SQL is Dead; Long Live SQL: Smart Services for Ad Hoc Databases

Bill Howe Garret Cole Alicia Key Nodira Khoussainova

Patrick Michaud Kevin Pittman Charlon Palacay Luke Zettlemoyer Yuan Zhou

Microsoft[®] Research

Fault-tolerance

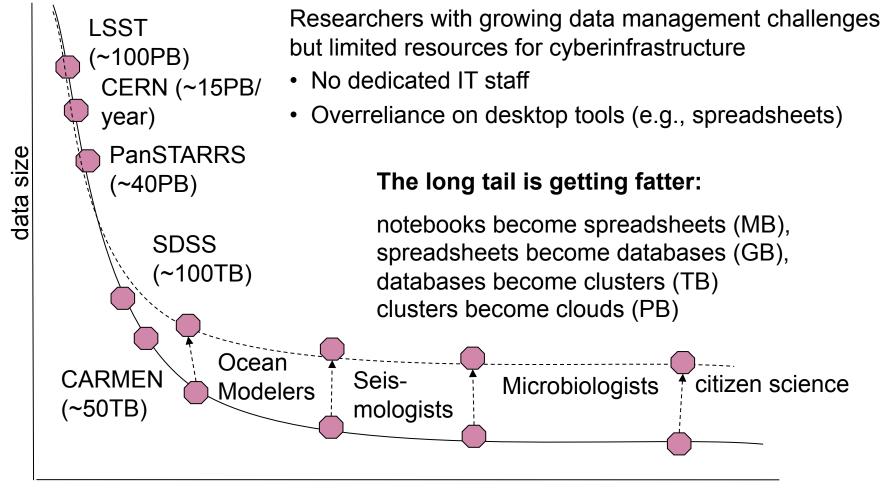
by @jrecursive

http://escience.washington.edu

Science is reducing to querying databases

Old model: "Query the world" (Data acquisition coupled to a specific hypothesis) New model: "Download the world, query the DB" (Data acquired en masse, to support many hypotheses)

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Oceanography: high-resolution models, cheap sensors, satellites
- Biology: lab automation, high-throughput sequencing,



