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1 Introduction
Many applications require the continuous tracking of the
state of a system in order to detect the occurrence of a
particular event. RFID sensors, in particular, have be-
come an increasingly popular means of gathering track-
ing information about the objects of interest. The need to
query these data has spurred research at the intersection
of sensor networks and databases. There are a number of
challenges in this effort. The extent to which an RFID
ecosystem can monitor a particular location is limited by
the number of antennas in the area of interest; usually,
trackers do not provide exhaustive coverage. The accu-
racy of the sensors also leaves much to be desired. As
a result, the networks produce data streams that are un-
structured, incomplete, and highly inaccurate; querying
such information directly is infeasible.

Instead, researchers have proposed building prob-
abilistic inference models over the raw data, called
Markovian streams. An example of a DBMS that uses
Markovian streams to answers queries about the sensor
data is Lahar[8]. Currently, the inference process to
compute the marginals constituting Lahar’s underlying
Markovian streams from the raw data is carried out by a
particle filter.

In many settings, the simple ability to answer
queries about probabilistic events is not sufficient.
DBMSs deployed for weather monitoring, surveillance,
or intrusion-detection tasks are also required to be able
to prepare the data for querying in real time; the speed of
raw data processing is thus of paramount importance in
these applications. Currently, the use of a particle filter
prevents Lahar from satisfying the speed requirements
of real-time data processing, taking over ten seconds to
process each data point.

Our primary contribution rectifies this situation and
turns Lahar into a real-time system by employing a
Kalman filter in place of the particle filter. The Kalman
filter relies on linear Gaussian process models to do in-
ference, which allows it to do the computations very ef-
ficiently in closed form. At the same time, linear Gaus-
sians may not model arbitrary processes well. However,
we make the observation that users of probabilistic event
databases are likely to be interested in only topK most
probable answers to their query, ranked by probability.
Even though the Kalman filter may miscalculate the ex-
act probabilities of query answers, we hypothesize that

∗jschang@cs.washington.edu
†akolobov@cs.washington.edu

their ordering will largely be maintained. Indeed, our
experimental results indeed demonstrate that the Kalman
filter gains a speedby a factor of over 3000 compared to
the particle filter while, surprisingly, even improving on
quality of the topK query results set.

2 Background
Lahar[10] is a probabilistic event database that supports
queries over temporal sensor data streams. Our work
concerns improving Lahar’s speed in answering a certain
subclass of such queries, calledevent queries.

Event queries express questions about temporal se-
quences of states of an object or a person, e.g.,“When
did John enter office 318?”. Formally, this query asks
for the time stept when the two-state sequenceQ =
(In(John,Hallway, t); In(John,Office318, t + 1))
began. As an answer to it, Lahar can return, for every
time step in the stream, the probability that the sequence
started at that particular step. A possible response is in
table 1.

Time step 0 1 2 3 4 . . .
Probability 0 0 0.17 0.49 0 . . .

Table 1:Lahar’s possible response to an event query

In practice, users will likely want to retrieve only top
K most probable time steps.

Note that the probability ofQ starting at a given
time t is P (Q, t) = P (In(John,Office318, t +
1)|In(John,Hallway, t))P (In(John,Hallway, t)).
Thus, Lahar needs to know the marginals
P (In(John,L, t)) over locations L at each t
given all evidence provided by the data stream up
to the current moment. It also needs thecorrelations
P (In(John,L′, t + 1)|In(John,L, t)) between John’s
locations at every two successive time steps. The
marginals can be derived from the correlations if the
prior P (In(John,L, 0)) is known.

Letting variable Xi denote the attribute
In(John,L, i), the sequence of distributions
(P (X0), P (X1|X0), P (X2|X1) . . .)) is an exam-
ple of aMarkovian stream. More generally, a Markovian
stream over value attributesA1, . . . , An with respective
domainsD1, . . . ,Dn is a pair (p0, C), wherep0 is a
prior over attribute values inD1 × . . . × Dn, andC is
a sequence of attribute correlation distributions for each



pair of successive time steps. Markovian streams serve
as inputs to Lahar, based on which the latter does its
query-processing.

Time step 1 2 3 4 . . .
Antenna IDs 104 100 112, 114 . . .

