
SQL is Dead; Long Live SQL: 
Smart Services for  
Ad Hoc Databases 
Bill Howe 
  Garret Cole 
  Alicia Key 
  Nodira Khoussainova  

Luke Zettlemoyer  
Yuan Zhou 

Patrick Michaud  
Kevin Pittman 
Charlon Palacay 



The NoSQL Movement 





http://escience.washington.edu	




1/17/11 Bill Howe, UW 5 

Science is reducing to querying databases 

Old model: “Query the world”  (Data acquisition coupled to a specific hypothesis) 
New model: “Download the world, query the DB” (Data acquired en masse, to support many hypotheses) 

  Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS) 
  Oceanography: high-resolution models, cheap sensors, satellites  
  Biology: lab automation, high-throughput sequencing, 



The long tail is getting fatter:  

notebooks become spreadsheets (MB), 
spreadsheets become databases (GB),      
databases become clusters (TB) 
clusters become clouds (PB) 

Context: The Long Tail    [Wired 2004] 
da

ta
 s

iz
e 

rank 

Researchers with growing data management challenges 
but limited resources for cyberinfrastructure 
•   No dedicated IT staff 
•   Overreliance on desktop tools (e.g., spreadsheets) 

CERN (~15PB/
year) 

LSST 
(~100PB) 

PanSTARRS 
(~40PB) 

Ocean 
Modelers citizen science 

SDSS 
(~100TB) 

Seis-
mologists 

Microbiologists CARMEN 
(~50TB) 



Problem 

How much time do you spend “handling 
data” as opposed to “doing science”? 

Mode answer? 90% 



Example: Environmental Metagenomics 

5/18/10 Garret Cole, eScience Institute 



5/18/10 Garret Cole, eScience Institute 



5/18/10 Garret Cole, eScience Institute 



5/18/10 Garret Cole, eScience Institute 



measurements	


search results	


sequence data	




5/18/10 Garret Cole, eScience Institute 

SQL	




Ad Hoc Research Data 

5/18/10 Garret Cole, eScience Institute 

Fasta 
Spreadsheets 

ASCII 



5/18/10 Garret Cole, eScience Institute 

Simple Example ###query length COG hit #1 e-value #1 identity #1 score #1 hit length #1 description #1

chr_4[480001-580000].287 4500

chr_4[560001-660000].1 3556

chr_9[400001-500000].503 4211 COG4547 2.00E-04 19 44.6 620 Cobalamin biosynthesis protein CobT (nicotinate-mononucleotide:5, 6-dimethylbenzimidazole phosphoribosyltransferase)

chr_9[320001-420000].548 2833 COG5406 2.00E-04 38 43.9 1001 Nucleosome binding factor SPN, SPT16 subunit

chr_27[320001-404298].20 3991 COG4547 5.00E-05 18 46.2 620 Cobalamin biosynthesis protein CobT (nicotinate-mononucleotide:5, 6-dimethylbenzimidazole phosphoribosyltransferase)

chr_26[320001-420000].378 3963 COG5099 5.00E-05 17 46.2 777 RNA-binding protein of the Puf family, translational repressor

chr_26[400001-441226].196 2949 COG5099 2.00E-04 17 43.9 777 RNA-binding protein of the Puf family, translational repressor

chr_24[160001-260000].65 3542

chr_5[720001-820000].339 3141 COG5099 4.00E-09 20 59.3 777 RNA-binding protein of the Puf family, translational repressor

chr_9[160001-260000].243 3002 COG5077 1.00E-25 26 114 1089 Ubiquitin carboxyl-terminal hydrolase

chr_12[720001-820000].86 2895 COG5032 2.00E-09 30 60.5 2105 Phosphatidylinositol kinase and protein kinases of the PI-3 kinase family

chr_12[800001-900000].109 1463 COG5032 1.00E-09 30 60.1 2105 Phosphatidylinositol kinase and protein kinases of the PI-3 kinase family

chr_11[1-100000].70 2886

chr_11[80001-180000].100 1523

ANNOTATIONSUMMARY-COMBINEDORFANNOTATION16_Phaeo_genome

id query hit e_value identity_ score query_start query_end hit_start hit_end hit_length