1/17/11

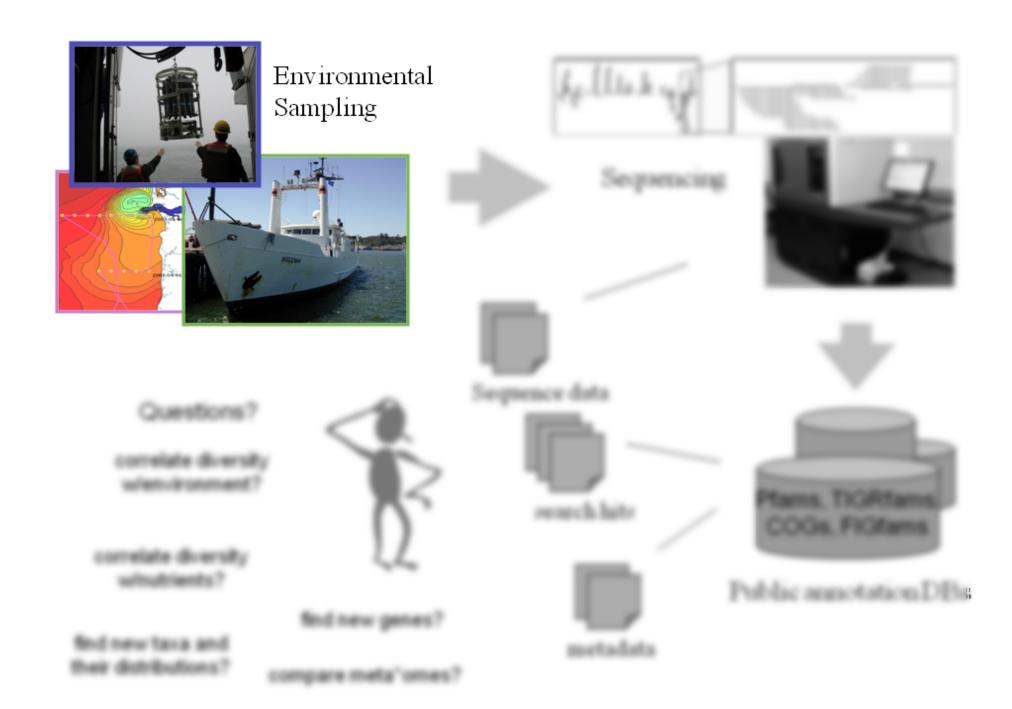
Bill Howe, UW

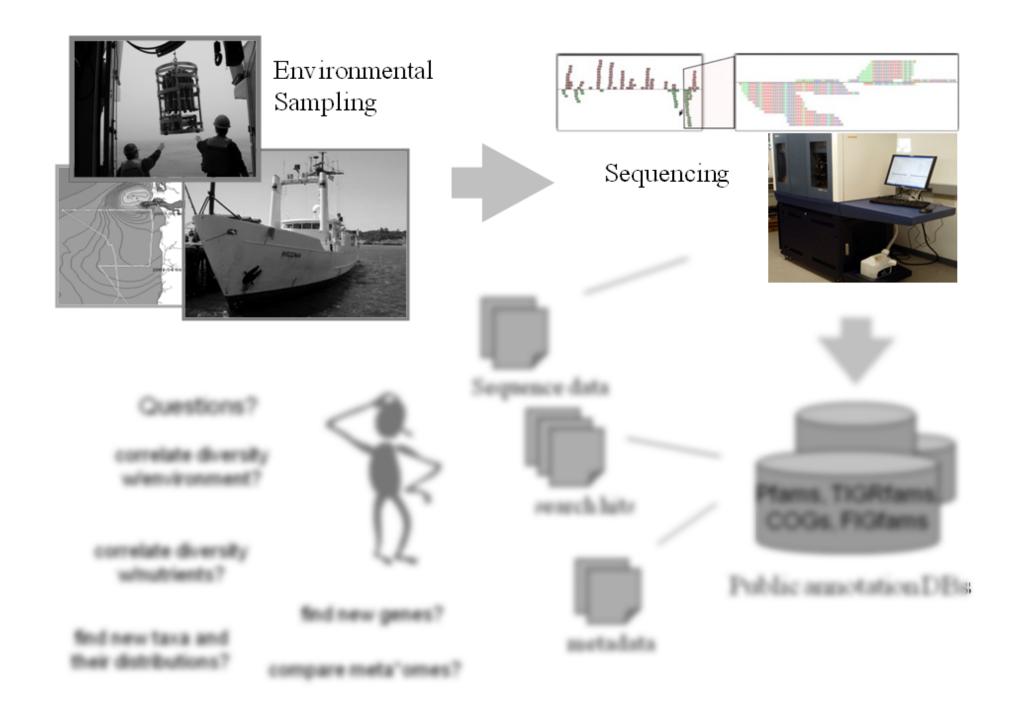
Context: The Long Tail

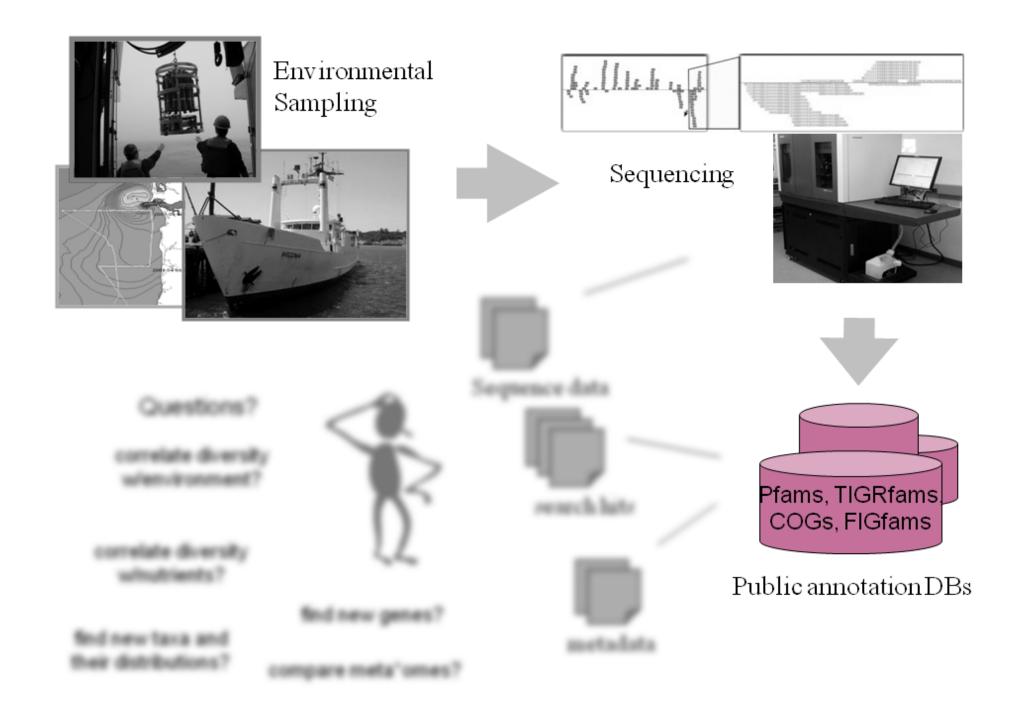
[Wired 2004]

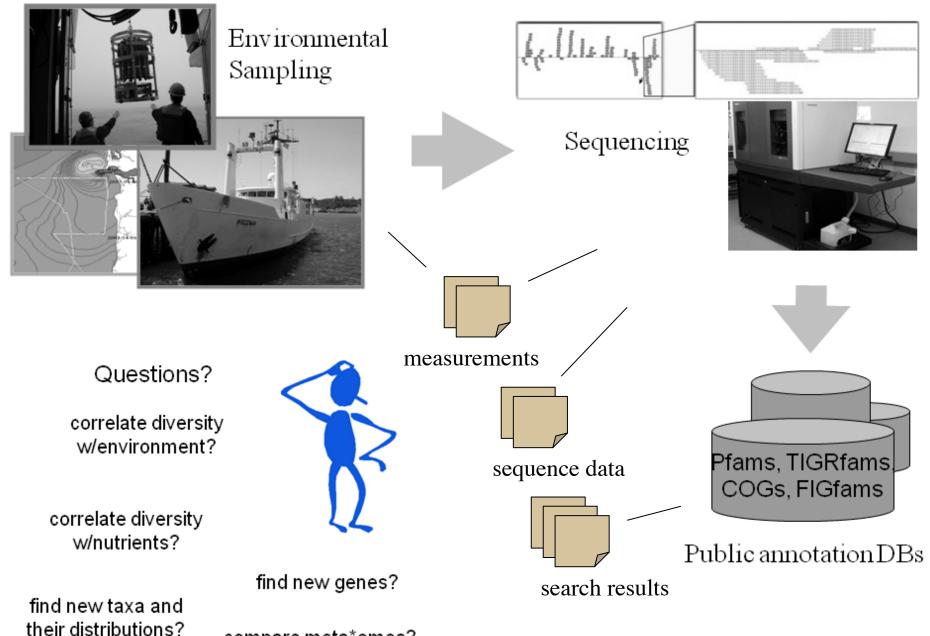
rank

How much time do you spend "handling data" as opposed to "doing science"?

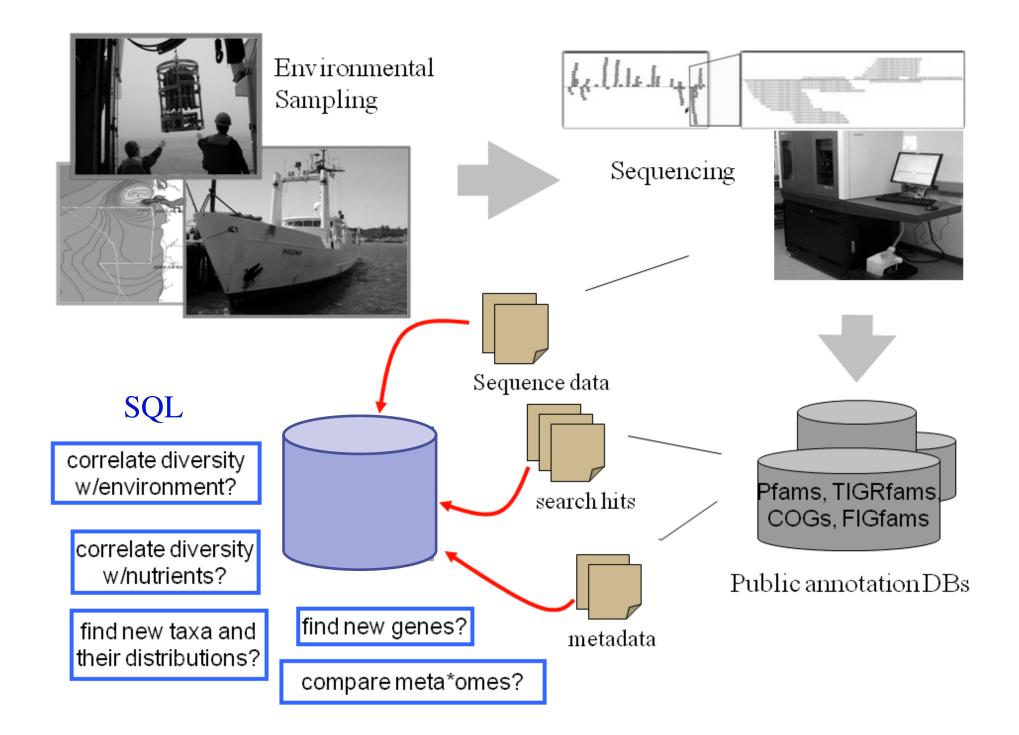

Mode answer? 90%




Example: Environmental Metagenomics


5/18/10

Garret Cole, eScience Institute



compare meta*omes?