Table 2:Example data stream for a given RFID tag

Crucially, the raw data do not arrive in the form of a
Markovian stream. While their exact format may differ
between applications, in general they are composed of
(noisy) sensor observations at various time steps. In our
example, the data may come may come in the form of
IDs of the RFID antenna that detected John’s RFID tag in
the vicinity at a given time. An the resulting data stream
looks as in Table 2. Note that the readings are missing at
some of the time steps. In practice, time intervals with
missing data may be very long. This fact, coupled with
noise in the observations and the typically incomplete
coverage of the target area by the sensor network mo-
tivate why Lahar works not with the raw data but rather
with Markovian streams the data’s model-based view.

Thus, a critical question for Lahar’s operation is how
to turn the raw data stream into a Markovian stream,
and do so efficiently. The transformation is performed
by two related state estimation processes,filtering and
smoothing. Filtering obtains a distribution over the state
of an entity given all observations up to the current
time steptc, e.g.P (In(John,L, tc)|etc:1) whereei de-
notes the locations of the antennas that detected John’s
RFID tag at time stepi. Smoothing improves on the
filtered estimates at previous time steps by correcting
them with all the evidence up to the current time step.
In our example, the result of smoothing are distributions
P (In(John,L, t)|etc:1) for all time stepst ≤ tc. Once
these distributions are known for each pair of consecutive
time steps, there are several ways of computing the cor-
relations constituting the Markovian stream. We do not
describe them here for the lack of space and employ our
own method of computing them covered in detail later in
the paper.

More precisely, filtering and smoothing try to obtain
estimates of state variablesX1, . . . ,Xtc

given the set
of observationse1, . . . , etc

. Both estimators make the
Markov assumption about the variable dependencies:

P (Xi+1|Xi:1) = P (Xi+1|Xi)

P (ei|Xi:1) = P (ei|Xi)

Assuming the prior P (X0), transition model
P (Xt+1|Xt), and the observation modelP (et|Xt)
are known, we can recursively compute a filtered state
estimateXtc

using the newly arrived data pointetc
by

performing aprediction step

P (Xtc
|etc:1) =

∫
P (Xtc

|Xtc−1)P (Xtc−1|etc−1)dXtc−1

(1)
and anupdate step

P (Xtc
|etc

) =
P (etc

|Xtc
)P (Xtc

|etc−1)∫
P (etc

|Xtc
)P (Xtc

|etc−1)dXtc

(2)

Having the results of update and prediction steps at all
time steps up totc−1, we can use the newly arrived data
pointetc

to recursively correct our state estimates for any
of the past time stepst ≤ tc starting at timetc − 1 using
the smoothing equation

P (Xt|etc:1) = P (Xt|et:1)

∫
P (Xt+1|Xt)P (Xt+1|etc:1)

P (Xt+1|et:1)
dXt+1

(3)
As they stand, equations 1, 2, and 3 are not directly

usable, since the integrals in them may be hard to
evaluate for general distributions. Below we briefly
describe two approximation techniques that implement
the ideas embodied in these equations.

Particle filter and smoother. Particle filters attempt to
approximate the distributionsP (Xt|etc:1), P (Xt|et:1),
and P (Xt+1|et:1) for all time stepst ≤ tc by sets of
weight samples, orparticles. There are several variants
of this approach, but all of them have to resample
the particles at each time step. While an increasing
number of particles allow the particle filter/smoother to
approximate the target distributions arbitrarily well, they
may also slow down the algorithm considerably.

Kalman filter and RTS smoother. At heart, a Kalman
filter is restriction of equations 1 and 2 to linear Gaus-
sian transition and observation models. Namely, the
models have the form

P (Xt+1|Xt) = N(FXt,ΣX,t))

P (et|Xt) = N(HXt,Σe,t)

respectively, whereF and H describe linear transfor-
mations of the current stateXt and ΣX,t,Σe,t denote
the covariance matrices. Similarly, the priorP (X0) is
also a Gaussian whose mean and variance depend on
the problem context. Under these assumptions, it can be
shown that the distributionsP (Xt|et:1) andP (Xt|etc:1)
are Gaussian for all time stepst. Assuming the state dis-
tribution Xt at timet obeysN(µt,ΣX,t), we can com-
pute the state distribution at the next step by first calcu-
lating the optimanKalman gain matrix

Kt+1 = UHT (HUHT + Σe,t)
−1

where

U = FΣX,tF
T + ΣX,t

and performing the Gaussian update as follows:
µt+1 = Fµt + Kt+1(zt+1 − HFµt)

Σt+1 = (I − Kt+1)(FΣtF
T + ΣX,t)

TheRauch-Tung-Striebel (RTS)smoother is an algo-
rithm that lets us recursively obtain smoothed Gaussian
position estimates via similar matrix manipulations. We
do not cover it here for the lack of space.