1 FHJ7DRN01A0TND.1 COG0414 1.00E-08 28 51 1 74 180 257 285

2 FHJ7DRN01A1AD2.2 COG0092 3.00E-20 47 89.9 6 85 41 120 233

3 FHJ7DRN01A2HWZ.4 COG3889 0.0006 26 35.8 9 94 758 845 872

…

2853 FHJ7DRN02HXTBY.5 COG5077 7.00E-09 37 52.3 3 77 313 388 1089

2854 FHJ7DRN02HZO4J.2 COG0444 2.00E-31 67 127 1 73 135 207 316

…

3566 FHJ7DRN02FUJW3.1 COG5032 1.00E-09 32 54.7 1 75 1965 2038 2105

…

COGAnnotation_coastal_sample.txt

SELECT * FROM Phaeo P, Coastal C WHERE P.hit = C.hit 



id query hit e_value query_start query_end hit_start hit_end hit_length

6409 FHJ7DRN01BYA61.1 TIGR00149 2.20E-21 1 84 43 125 134

6410 FHJ7DRN01BDTEA.1 TIGR00149 3.40E-09 3 42 30 69 134

6411 FHJ7DRN02HEUGQ.1 TIGR00149 1.70E-05 4 46 1 46 134

6412 FHJ7DRN01CA4BO.1 TIGR00149 5.30E-05 4 45 1 45 134

6413 FHJ7DRN01DM2FK.3 TIGR01651 5.70E-64 1 76 511 586 606

6414 FHJ7DRN01B8BPS.1 TIGR01651 1.20E-36 1 52 500 551 606

6415 FHJ7DRN02JM54P.1 TIGR01651 2.20E-24 15 80 301 366 606

6416 FHJ7DRN02FK6C5.2 TIGR00039 2.70E-16 1 45 37 85 153

6417 FHJ7DRN01D019A.1 TIGR00039 8.90E-12 5 65 48 118 153

6418 FHJ7DRN02FYAFO.1 TIGR00039 1.60E-11 1 76 67 153 153

coastal sample

Complex Example 

…

[H] COG4547 Cobalamin biosynthesis protein CobT 

(nicotinate-mononucleotide:5, 6-dimethylbenzimidazole 

phosphoribosyltransferase)

  Ype:  YPMT1.87

  Atu:  AGl2410

  Sme:  SMc00701

  Bme:  BMEI0050

  Mlo:  mll3561

  Ccr:  CC0672

…

[J] COG5099 RNA-binding protein of the Puf family, 

translational repressor

  Sce:  YGL014w YGL178w YJR091c YLL013c YPR042c

  Spo:  SPAC1687.22c SPAC4G8.03c SPAC4G9.05 

SPAC6G9.14 SPBC56F2.08c SPBP35G2.14 SPCC1682.08c

  Ecu:  ECU11g1730

…

COG database

###query length COG hit #1 e-value #1 identity #1 score #1 hit length #1 description #1

chr_4[480001-580000].287 4500

chr_4[560001-660000].1 3556

chr_9[400001-500000].503 4211 COG4547 2.00E-04 19 44.6 620 Cobalamin biosynthesis protein CobT (nicotinate-mononucleotide:5, 6-dimethylbenzimidazole phosphoribosyltransferase)

chr_9[320001-420000].548 2833 COG5406 2.00E-04 38 43.9 1001 Nucleosome binding factor SPN, SPT16 subunit

chr_27[320001-404298].20 3991 COG4547 5.00E-05 18 46.2 620 Cobalamin biosynthesis protein CobT (nicotinate-mononucleotide:5, 6-dimethylbenzimidazole phosphoribosyltransferase)

chr_26[320001-420000].378 3963 COG5099 5.00E-05 17 46.2 777 RNA-binding protein of the Puf family, translational repressor

chr_26[400001-441226].196 2949 COG5099 2.00E-04 17 43.9 777 RNA-binding protein of the Puf family, translational repressor

chr_24[160001-260000].65 3542

chr_5[720001-820000].339 3141 COG5099 4.00E-09 20 59.3 777 RNA-binding protein of the Puf family, translational repressor

chr_9[160001-260000].243 3002 COG5077 1.00E-25 26 114 1089 Ubiquitin carboxyl-terminal hydrolase

chr_12[720001-820000].86 2895 COG5032 2.00E-09 30 60.5 2105 Phosphatidylinositol kinase and protein kinases of the PI-3 kinase family

chr_12[800001-900000].109 1463 COG5032 1.00E-09 30 60.1 2105 Phosphatidylinositol kinase and protein kinases of the PI-3 kinase family

chr_11[1-100000].70 2886

chr_11[80001-180000].100 1523

ANNOTATIONSUMMARY-COMBINEDORFANNOTATION16_Phaeo_genome

SwissProt web service

Browser Cross-Reference

TIGR01650!GO:0051116 !contributes_to!
TIGR01651!GO:0009236 !NULL!
TIGR01651!GO:0051116 !NULL!
TIGR01660!GO:0008940 !NULL!
TIGR01660!GO:0009061 !NULL!
TIGR01660!GO:0009325 !NULL!
TIGR01663!GO:0000012 !NULL!
TIGR01663!GO:0046403 !NULL!