Ad Hoc Research Data

Fasta

;LCBO - Prolactin precursor - Bovine ; a sample sequence in FASTA format MDSKGSSQKGSRLLLLVVSNLLLCQGVVSTPVCPNGPGNCQVSLRDLFDRAVMVSHYIHDLSS EMFNEFDKRYAQGKGFITMALNSCHTSSLPTPEDKEQAQQTHHEVLMSLILGLLRSWNDPLYHL VTEVRGMKGAPDAILSRAIEIEEENKRLLEGMEMIFGQVIPGAKETEPYPVWSGLPSLQTKDED ARYSAFYNLLHCLRRDSSKIDTYLKLLNCRIIYNNNC*

>MCHU - Calmodulin - Human, rabbit, bovine, rat, and chicken ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTID FPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREA DIDGDGQVNYEEFVQMMTAK*

ASCII

#query GO reference DB reference fami	ly e-value	description	
<pre>lc1 10082_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.</pre>	6 GO:0006412	TIGRFAM TIGROOOO1	6e-08 translation
<pre>lc1 10082_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.</pre>	6 GO:0022625	TIGRFAM TIGROOOO1	6e-08 cytosolic larg
<pre>lc1 10082_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.</pre>	6 GO:0000315	TIGRFAM TIGROOOO1	6e-08 organellar lan
<pre>lc1 10082_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.</pre>	6 GO:0003735	TIGRFAM TIGROOOO1	6e-08 structural com
<pre>lc1 9019_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.1</pre>	GO:0005507	TIGRFAM TIGROOOO3	5.5e-06 copper ion bin
<pre>lc1 9019_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.1</pre>	GO:0006825	TIGRFAM TIGROOOO3	5.5e-06 copper ion tra
1c1 5439_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.1	GO:0006402	TIGRFAM TIGROOOO4	5.9e-67 mRNA catabolio
<pre>lc1 5439_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.1</pre>	GO:0004521	TIGRFAM TIGROOOO4	5.9e-67 endoribonucles
1c1 813_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.2	GO:0009451	TIGRFAM TIGROOOO5	2.1e-29 RNA modificat:
lc1 813_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.2	GO:0001522	TIGRFAM TIGROOOO5	2.1e-29 pseudouridine
1c1 813_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.2	GO:0009982	TIGRFAM TIGROOOO5	2.1e-29 pseudouridine
<pre>lc1 6708_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.4</pre>	GO:0009451	TIGRFAM TIGROOOO5	1.2e-18 RNA modificat:
<pre>lc1 6708_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.4</pre>	GO:0001522	TIGRFAM TIGROOOO5	1.2e-18 pseudouridine
<pre>lc1 6708_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.4</pre>	GO:0009982	TIGRFAM TIGROOOO5	1.2e-18 pseudouridine
<pre>lc1 4_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.1 GO</pre>	:0009451 TIG	RFAM TIGROOOO5 1.4	e-16 RNA modification
1c1 4_1_CCCI_CCOA_CCOB_CCOC_CFAP_CFAS.1 GO	:0001522 TIG	RFAM TIGROOOO5 1.4	4e-16 pseudouridine synt

Spreadsheets

F16		 <i>f</i>(x) 	Σ = Γ			
	A	В	С	D	E	F
1						
2						
3	Date	Start time	End time	Pause	Sum	Comment
4	2007-05-07	9,25	10,25	0	1	Task 1
5	2007-05-07	10,75	12,50	0	1,75	Task 1
6	2007-05-07	18,00	19,00	0	1	Task 2
7	2007-05-08	9,25	10,25	0	1	Task 2
8	2007-05-08	14,50	15,50	0	1	Task 3
9	2007-05-08	8,75	9,25	0	0,5	Task 3
10	2007-05-14	21,75	22,25	0	0,5	Task 3
11	2007-05-14	22,50	23,00	0	0,5	Task 3
12	2007-05-15	11,75	12,75	0	1	Task 3
13						
14						
15						
16						
17						
18						

5/18/10

Garret Cole, eScience Institute

###query	length	COG hit #1	e-value #1	identity	#1 score #	1 hit length #1	descr	ription #1	L
chr_4[480001-580000].287	4500					-			
chr_4[560001-660000].1	3556								
chr_9[400001-500000].503	4211	COG4547	2.00E-04	19	44.6	620	Coba	lamin bio	synthesis pro
chr_9[320001-420000].548	2833	COG5406	2.00E-04	38	43.9	1001	Nucle	eosome b	inding factor S
chr_27[320001-404298].20	3991	COG4547	5.00E-05	18	46.2	620	Coba	lamin bio	synthesis pro
chr_26[320001-420000].378	3963	COG5099	5.00E-05	17	46.2	777	RNA-	binding p	protein of the
.hr_26[400001-441226].196	2949	COG5099	2.00E-04	17	43.9	777	RNA-	binding p	protein of the
hr_24[160001-260000].65	3542								
chr_5[720001-820000].339	3141	COG5000	4.00E-09	20	59.3	777			protein of the
.hr_9[160001-260000].243	3002	COG5077	1.00E-25	26	114	1089			oxyl-terminal
hr_12[720001-820000].86	2895	COC5032	2.00E-09	30	60.5	2105			nositol kinase
hr_12[800001-900000].109	1463	COG5032	1.00E-09	30	60.1	2105	Phos	phatidylir	nositol kinase
hr_11[1-100000].70	2286								
hr_11[80001-180000].100	1523								
COGAnnotation_coast	al samp	ole.txt							
id query	hit	e_valu			query_start	• • • •		hit_end	
1 FHJ7DRN01A0TND				8 51	1	74	180	257	
2 FHJ7DRN01A1AD2				7 89.9	6	85	41	120	
3 FHJ7DRN01A2HWZ	.4 COG	3889 0.0	006 2	6 35.8	9	94	758	845	872
					-				
2853 FHJ7DRN02HXTBY.				7 52.3	3	77	313	388	
2854 FHJ7DRN02HZO4J.		2.00E	-31 6	7 127	1	73	135	207	316
						75	1005	2020	21.05
3566 FHJ7DRN02FUJW3.	1 COG	5032 1.00E	-09 3	2 54.7	1	75	1965	2038	2105