The Kalman filter and RTS smoother’s significant ad-
vantage is that it does all its computations in closed form.
This makes them very fast and memory-efficient. At
the same time, they only handle linear Gaussian models,
which may approximate the process in a given applica-
tion very poorly. Also, additional work is needed if the
application involves discrete state distributions, as Gaus-
sians are continuous.



3 Approach
3.1 Motivation
As pointed out previously, particle filtering (PF), cur-
rently used to generate Markovian streams for Lahar, has
a major drawback. To accurately represent the distribu-
tions, it needs to do a lot of resampling at each time step.
For instance, in our deployment scenario (described in
the next subsection) the PF uses 50000 particles. As
a result, each filtering step currently takes it over 10
seconds[5]— prohibitively slow for real-time data pro-
cessing. Also, smoothing at that speed is practical only
in data archival scenarios. Proposals have been made
to decrease the number of particles to 1000, thereby
greatly sacrificing accuracy for speed. However, even
this change would result in a speedup by a factor of only
about 50. The data arrival rate would still be limited to
about 5 data points/sec (demands of real-time processing
may be much higher). Also, running many instances of
PF in parallel on the same machine would still be prob-
lematic due to memory requirements.

Employing the Kalman filter (KF) instead of the PF
offers solutions to many of the above issues. In KF,
performing one filtering (or smoothing) step constitutes
only a few manipulations with low-dimensional matri-
ces. This makes KF very fast and its speed indepen-
dent of the desired approximation accuracy. For the same
reason, its memory requirements are very low, allowing
tracking of a large number of streams on one machine.
The KF renders smoothing feasible in real time; each
data point can be used immediately to adjust estimates
at past time steps.

Certainly, Gaussians may not approximate arbitrary
distributions well, leading to some loss of accuracy. The
crucial observation that we make is that Lahar’s users are
likely to be interested only in topK event query results,
ranked by their probability. Therefore, the accuracy of
probability values is important only insofar as the “good”
results end up high in the ranking. Hence, the approxi-
mation we make by using Gaussians may have little or
no influence on the quality of the result set returned by
Lahar.

Applying the Kalman filter in our scenario faces sev-
eral challeges. Below, after discussing our Lahar deploy-
ment we discuss the each of the following issues and our
solutions to them: expressing the process model in terms
of linear Gaussians, control of model variance growth,
variable-lag smoothing, and discretization of Gaussians.

3.2 Setup
In our scenario, Lahar is used to pose event queries about
an RFID data stream gathered in our department build-
ing. More concretely, the RFID tag sightings are pro-
vided by an RFID ecosystem whose antennas are scat-
tered throughout the building’s hallways but not other in-
ner spaces, e.g. offices or labs. The range of each antenna
is approximately 3 meters.

Since Lahar’s users are interested in information
about discrete locations (e.g. hallways, offices, etc), the
structure of building’s inner space is abstracted into a
Voronoi graph. Voronoi graph can be viewed as a “skele-
ton” of the building. Its nodes are located in offices, of-
fice entrances, at hallway intersections, and some other
places. Figure 1 serves as an example. Each node is
labeled with a type of place in which it is located, and

Figure 1: Two offices and the hallway with Voronoi
graph in light blue. The grey boxes are RFID antennas.

the queries to Lahar are formulated in terms of the node
IDs and RFID tags IDs. For instance, the state sequence
(In(John,Hallway, t); In(John,Office318, t + 1))
corresponding to our running example query“When
did John enter office 318?”would be expressed
as(In(48580232, 316521, t); In(48580232, 369383, t+
1)) assuming that 48580232 is the ID of John’s tag,
316521 is the ID of the node located at the entrance to
office 318, and 369383 is the ID of the node inside office
318.

