinkers that frequent some bar that serves only beers they like.

Dan Suciu -- 544, Winter 2011

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

x: ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

x: ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

x: ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

x: ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

80

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

SQL supports several aggregation operations:

 sum, count, min, max, avg

Dan Suciu -- 544, Winter 2011

81

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)
FROM Product
WHERE year > 1995

same as Count(*)

We probably want:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: Count

Dan Suciu -- 544, Winter 2011

82

Purchase(product, date, price, quantity)

More Examples

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

Dan Suciu -- 544, Winter 2011

83

Simple Aggregations
Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘Bagel’

90 (= 60+30)

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

Dan Suciu -- 544, Winter 2011

84

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Let’s see what this means…

Find total quantities for all sales over $1, by product.

Dan Suciu -- 544, Winter 2011

85

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause, including aggregates.

Dan Suciu -- 544, Winter 2011

86

1&2. FROM-WHERE-GROUPBY

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

Dan Suciu -- 544, Winter 2011

87

3. SELECT

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

Dan Suciu -- 544, Winter 2011

88

GROUP BY v.s. Nested Quereis

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
 FROM Purchase y
 WHERE x.product = y.product
 AND price > 1)
 AS TotalSales
FROM Purchase x
WHERE price > 1

Why twice ?
Dan Suciu -- 544, Winter 2011

89

Another Example

SELECT product,
 sum(quantity) AS SumSales
 max(price) AS MaxQuantity
FROM Purchase
GROUP BY product

What does
it mean ?

Rule of thumb:
Every group in a GROUP BY is non-empty !
If we want to include empty groups in the
output, then we need either a subquery, or
a left outer join (see later)

Dan Suciu -- 544, Winter 2011

90

HAVING Clause

SELECT product, Sum(quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING Sum(quantity) > 30

Same query, except that we consider only products that had
at least 100 buyers.

HAVING clause contains conditions on aggregates.

Dan Suciu -- 544, Winter 2011

91

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates
but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

Why ?

Dan Suciu -- 544, Winter 2011

92

General form of Grouping and
Aggregation

Evaluation steps:
1.  Evaluate FROM-WHERE, apply condition C1
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Dan Suciu -- 544, Winter 2011

93

Advanced SQLizing

1.  Unnesting Aggregates

2.  Finding witnesses

Dan Suciu -- 544, Winter 2011

94

Unnesting Aggregates

Product (pname, price, company)
Company(cname, city)

Find the number of companies in each city

SELECT DISTINCT city, (SELECT count(*)
 FROM Company Y
 WHERE X.city = Y.city)
FROM Company X

SELECT city, count(*)
FROM Company
GROUP BY city

Equivalent queries

Note: no need for DISTINCT
(DISTINCT is the same as GROUP BY) Dan Suciu -- 544, Winter 2011

95

Unnesting Aggregates

Product (pname, price, company)
Company(cname, city)

Find the number of products made in each city

SELECT DISTINCT X.city, (SELECT count(*)
 FROM Product Y, Company Z
 WHERE Y.cname=Z.company
 AND Z.city = X.city)
FROM Company X

SELECT X.city, count(*)
FROM Company X, Product Y
WHERE X.cname=Y.company
GROUP BY X.city

They are NOT
equivalent !

(WHY?)
Dan Suciu -- 544, Winter 2011

96

More Unnesting

•  Find authors who wrote ≥ 10
documents:

•  Attempt 1: with nested queries
SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url
 FROM Wrote
 WHERE Author.login=Wrote.login)
 > 10

This is
SQL by
a novice

Author(login,name)
Wrote(login,url)

Dan Suciu -- 544, Winter 2011

97

More Unnesting

•  Find all authors who wrote at least 10
documents:

•  Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by

an expert

Dan Suciu -- 544, Winter 2011

98

Finding Witnesses

Store(sid, sname)
Product(pid, pname, price, sid)

For each store,
find its most expensive products

Dan Suciu -- 544, Winter 2011

99

Finding Witnesses

SELECT Store.sid, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price

Dan Suciu -- 544, Winter 2011

100

Finding Witnesses

SELECT Store.sname, Product.pname
FROM Store, Product,
 (SELECT Store.sid AS sid, max(Product.price) AS p
 FROM Store, Product
 WHERE Store.sid = Product.sid
 GROUP BY Store.sid, Store.sname) X
WHERE Store.sid = Product.sid
 and Store.sid = X.sid and Product.price = X.p

To find the witnesses, compute the maximum price
in a subquery

Dan Suciu -- 544, Winter 2011

101

Finding Witnesses

There is a more concise solution here:

SELECT Store.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid and
 x.price >=
 ALL (SELECT y.price
 FROM Product y
 WHERE Store.sid = y.sid)

Dan Suciu -- 544, Winter 2011

102

NULLS in SQL
•  Whenever we don’t have a value, we can put a

NULL
•  Can mean many things:

–  Value does not exists
–  Value exists but is unknown
–  Value not applicable
–  Etc.

•  The schema specifies for each attribute if can be null
(nullable attribute) or not

•  How does SQL cope with tables that have NULLs ?

Dan Suciu -- 544, Winter 2011

103

Null Values

•  If x= NULL then 4*(3-x)/7 is still NULL

•  If x= NULL then x=‘Joe’ is UNKNOWN
•  In SQL there are three boolean values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

Dan Suciu -- 544, Winter 2011

104

Null Values

•  C1 AND C2 = min(C1, C2)
•  C1 OR C2 = max(C1, C2)
•  NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND
 (height > 6 OR weight > 190)

E.g.
age=20
heigth=NULL
weight=200

Dan Suciu -- 544, Winter 2011

105

Null Values

Unexpected behavior:

Some Persons are not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Dan Suciu -- 544, Winter 2011

106

Null Values

Can test for NULL explicitly:
–  x IS NULL
–  x IS NOT NULL

Now it includes all Persons

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

Dan Suciu -- 544, Winter 2011

Outerjoins

107

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON
 Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

Product(name, category)
Purchase(prodName, store)
An “inner join”:

Dan Suciu -- 544, Winter 2011

Outerjoins

108

 SELECT Product.name, Purchase.store
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

If we want the never-sold products, need an “outerjoin”:

Dan Suciu -- 544, Winter 2011

109

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

Dan Suciu -- 544, Winter 2011

110

Application

Compute, for each product, the total number of sales in
‘September’
 Product(name, category)

 Purchase(prodName, month, store)

 SELECT Product.name, count(*)
 FROM Product, Purchase
 WHERE Product.name = Purchase.prodName
 and Purchase.month = ‘September’
 GROUP BY Product.name

What’s wrong ?
Dan Suciu -- 544, Winter 2011

111

Application

Compute, for each product, the total number of sales in
‘September’
 Product(name, category)

 Purchase(prodName, month, store)

 SELECT Product.name, count(store)
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.name = Purchase.prodName
 and Purchase.month = ‘September’
 GROUP BY Product.name

Now we also get the products who sold in 0 quantity
Dan Suciu -- 544, Winter 2011

112

Outer Joins

•  Left outer join:
–  Include the left tuple even if there’s no match

•  Right outer join:
–  Include the right tuple even if there’s no match

•  Full outer join:
–  Include the both left and right tuples even if there’s no

match

Dan Suciu -- 544, Winter 2011