${\tt ANNOTATIONSUMMARY-COMBINEDORFANNOTATION16_Phaeo_genome}$

SELECT * FROM Phaeo P, Coastal C WHERE P.hit = C.hit

###	^t query		length (COG hit #1	e-value #1	identity #1	score #1	hit length #1	description a	#1
chr_	4[480001-5	80000].287	4500			-		-	•	
chr_	4[560001-6	60000].1	3556							
chr_	9[400001-5	00000].503	4211	COG4547	200E-04	19	44.6	620	Cobalamin b	iosynthesis proteir
_	-	20000].548	2000	COC5406	2.00E-04	38	43.9	1001		binding factor SPN
_	-	404298].20	3991	COG4547	5.00E-05	18	46.2	620		iosynthesis proteir
	-	420000].378		COG5099	5.00E-05	17	46.2	777		protein of the Puf
	-	441226].196		COG5099	2.00E-04	17	43.9	777	RNA-binding	protein of the Puf
		260000].65	3542							
	-	200001 339		ററപ്പട്ട099	4.00E-09	20	59.3	777		protein of the Puf
		coastal sam		077	1.00E-25	26	114	1089	Ubiquitin car	boxyl-terminal hyc
chr_	12[720001-	id query		hit	2 005 00 e_valu		tart quer	 end hit_sta	art hit end h	lipocitol kinase and
chr_	12[800001-	6409 FHJ7DR	N01BYA61		_			84	43 125	nit_length 134
_	11[1-10000	6410 FHJ7DR					3	42	30 69	134
cnr_	11[80001-1	6411 FHJ7DR					4	46	1 46	134
		6412 FHJ7DR					4	45	1 45	134
	SwissProt					E-64	1		511 586	606
	SWISSFILL	6414 FHJ7DR	N01B8BPS.	TIGR01	1.201	E-36	1	52 5	500 551	606
	Sea	6415 FHJ7DR	N02JM54P.1	L TIGR01	L651 2.20I	E-24	15	80 3	301 366	606
9		6416 FHJ7DR				-	1	45	37 85	153 ole
ic	Search ir						5	65	48 118	153
	Protein	6418 FHJ7DR	N02FYAFO.	L TIGROO			1	76	67 153	153
			PIRSF			0 GO:0051:			ibutes_to	
			014157		TIGR0165	1 00:00092	236	NULL		
	1 result for (CC0672 🗵 in Uni	SMART		TIGR0165	1 00:0051:	116	NULL		
	318				TIGRUIDO	0 GO:00089	940	NULL		
	a Reduc	e sequence redur	TIGRFA	Ms	TIGR0166	0 GO:00090	061	NULL		
					TIGR0166	0 GO:00093	325	NULL		family,
	> Did you me	ean cc067?	PROSIT	E		3 GO:0000		NULL		ianny,
						3 GO:00464		NULL		YPR042c
4			DrotoNic		11010100			1011		
			ProtoNe	l l		Sear	rch			69.05
	Acc	ession E	ntry name -		Status	Protein nam	ies 🕀		PP3562.14	+ 5PCC1682.08c
	Q9/	AADO C	9AAD0_CAU	JCR	*	Cobalamin	biosynthes	is protein		
L										

ANNOTATIONSUMMARY-COMBINEDORFANNOTATION16_Phaeo_genome

SQLShare is an easier way to store and share your data. Get answers to your research questions right now.

		CacTrack Timekeeping CacTrack Timekeeping Income Adda Imp //xqb/are.cloudage.eet/	🕞 🖉 Coopie 🔍	
		5 TGAFanAnnotation_sux Table02_102022_00X jassRejastRx BasyReageX	Account made EigenDat	
syfem	Favorites Recordly Viewed > Shared with you > Upload new deta Create new query Tags test database blah sadfastd	TIGRFamAnnotation_surface_copy_12081977 Loven ipsum dolor sit amet, consectetur adgosong elit. Vesmus tristique texplait loven at malesuada. Sed rutrum elit. vet tellus adgenomi di dictum mil tinodurit. Tagis: test tellor deta tigrtam bian sadtastd BELECT year,mosth,obeervedflex FROM BoaadupcdolarIndecies EDIT GUERY	FELECT year, Mosth, observedTics FROM ReadbycobolarIndecies RUN GOERY	W UNIVERSITY of WASHINGTON
		Cless_a cless_b accession name pession name Amine acid Boorprifesia acid Boorprifesia acid Boorprifesia acid TGR00033 arsC 3R00033 arsC TGR00033 arsC Amine acid Boorprifesia acid TGR00034 ars/FGH 3R00034 ars/FGH TGR00034 ars/FGH : COMMLOAD VISUALIZE COPY QUERY TABLE : : :	desa, a class, basion name Annio acid amine 20000 anvC biosynthesis acid amine 20000 arvC family Annio acid amine 20000 arv/C biosynthesis acid amine 2000 arv/Cell *	Create a Google Account and start

Upload

Upload any tabular data and start analyzing instantly. No need to install, configure, or design a database.

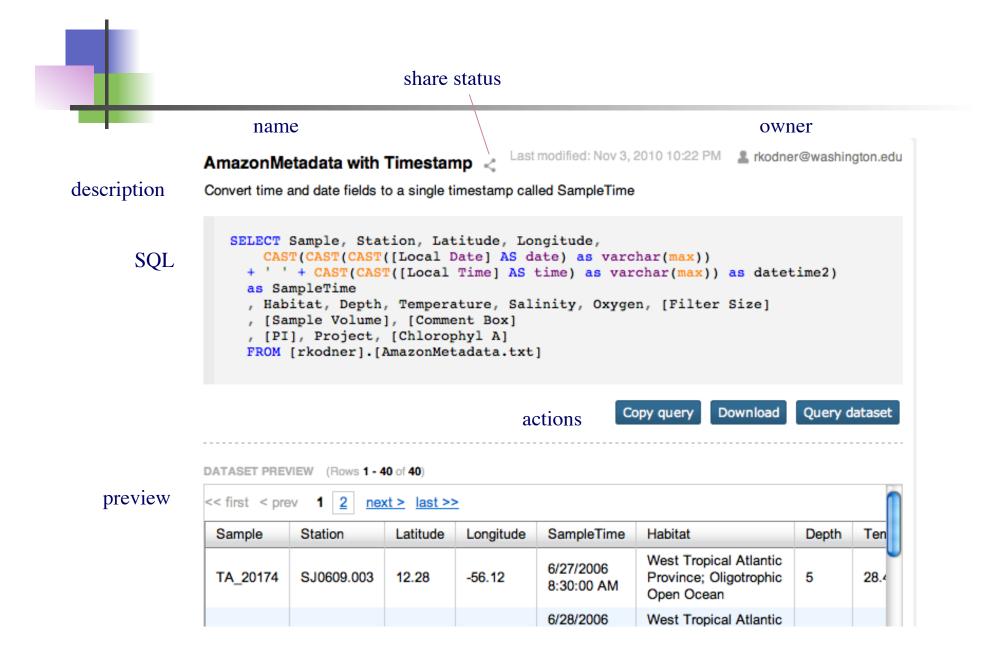
Modify

Exercise the full power of SQL even with zero programming experience: joins, subqueries, set operations.

Share

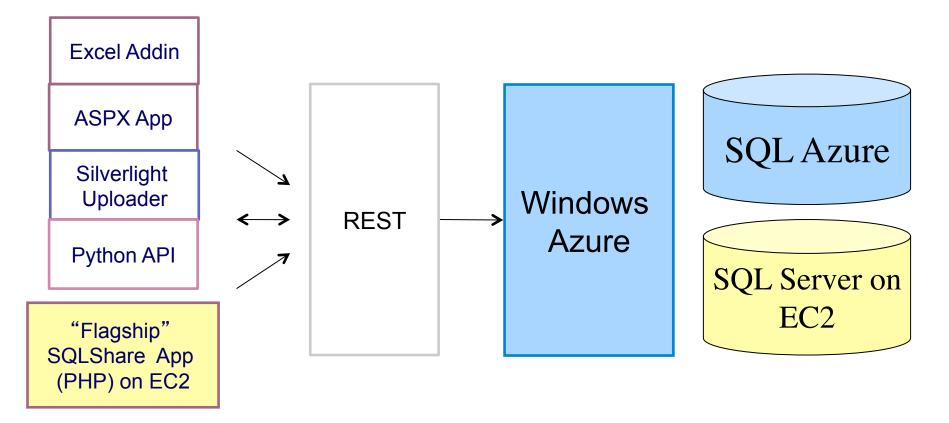
Analyze and compare your data collaboratively. Derive new datasets and share them with your colleagues.