The data available to us include:

• Voronoi graph in the form of node IDs and node
adjacency lists

• GPS coordinates of the Voronoi nodes

• GPS coordinates of the RFID antenna locations

• For each antenna, the endpoints of the Voronoi
edge segments that are within 3 meters of the an-
tenna

Every second, the ecosystem provides us with the list
of antennas that sighted a particular tag, as in Table 2.
Lahar takes as input a Markovian stream of (discrete) dis-
tributions over the Voronoi nodes given this evidence.

3.3 Transition and Sensor Models
The transition model currently implemented by the PF
postulates that if an RFID tag is at a given Voronoi node
at timet, it first picks a direction to move from among the
adjacent Voronoi edges uniformly at random. Its position
is then translated by 1 meter along the chosen edge to ob-
tain a temporary position. The true new position at time
t + 1 is sampled from a Gaussian with variance of 0.3
that isoriented along the edge and centered at the tempo-
rary position, and then “snapped” to the nearest Voronoi
node.

Imitating this behavior with a linear Gaussian is non-
trivial for two reasons. First, the PF model forces the
tag’s position to always remain on the Voronoi graph
(which is not necessarily realistic but greatly simplifies
the problem of assigning the tag’s position to the nearest
Voronoi node). Second, the transition distribution is very
nonlinear and has several peaks, whereas a Gaussian has
only one. After analyzing the alternatives, the model we
constructed for the KF simply says that the position at
time stept+1 is sampled from a Gaussian with variance
of 1.7 in all directions, centered at the position at time



t. It embodies the intuition that, in the absence of ob-
servations, our belief about the tag’s position will tend to
remain around the tag’s current position. The drawback
is that such a model spreads the probability mass poorly
and in the wrong directions (not just along the Voronoi
edges).

The PF observation model is even trickier to emulate
with a sinlge linear Gaussian. The PF model’s under-
lying idea is that a tag is detected with 90% probability
by each of the antennas that are within 3 meters of the
tag and with 10% probability by antennas that are fur-
ther away. This scheme’s salient feature is that the “lo-
cations” of the evidence at each time step (i.e., the loca-
tions of antenna IDs) are a highly nonlinear function of
the tag’s true position. Additionally, the antennas are not
located on the Voronoi graph, and their positions aren’t
always very indicative of the tag’s position.

In the case of KF, since our transition model spreads
the probability mass in all directions, the observation
model is our only way to concentrate the tag’s pre-
dicted position on the Voronoi graph. Therefore, we con-
structed a non-stationary model (i.e. one that changes
with time) as follows. For each antenna that observed the
tag at a given time, we retrieve the set of all Voronoi edge
segments within 3 meters of that antenna (we remind that
this information was given to us as an input). Each seg-
ment is characterized by its endpoint coordinates. We
then intersect all these sets to find the endpoints of the
segments that are in the range ofall relevant antennas at
the given time step. These segments contstitue the part
of the Voronoi graph where the tag currenly is with very
high probability. We take their endpoints and fit a Gaus-
sian to the latter by computing their mean and covari-
ance. The resulting model is usually sucecssful at accu-
mulating belief around the Voronoi graph.

3.4 Control of Undue Variance Growth

During a time interval in which no evidence is observed,
the variance of the marginals over position computed by
the Kalman filter keeps increasing due to the transition
model. Since our transition model spreads the probabil-
ity mass in all directions, the variance growth soon be-
comes too unrealistic, despite being mathematically jus-
tified. The PF implementation solves a similar problem
by a hack whereby the spread of the probability mass
is explicitly blocked after 30 seconds of seeing no evi-
dence. In the spirit of maintaining consistency with the
PF, at each time step with no evidence we scale down the
covariance matrix of our transition model Gaussian by a
factor determined by the following function:

f(t) = 1 −
1

1 + e−
t
3
+6

Here t represents the amount of time that has passed
since the latest observation. Intuitively, this adjustment
means that the longer we see no evidence, the more we
hypothesize that the tag is not moving at all. Importantly,
ast approaches 30, this function drops off as shown in
Figure 1, shrinking the transition covariance to 0. Once
we see a new piece of evidence, the transition covariance
is reset back to its starting value of 1.7.
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Figure 2: Variance scaling function.