TIGRFAM to GO Mapping

id query hit e_value query_start query_end hit_start hit_end hit_length

6409 FHJ7DRN01BYA61.1 TIGR00149 2.20E-21 1 84 43 125 134

6410 FHJ7DRN01BDTEA.1 TIGR00149 3.40E-09 3 42 30 69 134

6411 FHJ7DRN02HEUGQ.1 TIGR00149 1.70E-05 4 46 1 46 134

6412 FHJ7DRN01CA4BO.1 TIGR00149 5.30E-05 4 45 1 45 134

6413 FHJ7DRN01DM2FK.3 TIGR01651 5.70E-64 1 76 511 586 606

6414 FHJ7DRN01B8BPS.1 TIGR01651 1.20E-36 1 52 500 551 606

6415 FHJ7DRN02JM54P.1 TIGR01651 2.20E-24 15 80 301 366 606

6416 FHJ7DRN02FK6C5.2 TIGR00039 2.70E-16 1 45 37 85 153

6417 FHJ7DRN01D019A.1 TIGR00039 8.90E-12 5 65 48 118 153

6418 FHJ7DRN02FYAFO.1 TIGR00039 1.60E-11 1 76 67 153 153

coastal sample



5/18/10 Bill Howe, University of Washington 



5/18/10 Bill Howe, University of Washington 



Demo 



name	


SQL	


owner	


description	


preview	


actions	


share status	




5/18/10 Garret Cole, eScience Institute 



Architecture 

ASPX App 

Silverlight 
Uploader 

Python API 

“Flagship” 
SQLShare  App  
(PHP) on EC2 

REST Windows 
Azure 

SQL Azure	


SQL Server on 
EC2	


Excel Addin 



API	  Authen*ca*on	  

(Authen*cated)	  

REST 

Request	  API	  key	  

API 
Keys 

Step	  1	  
UI	  

Step	  2	  
REST	  

REST 

OK!	  

Authen*cate	  with	  API	  key	  



Sharing	  data	  

View X View Y 

Data space 

Scientist Researcher 
Share with Postdoc Publish a paper 



View X View Y 

Data space 

Scientist 

Researcher 

1 

2 

3 

BAD! 



View-‐oriented	  workflow	  



More examples 

  Which samples have not been 
cloned? 

  How often does each RNA hit 
appear inside the annotated surface 
group? 

  How many plasmids were 
bombarded in July and have a 
rescue and expression? 

SELECT *  
FROM plasmiddb 
WHERE NOT (ISDATE(cloned)  
              OR cloned = ‘yes’) 

SELECT hit, COUNT(*) as cnt  
  FROM tigrfamannotation_surface  
GROUP BY hit  
ORDER BY cnt DESC 

SELECT count(*) 
FROM [bombardment_log] 
WHERE bomb_date BETWEEN  
           ’7/1/2010' AND ’7/31/2010' 
 AND rescue clone IS NOT NULL 
 AND [expression?] = 'yes' 



My favorite example 

  Find all TIGRFam ids (proteins) that are missing from at 
least one of three samples (relations) 

SELECT col0 FROM [refseq_hma_fasta_TGIRfam_refs]	

UNION	

SELECT col0 FROM [est_hma_fasta_TGIRfam_refs]	

UNION 
SELECT col0 FROM [combo_hma_fasta_TGIRfam_refs]	


EXCEPT	


SELECT col0 FROM [refseq_hma_fasta_TGIRfam_refs]	

INTERSECT	

SELECT col0 FROM [est_hma_fasta_TGIRfam_refs]	

INTERSECT 
SELECT col0 FROM [combo_hma_fasta_TGIRfam_refs]	




So what’s the point? 

  Databases appear underused in (long tail) science 
  Conventional wisdom says “Scientists wont write SQL” 

  This is utter horseshit  
  c.f. SDSS, Life Under Your Feet, UW eScience 

  Instead, we blame the up-front costs 
  installation  
  configuration 
  schema design 
  performance tuning 
  loading 
  app-building 

So we ask: 
What kind of platform can deliver SQL to scientists? 