SOLSHARE

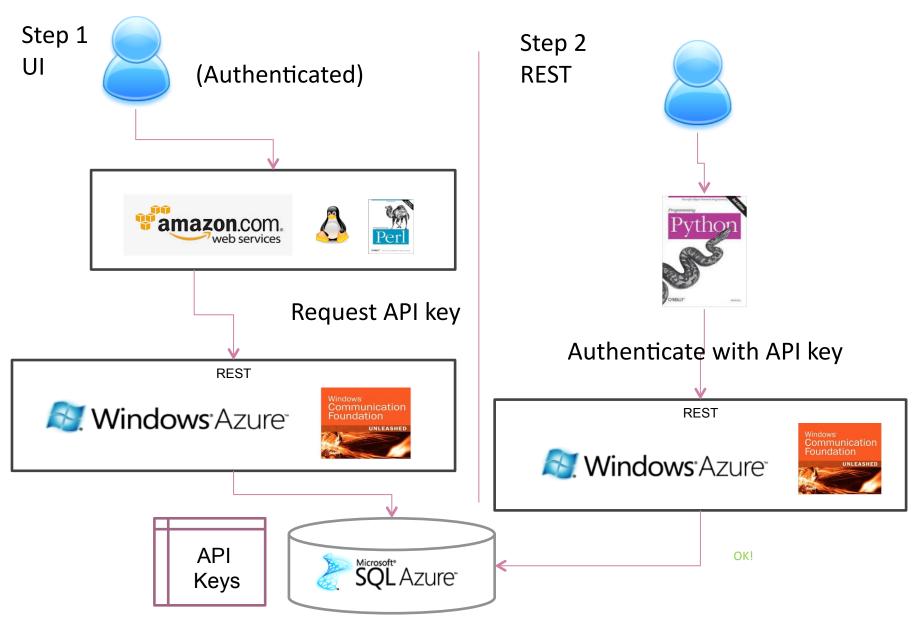

3 🔻 Amazon: TIGRFam Hi... x Amazon: TIGRFam Hi... x

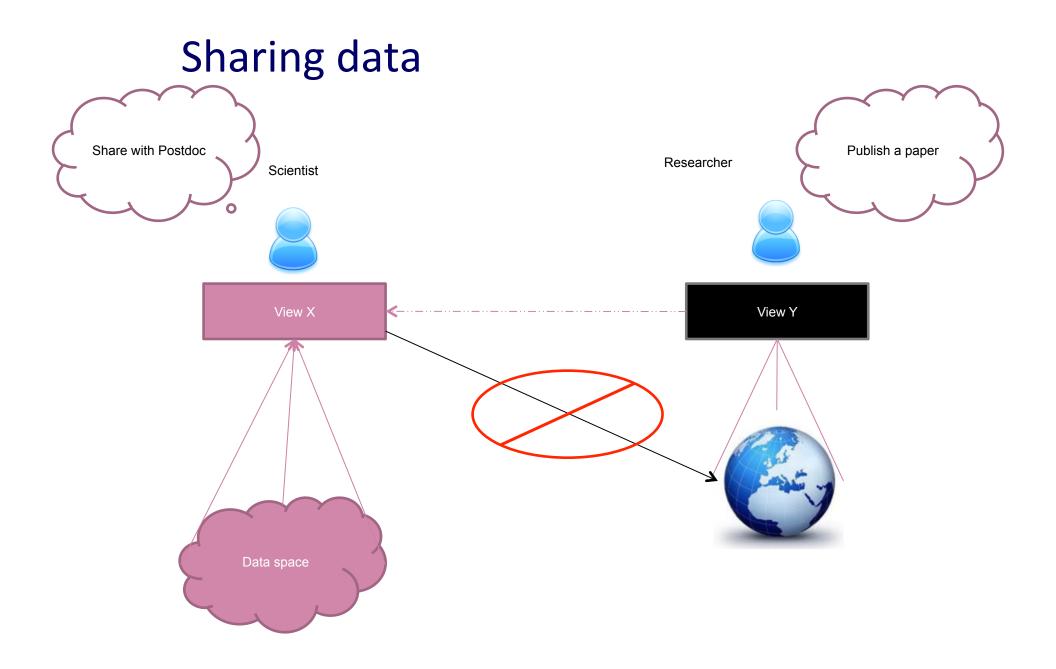
Your Datasets Your datasets All datasets

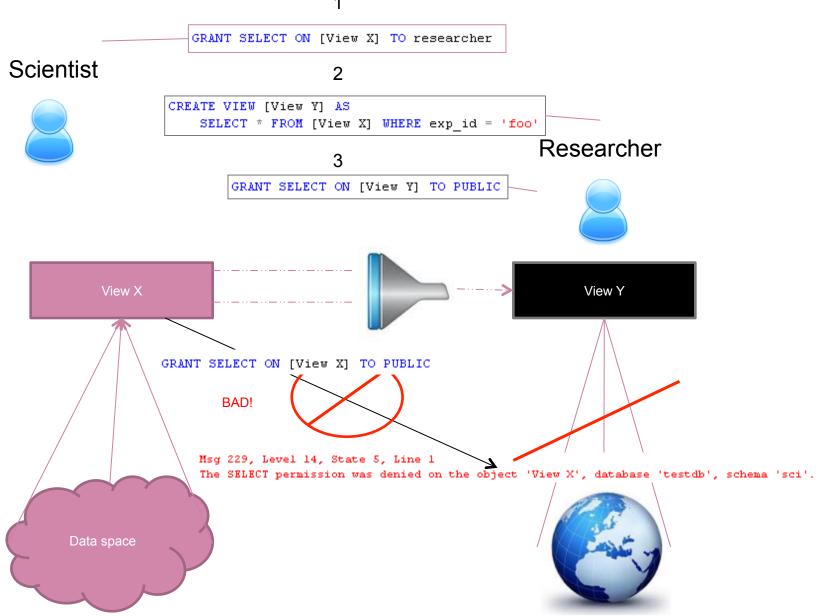
Name	Sharing / Owner	Created
Amazon: TIGRFam Hit Counts with Sample Metadata, only TE_20174 Hit counts for each TIGRFam protein with	< billhowe@washington.edu	Nov 10, 2010 11:56 AM
SDSS 200006-g4-0100 SDSS 200006-g4-0100	< billhowe@washington.edu	Nov 2, 2010 7:49 PM
Join Training Data from SDSS logs 39 joins extracted from the SDSS logs, plus 40 "bad" joins.	< billhowe@washington.edu	Oct 29, 2010 0:47 PM
SeasonStripColorGeo_bbox add bounding box to SeasonStripColor	< billhowe@washington.edu	Oct 28, 2010 8:50 AM
SeasonStripColor_bbox Adding bounding box	billhowe@washington.edu	Oct 27, 2010 10:47 PM
SeasonStripColorGeo testing geo coordinates	billhowe@washington.edu	Oct 27, 2010 11:07 AM
SeasonStripColor Cast all px columns to floats	dillhowe@washington.edu	Oct 25, 2010 4:46 PM
chunk tabls	billhowe@washington.edu	Oct 24, 2010 8:39 PM
Stripe 82 sequence file meta data Metadata for all images in the stripe 82 subset of the sloan digital sky survey of	billhowe@washington.edu	Oct 24, 2010 8:35 PM
900000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:15 PM
800000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:13 PM
700000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:12 PM
600000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:10 PM
500000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:09 PM
400000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:07 PM
3900000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:05 PM
3800000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:05 PM
3700000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:03 PM
3600000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:01 PM
3500000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:00 PM
3400000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 3:58 PM