3.5 Smoothing with Variable Lag
Filters are typically used with fixed-lag smoothing, al-
lowing them to correct past state estimates with the cur-
rent evidence. Unfortunately, the magnitude of lag needs
to be determined empirically and is therefore not very
robust. Furthermore, different evidence may require dif-
ferent amounts of smoothing. For example, the first piece
of evidence after a long period of seeing no observa-
tions at all will likely help to greatly reduce variance at
all the preceding time steps with no evidence. On the
other hand, an observation that arrived only one second
after the previous one will probably correct the distribu-
tions at only a few previous time steps, and only by a
little. We therefore propose a very simple idea. Sup-
pose the current estimate of state at timet is a Gaussian
N(µt,Σt). Then the RTS smoothing process should con-
tinue backwards past time stept only if smoothing yields
a GaussianN(µt,Σt) that is significantly different from
N(µt,Σt). Namely, the estimates should satisfy either
||µt−µt|| ≥ ǫ or ||Σt−Σt||F ≥ δ for someǫ andδ. Im-
plementing this stopping condition requires only a minor
change to the RTS algorithm, and we adopted it for our
Markovian stream generation process.

3.6 Discretization
Since Gaussians are continuous and Lahar expects state
distributions over the the discrete Voronoi nodes, we
have devised a procedure to discretize the Gaussians into
such distributions. It operates at each time step by iterat-
ing over all the Voronoi nodes and selecting the nodes at
which the probability densitydi of the Gaussian state es-
timate is above some threshold fraction (we chose 0.05)
of the probability density at that Gaussian’s mean. Each
“eligible” Voronoi node is then assigned a probability

di∑
j

dj
wherej ranges over all such Voronoi nodes. If

no more than one Voronoi nodes pass the threshold, the
threshold is halved and the procedure is repeated from
the start (this is done to avoid assigning all of the Gaus-
sian’s probability density to just one node). It is easy to
see that the sum of probabilities at all nodes computed
this way is 1, hence we indeed obtain a valid distribu-
tion. We acknowledge that this algorithm is very unso-
phisticated. In particular, the iteration over all Voronoi
nodes could potentially be avoided. However, our exper-
iments show that even with some such inefficiencies our
implementation vastly outperforms the PF, so due to time
pressure we did not optimize it.



3.7 Generating Correlations
After constucting the discrete distributions over the tag’s
location at each of a pair of adjacent time steps, we need
to generate the correlations between them. I.e., ifPt

and Pt+1 are location distributions at two consecutive
time steps, we want to find the transition probabilities
P (nt+1|nt), for each pair of Voronoi nodesnt, nt+1 s.t.
nt ∈ Support(Pt) andnt+1 ∈ Support(Pt+1). The
PF implementation uses a rather sophisticated technique
for this purpose. The technique relies on the transition
model being discrete, which is not true for the KF. Due
to the lack of time, we could not adapt it to our model.
Instead, we designed a different, very simple way of gen-
erating the desired probabilities. For all pairsnt, nt+1,
we setP (nt+1|nt) = Pt+1(nt+1). It can be verified that
this assignment of probabilities yields a valid conditional
probability distribution. Its weakness is in the transition
model it yields — a model under which, by its definition,
the tag’s present location is entirely dictated byPt+1 and
does not depend on the location at the previous time step.
While clearly unrealisitic, this is just a stopgap solution
to test our main ideas.

3.8 Implementation: Putting It All Together
To test our ideas, we implemented a Kalman filter, our
variable-lag smoother based on the RTS smoother, and
the discretization procedure in Java, the language of
the PF implementation. Writing the Kalman filter and
smoother from scratch was necessary because no off-
the-shelf Java package we could find would let us both
specify a non-stationary observation model and use our
variable-length smoothing algorihm. A fair amount of
our code generates the transitiion and observation mod-
els and performs various data preprocessing tasks, e.g.
converting the GPS coordinates of antennas and Voronoi
nodes to metricxy-coordinates, and outputs the gener-
ated Markovian stream.