Desiderata for a “SQL Delivery Vector” 

  Logical data independence is a good idea; let’s do more of 
that 

  Loading data is always a pain; let’s make that easier 
  No updates to science data; let’s cache aggressively and 

support append/replace only 
  Scale is small (O(100) spreadsheets); let’s not worry too 

much about physical tuning 
  Reliable schemas are elusive at the frontier of research; 

let’s worry about that later (or not at all) 
  SQL is not difficult to learn – given a set of relevant 

“starter queries” to build from 

5/18/10 Garret Cole, eScience Institute 



Status 

  about 6 months old, no active advertising 
  4 groups associated with have data uploaded 
  50 unique users  
  566 uploaded tables 
  181 views 
  16GB of data 
  3 short/demo papers; “flagship” paper underway 
  Interested parties 

  NatureMapping project, Washington Sea Grant, H2O, HIV Global 
Enterprise, San Juan country MRC, NatureMapping Project, MSR 
in various contexts 

  “quiet” release underway; wide announcement pending 
scalability planning – we need advice! 



Use cases we are seeing 
  Poor man’s LIMS 

  Enter data via spreadsheets, upload to SQLShare for holistic 
analysis 

  Pilot Projects 
  Before investing in a conventional database design project, throw 

your data in SQLShare to understand what you’re working with 
  Collaborative Query Management System* 

  YouTube for SQL Queries 
  Data “Instrument”** 

  Put your scattered data under the “SQLScope” 
  Citizen Science 

  Stage 1: Democratization of Data Collection 
  Stage 2: Democratization of Data Analysis 

*Khoussinova, CIDR 2009 **credit: Alex Szalay 



Eating our own dogfood 



A mini version of Jim Gray’s 20 questions methodology 

Bootstrapping new users 

1.  Give us your data 
2.  Give us 20 questions in English 
3.  Our job 

  upload the data 
  translate the queries 
  share them in SQLShare 

This process has been demonstrably successful, but doesn’t scale 



Automating the Process 

  Automatic Starter Queries 
  Garret Cole (Research Programmer) 
  Nodira Khoussinova (CSE, Phd student) 
  Leilani Battle (CSE, Ugrad) 
  with Phil Bernstein (MSR) 

  Automatic Web Visualization  
  Alicia Key (Research Programmer) 

  SQL Autocomplete 
  Nodira Khoussinova (CSE, Phd student) 
  Magda Balazinska (CSE faculty) 

  Automatic English to SQL 
  Luke Zettlemoyer (CSE faculty) and  
  Shaminoo Kapoor (Applied Math, masters student) 

  Personalized Query Recommendation 
  Yuan Zhou (Applied Math, masters student) 



Automatic Starter Queries 

  We find that Starter queries are sufficient for users to 
“self-serve” 

  But DB experts must provide these, and this doesn’t scale 

  Hypothesis: We can automatically derive a set of “good” 
starter queries directly from the data 

  Challenge: With an ad hoc database, we cannot assume a 
schema, query logs, or prior user input 



Potential Goals for Starter Queries 

  SQL training 
  Database profiling 

  Ex: 
  Ex: 

  Bootstrapping logical design 
  Ex: Reconstruct partitioned tables 

SELECT * FROM [East Sound]	

    UNION	

SELECT * FROM [Presidents Channel]	

…	


SELECT * 	

FROM [Men's 12M - Alcohol/Drug] a,	

[Men's 12M – Demographics] d,	

…	

WHERE a.patient = d.patient	

…	


SELECT a, COUNT(*) FROM R HAVING COUNT(*) > 1	


SELECT * FROM R INTERSECTION SELECT * FROM S	




Desiderata for a set of starter queries 

  Coverage of SQL idioms 
  Coverage of data 
  Coverage of query complexity 

5/18/10 Garret Cole, eScience Institute 



Approach for Joins 

  Derive heuristics on what a “good query” means 
  Examples of join heuristics: 

  Two columns exhibiting a foreign key relationship  
  Two columns with high Jaccard similarity  
  Two columns with similar active domains, where one 

has higher cardinality, indicates a 1:N join 
  many more 

  Relative influence of these heuristics unclear 
  So: Extract features from the data covering all 