Logged in: billhowe@washington.edu

SQLSHARE	2 - Season	StripColorGeo x Am	azon: TIGRFa	m Hi x An	nazon: TIGF	RFam Hi x							Logged in	billhowe@washi	ngton.ed
Your datasets All datasets Favorites	Hit counts for e	Amazon: TIGRFam Hit Counts with Sample Metadata < Last modified: Nov 4, 2010 1:57 PM L													
Recently viewed » Shared with you Upload dataset New query	FROM [<pre>SELECT s.TIGRFam, normalized_hit_count, m.* FROM [rkodner].[Amazon Sample Metadata] m</pre>													
		/IEW (Rows 1 - 100 of 22	2240) ext > <u>last >></u>									Сору	query Dov	vnload Query o	lataset
	TIGRFam	normalized_hit_count	Sample	Station	Latitude	Longitude	SampleTime	Habitat West	Depth	Temperature	Salinity	Oxygen	Filter Size	Sample Volume	Corr
	TIGR00004	1.005687988	TE_20174	SJ0609.003	12.28	-56.12	6/27/2006 8:30:00 AM	Tropical Atlantic Province; Oligotrophic Open Ocean	5	28.46	31.71	Aerobic	5	110	
	TIGR00004	0	TE_20176	SJ0609.003	12.28	-56.12	6/28/2006 10:00:00 PM	West Tropical Atlantic Province; Oligotrophic Open	5	28.46	31.71	Aerobic	5	40	4




	3 - Amazon	: TIGRFam Hi × Ar	mazon: TIGRI	Fam Hi ×					Logged i	n: billhowe@w	ashingto
Your datasets All datasets Favorites Recently viewed »	Hit counts for e	GRFam Hit Counts Last ach TIGRFam protein wit transect samples.	modified: Nov 4	l, 2010 1:57 PM	SELECT s.T FROM [rkc , [rkc	azon: TIGRFam Hit Cou IGRFam, normalized odner].[Amazon Sam odner].[Amazon: TI ample = s.Sample	_hit_count, ple Metadat	, m.* ta] m	mple] s		
pload dataset	FROM [<pre>s.TIGRFam, normalized_hit_count, m.* t [rkodner].[Amazon Sample Metadata] m [rkodner].[Amazon: TIGRFam Hit Counts by Sample] s t m.Sample = s.Sample</pre>									
	DATASET PREV	/IEW (Rows 1 - 100 of 22:		y query Dow	vnload	Query dataset		IEW (Rows 1 - 100 of 22 1 2 3 4 5 ns normalized_hit_count	240) ext > <u>last >></u> Sample	Station	Latitude
	<< first < prev 1 2 3 4 5 next> last>>						TIGR00004	1.005687988	TE_20174	SJ0609.003	12.28
	<< first < prev	1 <u>2 3 4 5 ne</u>									
	<< first < prev	normalized hit count	Sample	Station	Latitude	Longitude	TIGR00004	0	TE_20176	SJ0609.003	12.28
			Sample TE_20174	Station SJ0609.003	Latitude 12.28	Longitude -56.12	TIGR00004 TIGR00004	0 0.985517968	TE_20176 TE_20185	SJ0609.003 SJ0609.004	12.28 12
	TIGRFam	normalized_hit_count							_		
	TIGRFam TIGR00004	normalized_hit_count 1.005687988	TE_20174	SJ0609.003	12.28	-56.12	TIGR00004	0.985517968	_ TE_20185	SJ0609.004	12
	TIGRFam TIGR00004 TIGR00004	normalized_hit_count 1.005687988 0	TE_20174 TE_20176	SJ0609.003 SJ0609.003	12.28 12.28	-56.12 -56.12	TIGR00004 TIGR00004	0.985517968 1.120915221	TE_20185	SJ0609.004 SJ0609.004	12 12
	TIGRFam TIGR00004 TIGR00004 TIGR00004	normalized_hit_count 1.005687988 0 0.985517968	TE_20174 TE_20176 TE_20185	SJ0609.003 SJ0609.003 SJ0609.004	12.28 12.28 12	-56.12 -56.12 -54.39	TIGR00004 TIGR00004 TIGR00004	0.985517968 1.120915221 0	TE_20185 TE_20186 TE_20187	SJ0609.004 SJ0609.004 SJ0609.004	12 12 12
	TIGRFam TIGR00004 TIGR00004 TIGR00004 TIGR00004	normalized_hit_count 1.005687988 0 0.985517968 1.120915221	TE_20174 TE_20176 TE_20185 TE_20186	SJ0609.003 SJ0609.003 SJ0609.004 SJ0609.004	12.28 12.28 12 12	-56.12 -56.12 -54.39 -54.39	TIGR00004 TIGR00004 TIGR00004 TIGR00004	0.985517968 1.120915221 0 2.598848164	TE_20185 TE_20186 TE_20187 TE_20188	SJ0609.004 SJ0609.004 SJ0609.004 SJ0609.004 SJ0609.005	12 12 12 12



API Authentication

View-oriented workflow

Click here to add a description

SELECT * FROM [gbc3].[sdss column composite with features]

where experiment id = 'sdss subsample request go'

Click here to add a description

END AS B,

CASE WHEN (projected value union set > projected value inte THEN 1 ELSE 0 END AS C,

* FROM [gbc3] [sdss column composite]

where projected value union set is not null

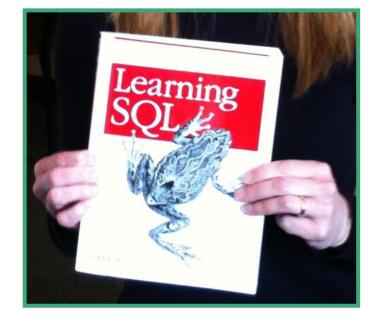
Which samples have not been cloned?

SELECT * FROM plasmiddb WHERE NOT (ISDATE(cloned) OR cloned = 'yes')

How often does each RNA hit appear inside the annotated surface group? SELECT hit, COUNT(*) as cnt FROM tigrfamannotation_surface GROUP BY hit ORDER BY cnt DESC

 How many plasmids were bombarded in July and have a rescue and expression? SELECT count(*) FROM [bombardment_log] WHERE bomb_date BETWEEN '7/1/2010' AND '7/31/2010' AND rescue clone IS NOT NULL AND [expression?] = 'yes'

 Find all TIGRFam ids (proteins) that are missing from at least one of three samples (relations)


> SELECT col0 FROM [refseq_hma_fasta_TGIRfam_refs] UNION SELECT col0 FROM [est_hma_fasta_TGIRfam_refs] UNION SELECT col0 FROM [combo_hma_fasta_TGIRfam_refs]

EXCEPT

SELECT col0 FROM [refseq_hma_fasta_TGIRfam_refs] INTERSECT SELECT col0 FROM [est_hma_fasta_TGIRfam_refs] INTERSECT SELECT col0 FROM [combo_hma_fasta_TGIRfam_refs]

So what's the point?