4 Experimental Evaluation
4.1 Setup and Demonstration Goals
The goal of our experiments was to demonstrate that

• KF indeed outperforms PF in terms of speed in
spite of many implementation inefficiencies.

• Variable-lag smoothing on average saves smooth-
ing steps and therefore time when compared to
fixed-lag smoothing.

• The multiple crude approximations and inefficien-
cies that we allowed don’t damage the query per-
formance too much.

During the experiments, we had KF and PF process 700-
800s long sections of several data streams with 1-second
time steps to compare the processing times. As men-
tioned previously, the data was supplied by an RFID
ecosystem deployed in our building. Each data stream
section tracked a person who typically walked along the
hallways and occasionally entered offices. When the data
streams were processed, we posed event queries of the
type“When did John enter office X?”and noted the pre-
cision and accuracy of Lahar’s responses using several
metrics.

As a foreword to the results presentation, we report
that our approach not only managed to confirm the above

three hypotheses but also showed significantly better pre-
cision/recall characteristics than PF.

4.2 Timing Experiments
We start withraison d’etreof our approach, the speed
performance. To measure it, we ran PF, KF with a fixed-
lag smoothing, and KF with variable-lag smoothing on
sections of several data streams. On each section, PF
did smoothing only once, after filtering the entire section.
Both flavors of KF did smoothing at every time step with
evidence. For KF with fixed-lag smoothing applied to a
given stream, the lag was set to the longest contiguous
part of the stream during which no evidence had arrived.
These “gaps” normally happen when the person enters
an office, where the RFID ecosystem has no coverage.

Table 3 summarizes the times it took each of the three
methods to process one time step in a given data stream.
For KF with fixed-lag smoothing, the number in paren-
theses denotes the size of the lag. For KF with variable-
lag, it specifies the average lag over all time steps. Un-
fortunately, we could not obtain more precise timings for
PF, since we did not have the implementation available
to us and had to rely on someone else to run it.

The results clearly show the vast speedup factor of at
least 3000 achieved by both flavors of KF over the cur-
rent PF implementations. Moreover, they demonstrate an
approximately 25% speed improvement of variable-lag
smoothing over fixed-lag thanks to a noticeably smaller
average lag in the former case. In fact, the speed
achieved by KF indicates that it is capable of process-
ing the data at the arrival rate of about 300 points per
second, more than sufficient to meet the requirements of
most real-time applications.

4.3 Query Performance
We pose event queries over data streams of two types:
ambiguous and unambiguous. The ambiguous ones trace
a tag entering one of the two offices located right across
the hallway from each other. Since the RFID ecosystem
has no coverage in the offices, the evidence makes it hard
to determine which of the two offices the tag actually
entered. In unambiguous traces, identifying the office
visited by the tag presents less of a problem.

As an example of an unambiguous trace (see Fig-
ures 3(c) and 3(d)) Trace 03 involves the subject walking
along the hallways of the third floor, and entering room
314 twice, at timesteps 46 and 387. Ambiguous traces
are analyzed on two queries: one querying for the room
that was actually entered and one for the room across the
hall. We refer to the latter query as “Query B”, as in Fig-
ures 3(e) and 3(f). On all these subfigures, for each time
step we plotted the probability of the query event happen-
ing, according to the corresponding Markovian stream.
The “ground truth” time steps are marked with vertical
lines. Note their lack for Query B since its event never
actually happened.

One thing to note is that the probability estimates re-
turned by the KF stream tend to be unrealistically low.
This inaccuracy comes, as we prdicted, from the apprxi-
mations made by the KF and, in particular, from the KF
distributing probability mass in all directions instead of
along the edges of the Voronoi graph.