cases, and learn a model from existing “starter 
query” examples 



Features Extracted 

Compute all of these for both set and bag semantics 	




Experimental Design 

1.  SDSS DB: Learn a decision tree on these 
features, using the joins present in the query 
logs as ground truth 

2.  Test the decision tree on the sample queries 
provided on the SDSS website 

3.  Gene Ontology DB: Extract features on the 
Gene Ontology database 

4.  Test the same decision tree on the sample 
queries from the GO website 



Preliminary Results 

  SDSS Database: 
  recall and precision both around 91% 

  GO Database: 
  Recall 93%: 28/30 joins in sample queries 

classified correctly  
  Precision 96%: 11/12 “bad” joins classified 

correctly 



Decision Tree 
  |  (1)jaccard_projected_value_set < 0.002: 1.016 
  |  |  (2)source_unique_values < 0.5: 1.246 
  |  |  (2)source_unique_values >= 0.5: -0.623 
  |  |  |  (5)projected_value_union_set < 592.5: 0.441 
  |  |  |  (5)projected_value_union_set >= 592.5: -0.512 
  |  |  |  |  (7)target_count < 100541: -0.406 
  |  |  |  |  (7)target_count >= 100541: 0.23 
  |  |  (4)source_distinct_count < 195851: 0.985 
  |  |  |  (6)projected_value_union_bag < 1030.5: -0.086 
  |  |  |  (6)projected_value_union_bag >= 1030.5: 0.707 
  |  |  (4)source_distinct_count >= 195851: -1.137 
  |  (1)jaccard_projected_value_set >= 0.002: -1.253 
  |  |  (3)source_count < 55: 2.076 
  |  |  (3)source_count >= 55: -2.363 

  Tree size (total number of nodes): 22 
  Leaves (number of predictor nodes): 15 



Ongoing work 

  Collaborative Features 
  Favorites, Likes 
  “People who ran this query also ran…” 
  Annotations 

  Mining clicklogs 
  with Hazeline Asuncion at UW Bothell 

  Visualization 
  New collaborations 

  Citizen science 
  Global Enterprise HIV Vaccine 

5/18/10 Garret Cole, eScience Institute 



5/18/10 Garret Cole, eScience Institute 







http://sqlshare.escience.washington.edu	


(Ask me about the “NoSQL” movement)	




23rd International Conference on  
Scientific and Statistical Database Management  

(SSDBM 2011) 

http://www.ssdbm2011.ssdbm.org 

Portland, Oregon, USA 
July 20 – 22, 2011 

Abstracts due: January 31, 2011 
Papers due: February 7, 2011 



Backup slides 



Desiderata 

  Schema-Later 
  Pay-as-you-go by creating and sharing views 

  Dataset-level CRUD ops 
  Append and Replace, not update 

  Easy ingest 
  Parse “obvious” file formats automatically 
  Excel Add In 
  LearnPADS [Fisher 2009-2010] 

  “Starter Queries” for bootstrapping analysis 
  Social/Collaborative/Participatory 

  Easy Visualization 
5/18/10 Garret Cole, eScience Institute 



Pre-Relational: if your data changed, your application broke. 

“Activities of users at terminals and most application programs 
should remain unaffected when the internal representation of data 
is changed and even when some aspects of the external 
representation are changed.” 

Key Ideas: Programs that manipulate tabular data exhibit an 
algebraic structure allowing reasoning and manipulation 
independently of physical data representation 

Digression: Relational Database History 

-- Codd 1979 



Key Idea: Data Independence 

physical data independence 

logical data independence 

files and 
pointers 

relations 

views 
SELECT *  
  FROM my_sequences  

SELECT seq      
  FROM ncbi_sequences 
 WHERE seq = 
‘GATTACGATATTA’; 

f = fopen(‘table_file’); 
fseek(10030440); 
while (True) { 
  fread(&buf, 1, 8192, f); 
  if (buf == GATTACGATATTA) { 
    . . . 



Key Idea: An Algebra of Tables 

select	


project	


join	
 join	


Other operators: aggregate, union, difference, cross product	




Key Idea: Algebraic Optimization 

N = ((z*2)+((z*3)+0))/1 

Algebraic Laws:  
1. (+) identity:      x+0 = x 
2. (/)  identity:       x/1 = x 
3. (*) distributes:  (n*x+n*y) = n*(x+y) 
4. (*) commutes:  x*y = y*x 

Apply rules 1, 3, 4, 2: 
N = (2+3)*z 

two operations instead of five, no division operator 
Same idea works with the Relational Algebra!	




RDBMS: Summary 

  Intuitive data model 
  “just tables” 

  Data cleaning, filtering, joins, aggregation, user-defined functions 
  Physical and logical data Independence 

  Views are a good idea; let’s use more of those 
  Declarative query language + algebraic optimization 

  Describe what you want, not how to get it 
  Scalability 

  “SQL is the most successful parallel language in the world” 
  Proven results  

  $15B industry 
  Nearly every (non-search engine) website backed by a RDBMS 
  One of the all-time best examples of CS research impact  



Usage 

  about 6 months old, but not yet advertised 
  4 labs around UW campus 
  50 unique users  
  566 uploaded tables 
  181 saved queries (i.e., views) 
  16GB of data 



How do we repeat the success of SDSS in the long tail?	


How do we build the next 100 SDSS-like systems?	