- Databases appear underused in (long tail) science
- Conventional wisdom says "Scientists wont write SQL"
 - This is utter horseshit
 - c.f. SDSS, Life Under Your Feet, UW eScience
- Instead, we blame the up-front costs
 - installation
 - configuration
 - schema design
 - performance tuning
 - loading
 - app-building

So we ask:

What kind of platform can deliver SQL to scientists?

Desiderata for a "SQL Delivery Vector"

- Logical data independence is a good idea; let's do more of that
- Loading data is always a pain; let's make that easier
- No updates to science data; let's cache aggressively and support append/replace only
- Scale is small (O(100) spreadsheets); let's not worry too much about physical tuning
- Reliable schemas are elusive at the frontier of research; let's worry about that later (or not at all)
- SQL is not difficult to learn given a set of relevant "starter queries" to build from

Status

- about 6 months old, no active advertising
- 4 groups associated with have data uploaded
- 50 unique users
- 566 uploaded tables
- 181 views
- 16GB of data
- 3 short/demo papers; "flagship" paper underway
- Interested parties
 - NatureMapping project, Washington Sea Grant, H2O, HIV Global Enterprise, San Juan country MRC, NatureMapping Project, MSR in various contexts
- "quiet" release underway; wide announcement pending scalability planning – we need advice!

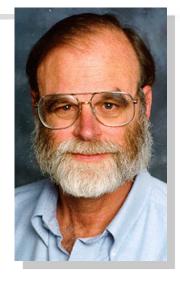
Use cases we are seeing

- Poor man's LIMS
 - Enter data via spreadsheets, upload to SQLShare for holistic analysis
- Pilot Projects
 - Before investing in a conventional database design project, throw your data in SQLShare to understand what you're working with
- Collaborative Query Management System*
 - YouTube for SQL Queries
- Data "Instrument"**
 - Put your scattered data under the "SQLScope"
- Citizen Science
 - Stage 1: Democratization of Data Collection
 - Stage 2: Democratization of Data Analysis

*Khoussinova, CIDR 2009

**credit: Alex Szalay

timings recorded into sqlshare Inbox X


🚖 Gar	ret Cole to me	show details 2:17 PM (9 minutes ago)	Reply	•							
I have shared a dataset that has the timings recorded as milliseconds:											
https://s	sqlshare.escience.washington.e	du/sqlshare#s=query/gbc3/join_column_s	stats_timing	<u>s</u>							
keywor	d in my select INTO statement. uick, it only took 25 minutes to a	R WOOPS, i just realized i forgot to includ i'll have to rerun that. But amazingly it go create select INTO for every single colum	es pretty	:t							
Garret											
the Reply	Forward										

A mini version of Jim Gray's 20 questions methodology

- 1. Give us your data
- 2. Give us 20 questions in English
- 3. Our job
 - upload the data
 - translate the queries
 - share them in SQLShare

This process has been demonstrably successful, but doesn't scale

Automating the Process

Automatic Starter Queries

- Garret Cole (Research Programmer)
- Nodira Khoussinova (CSE, Phd student)
- Leilani Battle (CSE, Ugrad)
- with Phil Bernstein (MSR)

Automatic Web Visualization

Alicia Key (Research Programmer)

SQL Autocomplete

- Nodira Khoussinova (CSE, Phd student)
- Magda Balazinska (CSE faculty)
- Automatic English to SQL
 - Luke Zettlemoyer (CSE faculty) and
 - Shaminoo Kapoor (Applied Math, masters student)
- Personalized Query Recommendation
 - Yuan Zhou (Applied Math, masters student)

Automatic Starter Queries

- We find that Starter queries are sufficient for users to "self-serve"
- But DB experts must provide these, and this doesn't scale
- Hypothesis: We can automatically derive a set of "good" starter queries directly from the data
- Challenge: With an ad hoc database, we cannot assume a schema, query logs, or prior user input

Potential Goals for Starter Queries

- SQL training
- Database profiling
 - **EX:** SELECT a, COUNT(*) FROM R HAVING COUNT(*) > 1
 - **EX:** SELECT * FROM R INTERSECTION SELECT * FROM S
- Bootstrapping logical design
 - Ex: Reconstruct partitioned tables

SELECT * FROM [East Sound] UNION SELECT * FROM [Presidents Channel] **SELECT** *

FROM [Men's 12M - Alcohol/Drug] a, [Men's 12M – Demographics] d,

```
WHERE a.patient = d.patient
```

Desiderata for a set of starter queries

- Coverage of SQL idioms
- Coverage of data
- Coverage of query complexity

Approach for Joins

- Derive heuristics on what a "good query" means
- Examples of join heuristics:
 - Two columns exhibiting a foreign key relationship
 - Two columns with high Jaccard similarity
 - Two columns with similar active domains, where one has higher cardinality, indicates a 1:N join
 - many more
- Relative influence of these heuristics unclear
- So: Extract features from the data covering all cases, and learn a model from existing "starter query" examples

Feature	Expression
max/min cardinality	max/min(x , y)
cardinality difference	abs(x - y)
intersection cardinality	$ x \cap y $
union cardinality	$ x\cup y $
Jaccard similarity	$\frac{ x \cap y }{ x \cup y }$

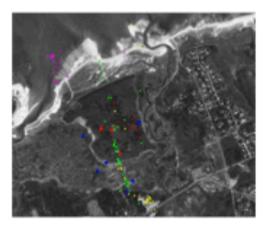
Compute all of these for both set and bag semantics

Experimental Design

- SDSS DB: Learn a decision tree on these features, using the joins present in the query logs as ground truth
- 2. Test the decision tree on the sample queries provided on the SDSS website
- 3. Gene Ontology DB: Extract features on the Gene Ontology database
- 4. Test the *same decision tree* on the sample queries from the GO website

- SDSS Database:
 - recall and precision both around 91%
- GO Database:
 - Recall 93%: 28/30 joins in sample queries classified correctly
 - Precision 96%: 11/12 "bad" joins classified correctly

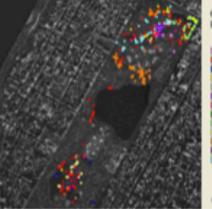
Decision Tree

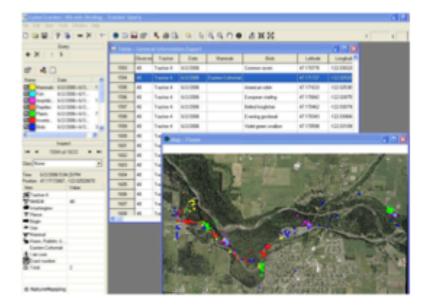

- | (1)jaccard_projected_value_set < 0.002: 1.016</p>
- | | (2)source_unique_values < 0.5: 1.246</p>
- | | (2)source_unique_values >= 0.5: -0.623
- | | | (5)projected_value_union_set < 592.5: 0.441</p>
- | | | (5)projected_value_union_set >= 592.5: -0.512
- | | | | (7)target_count < 100541: -0.406</p>
- | | | | (7)target_count >= 100541: 0.23
- | | (4)source_distinct_count < 195851: 0.985</p>
- | | | (6)projected_value_union_bag < 1030.5: -0.086</p>
- | | | (6)projected_value_union_bag >= 1030.5: 0.707
- | | (4)source_distinct_count >= 195851: -1.137
- (1)jaccard_projected_value_set >= 0.002: -1.253
- | | (3)source_count < 55: 2.076</p>
- | | (3)source_count >= 55: -2.363
- Tree size (total number of nodes): 22
- Leaves (number of predictor nodes): 15