Nevertheless, the KF streams have several advantages
over those of the PF. The former do not involve as much
noise as the latter. In addition, although the PF streams’



KF+VL smoothing KF+FL smoothing PF+smoothing
Stream 2 0.00314(13) 0.00364(100) > 10
Stream 3 0.00319(13) 0.00433(116) > 10
Stream 13 0.00363(12) 0.00411(90) > 10
Stream 14 0.00453(12) 0.00538(91) > 10

Table 3:Comparative processing speed in sec/datapoint
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(a) Unambiguous trace 02: Kalman filter
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(b) Unambiguous trace 02: Particle filter
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(c) Ambiguous trace 14: Kalman filter
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(d) Ambiguous trace 14: Particle filter
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(e) Ambiguous trace 14b: Kalman filter
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(f) Ambiguous trace 14b: Particle filter

Figure 3: Probability estimates of the Kalman filter stream and the particle filter stream for an unambiguous and an
ambiguous trace. Note that in Query B, there is no ground truth because the subject never enters the room of interest.

peaks are both high and narrow (implying a fair degree of
certainty), they tend to miss the ground truth completely.
The KF stream is more robust in this aspect; while its
peak may not correspond with ground truth exactly, the
probability estimates corresponding to the ground truth
times are significantly higher than its noise level.

On ambiguous traces, both streams returned by the
KF and PF suffer from sharp decrease in probability es-
timates. At first glance, it appears that the estimates re-
turned by the KF are relatively much lower than those
returned by the PF (see Figures 3(c) and 3(d)). However,
it should be noted that on Query B, the PF stream is also
relatively more certain than the KF that the tag entered
the room across the hall, whereas in reality it did not.
Thus, we suspect that PF streams’ tendency to exhibit
higher degrees of certainty is a double-edged sword; it
serves as an advantage for queries on rooms that the sub-
ject actually entered, but also results in a high degree of
false certainty for queries on rooms across the hall from
the room actually entered.

It is also interesting to note that both the KF and PF
streams display higher degrees of certainty on Query B,
contrary to what one would expect the optimal infer-
ence model to return (i.e. an equal certainty for both
queries). We suspect that this is a result of the length
of the Voronoi edges in the corresponding offices. The
“false” office is much smaller than the one the tag en-
tered. Because the marginal obtained by the KF is essen-
tially a distribution centered in the hallway whose vari-
ance increases equally in all directions at each time step
with no observations, there will be more probability mass
(after discretization) at the center of the smaller office
than in the larger office. Similarly, since the PF spreads
the probability along the edges of the graph, it will favor
the node in the smaller office since it is closer to the point
of last observation.

4.4 Threshold Accuracy
The simplest way to eliminate noisy query results in-
volves setting a threshold and returning a positive result



(e.g. declaring the room entered) at any timestep where
the stream’s query event probability estimate exceeds the
threshold. Since the magnitues of the probabilies of var-
ious events differ, it makes sense to define the threshold
to be not an absolute value but afraction of the maxi-
mum probability estimate seen so far for a given query
event. The same threshold value can be shared by mu-
plitple streams and queries.

Naturally, it is not clear a-priori what fraction the
theshold should be, and setting it may be an error-prone
process if the the stream has a lot of high-magnitude
noise. Thus measuring precision and recall while vary-
ing the threshold fraction from 0 to 100% quantifies how
robust and therefore noise-free the given stream is. We
conducted such experiments and plotted the results in
Figure 4.

It should be noted that the PF streams’ precision peak-
ing around a20%-threshold is a due to Trace 13, in which
the narrow spike of the particle filter hits the ground
truth exactly. Instances like this are very uncommon for
the PF in our experience. Neither precision curves are
monotone because the threshold is held constant across
queries.

Note that the PF’s recall curve witnesses a steeper and
faster decline than that of the KF; this is due to the fact
that in the PFs stream, ground truth often happens at the
noisy ‘plateau’. Also, note that, contrary to most recall
curves, ours are plotted against an increasing threshold
and therefore are monotone non-increasing.

Importantly, the KF streams maintains reasonably
high precision and recall for a much wider range of val-
ues than PF streams. This indicates a greater robustness
of the KF streams to errors in setting the threshold.

4.5 TopK Accuracy
Another way of exhibiting precision-recall characteris-
tics is to evaluate the quality of the topK query re-
sults (ranked by probability) returned by Lahar based on
Markovian streams generated with KF and PF. Retriev-
ing only top K results models a very natural scenario
of Lahar use. In this situation, the users would like to
retrieve as few results as possible, but at the same time
be sure that the retrieved set contains as many “ground
truth” results as possible with very few false positives. In
this experiment, we posed a query for each of four differ-
ent streams, accumulated the results for different values
of K and plotted the corresponding precision and recall
curves in Figure 5.

As we see, the KF-generated Markovian translates
into reasonably high recall for much smaller values ofK.
Moreover, while the maximum precision of both meth-
ods is approximately equal, the KF-generated stream
achieves high recall and high precision for approximately
the same low value ofK. This means that the user can
request only a few top results from Lahar without giving
up much of either recall or precision, which is not the
case with PF-generated stream. This supports our hy-
pothesis about KF’s probability estimation inaccuracies
not affecting the ordering of the probability values.

5 Related Work
This project extends the Lahar system[7], [8], [10].
However, there are also other systems with similar goals;
they take a variety of approaches to the problem of real-
time data processing .

For example, the authors of[6] also implement parti-
cle filtering (with smoothing) to infer state values given
the evidence. Whereas Lahar splits the inference process
and the query response into two separate components,
[6] merges both processes into one large system. They
consider Hidden Markov Model and Kalman filter vari-
ants whose transition and sensor models are learned as
queries are processed.

Tran et. al.[11] also consider location inference from
noisy sensor data, but they additionally consider the con-
text in which the RFID readers are mobile. (In this sense,
Lahar is not directly comparable with[11]’s system.)
Their system implements a particle filter, enhanced by
particle factorization, spatial indexing and belief com-
pression. These modifications address the issue of scal-
ability in the sense that multiple, high-volume streams
can be processed simultaneously. For enhanced accuracy
over more complex domains, the number of required par-
ticles increases, but the authors show that the combina-
tion of particle factorization and indexing scaling allows
using few particles to achieve an acceptable of accuracy.
While their memory requirements are modest for a par-
ticle filter, they still do not compare to those required by
the Kalman filter.

6 Future Directions
Considering the promising results demonstrated by KF
so far, we outline three directions for future research in
the area of real-time Markovian stream generation.

While KF performance is impressive as it is, we be-
lieve it can be improved further. Our linear Gaussian for-
mulation of transition and observation models is rather
crude. (In fact, it may be worth adopting a Gaussian
sum filter a variant of KF that allows state beliefs to be
represented withmixturesof Gaussians. We have con-
sidered this alternative but had to abandon it due to the
lack of time.) The pipeline for generating the Markovian
stream with the help of KF has a number of inefficien-
cies, e.g. the discretization step. Last but not least, the
implementation is in Java, which is likely not the fastest
alternative. Rectifying these deficiencies may result in
significant speedups.

On the other hand, the current setup may not be giv-
ing PF a full justice. Its implementation also has some
inefficiencies. Most importantly, however, the number
of particles currently used, 50000, is almost certainly an
overshot in terms of accuracy. Optimizations and accept-
able sacrifices in accuracy could decrease the number of
needed particles down to 5000 or even a 1000, which
would in turn bring the speed within the range of real-
time processing requirements.

Additionally, the KF and PF are by far not the only
alternatives for generating Markovian streams. The pro-
cess could also be carried out by the Conditional Random
Fields (CRFs), for which efficient inference algorithms
exist. Their speed would likely fall between that of PF
and KF, possibly hitting just the right balance of accu-
racy and performance.

7 Conclusions
Our work has enabled Lahar, a probabilistic event
database, to process data in real time by employing the
Kalman filter instead of the particle filter for generating
Markovian streams. While the Kalman filter sacrifices
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Figure 4: Threshold precision and recall computed over five traces, including Trial 13. In Trial 13, the particle filter
stream peaks exactly at ground truth. One hundred uniformlydistributed thresholds are chosen between the range of
0 and the maximum probability estimate achieved by the Kalman streams (the particle streams, respectively).
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Figure 5: Precision and recall computed over the topk timesteps, ranked by the estimates of the Kalman filter (particle
filter, respectively).

some probability estimation accuracy, the streams it gen-
erates manage to improve on the particle filter-generated
streams in terms of precision and recall of the topK
query results. Most importantly, the Kalman filter proves
to be about 3000 times faster than the current particle
stream implementation despite performing smoothing at
every time step. A variable-length smoothing technique
contributes to the success of Kalman filter by letting
it do only as many smoothing steps as necessary. We
expect the performance of the Kalman filter can be
improved further by designing a more accurate process
model and optimizing the implementation.
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