Ongoing work

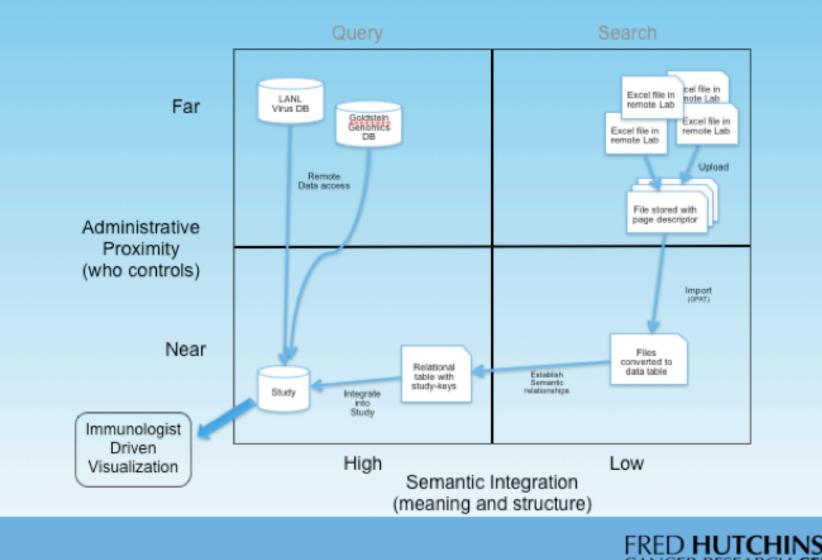
- Collaborative Features
 - Favorites, Likes
 - "People who ran this query also ran..."
 - Annotations
- Mining clicklogs
 - with Hazeline Asuncion at UW Bothell
- Visualization
- New collaborations
 - Citizen science
 - Global Enterprise HIV Vaccine

What is NatureTracker?


 Menu-driven program for recording field data
 sincludes all criteria requested for NatureMapping data
 sruns on CyberTracker software ("greenware")
 SUsed for NatureMapping bioblitzes



Central Park



2010 Pilot- Outreach and Education-based sampling: Schooner Adventuress

CHAVI-CAVD Dataspace Concept

Towards an HIV Enterprise Dataspace

VACCINE AND INFECTIOUS DISEASE INSTITUTE

http://sqlshare.escience.washington.edu

(Ask me about the "NoSQL" movement)

23rd International Conference on Scientific and Statistical Database Management (SSDBM 2011)

http://www.ssdbm2011.ssdbm.org

Portland, Oregon, USA July 20 – 22, 2011

Abstracts due: January 31, 2011

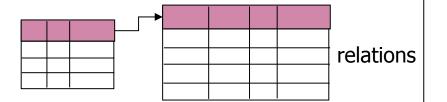
Papers due: February 7, 2011

- Schema-Later
 - Pay-as-you-go by creating and sharing views
- Dataset-level CRUD ops
 - Append and Replace, not update
- Easy ingest
 - Parse "obvious" file formats automatically
 - Excel Add In
 - LearnPADS [Fisher 2009-2010]
- "Starter Queries" for bootstrapping analysis
- Social/Collaborative/Participatory
- Easy Visualization 5/18/10

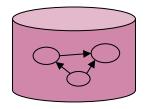
Garret Cole, eScience Institute


Pre-Relational: if your data changed, your application broke.

"Activities of users at terminals and most application programs should remain unaffected when the internal representation of data is changed and even when some aspects of the external representation are changed." -- Codd 1979

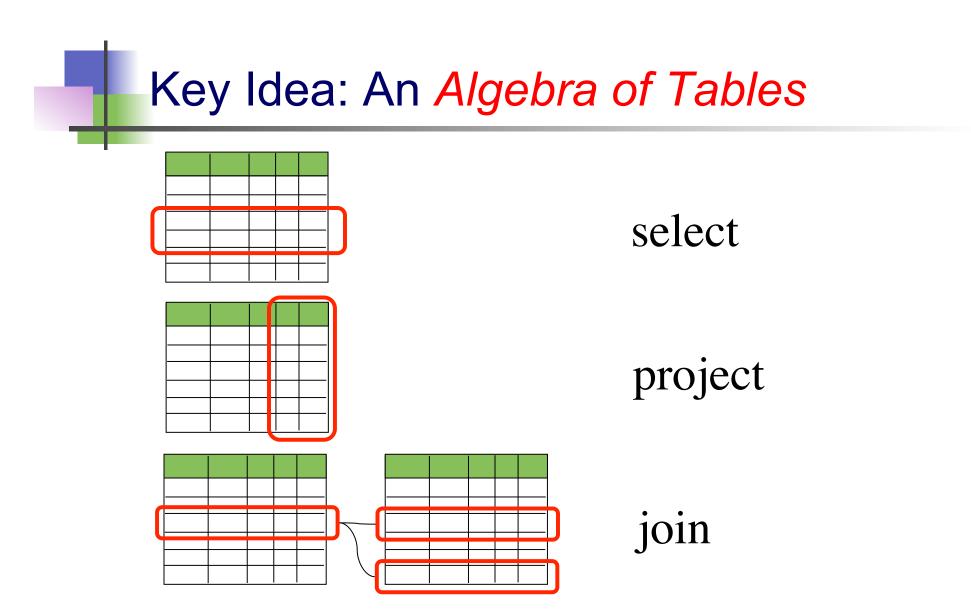

Key Ideas: Programs that manipulate tabular data exhibit an <u>algebraic structure</u> allowing reasoning and manipulation independently of physical data representation

Key Idea: Data Independence


views

logical data independence

physical data independence



files and pointers

SELECT * FROM my sequences

SELECT seq
 FROM ncbi_sequences
 WHERE seq =
 'GATTACGATATTA';

```
f = fopen('table_file');
fseek(10030440);
while (True) {
   fread(&buf, 1, 8192, f);
   if (buf == GATTACGATATTA) {
```


Other operators: aggregate, union, difference, cross product

Key Idea: Algebraic Optimization

$$N = ((z^{*}2) + ((z^{*}3) + 0))/1$$

Algebraic Laws:

- **1**. (+) identity: x+0 = x
- 2. (/) identity: x/1 = x
- **3**. (*) distributes: (r
- **4**. (*) commutes:

Apply rules 1, 3, 4, 2: N = (2+3)*z

two operations instead of five, no division operator

Same idea works with the Relational Algebra!

RDBMS: Summary

- Intuitive data model
 - "just tables"
- Data cleaning, filtering, joins, aggregation, user-defined functions
- Physical and logical data Independence
 - Views are a good idea; let's use more of those
- Declarative query language + algebraic optimization
 - Describe what you want, not how to get it
- Scalability
 - "SQL is the most successful parallel language in the world"
- Proven results
 - \$15B industry
 - Nearly every (non-search engine) website backed by a RDBMS
 - One of the all-time best examples of CS research impact

- about 6 months old, but not yet advertised
- 4 labs around UW campus
- 50 unique users
- 566 uploaded tables
- 181 saved queries (i.e., views)
- 16GB of data

How do we repeat the success of SDSS in the long tail?

How do we build the next 100 SDSS-like systems?