Data Partitioning and Indexing for
Network Forensic Analysis

Cherie Cheung

Jue Wang

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350, U.S.A.

{cherie,juewang}@cs.washington.edu

1. BACKGROUND AND MOTIVATION

Nowadays, both Internet service providers and enterprise
network administrators need to record and analyze network
traffic stream data for network management, diagnosis and
security reasons. In their systems, data streams are usually
collected continuously at a high rate. Hence, the ability to
query promptly on the historical data is highly desirable for
the decision making process. A network intrusion detection
system (NIDS) is a typical example and the target for this
research project. One major functionality of an NIDS is to
record network flow data into its associated database system
in real-time. The insertion rate is usually considerably high.
For example, a medium-size enterprise network with several
thousands of hosts can produce 100,000 internal flows per
minute at peak time. Moreover, NIDS systems are very sen-
sitive to true negative cases (where a real attack occurs but
not detected) and the false-positive rate is relatively high.
This requires manual verification, or even forensic analysis
with “drill-down” queries aimed at finding the root cause
of the security breach and identifying other affected hosts.
Both verification and forensic analysis require a prompt re-
sponse to historical queries in the order of seconds.

To meet these challenges, approaches from three direc-
tions have been proposed and explored: a) Customized so-
lutions with their own storage and query systems; such sys-
tems, however, are expensive to build and often offer limited
and sometimes awkward APIs. b) Data warehousing sys-
tems [5, 9] based on relational database management sys-
tems (RDBMS); such systems provide independent OLAP
(online analytical processing) engines and sophisticated ETL
(extraction, transportation, transformation, and loading) so-
lutions. The major problem with data warehousing is the
cost of the maintenance of the pre-computed and pre-fetched
data (e.g., materialized views). ¢) An RDBMS itself offers
many attractive features for conducting network forensic in-
vestigations: a powerful query optimizer, indexes, and a
flexible and standard query language interface. However,
to make RDBMS suitable for use in this context, it will
need to be modified to support high insertion rate and ef-
ficient query processing. Previous work [7] has attempted
to address the challenges by on-demand materialized view
and indexing. We believe RDBMS based solutions can be
further improved with data partitioning and smart indexing
techniques and ultimately achieve the performance required
by network forensic application.

The rest of the paper is organized as follows: In section
2, we discuss related work; In section 3, we present our
methodology; In section 4, we present our system design

and implementation. In section 5, we evaluate our system
performance. In section 6, we conclude and describe possible
future work.

2. RELATED WORK

Researchers and practitioners have tried to tackle the prob-
lem of providing both high insertion rate in real time and
prompt query processing in NIDS from various angles.

In [7], Roxana et al. propose an on demand view ma-
terialization and indexing (OVMI) mechanism based on an
“out-of-the-box” RDBMS. When an alert comes, OVMI re-
trieves data involving entities in the alert event, makes a
copy of these data and builds rich indexes on the copied
data. User queries will be first executed on the materialized
data using the indexes and then on the original relation if
necessary. With OVMI, the indexing overhead is essentially
reduced and the materialized view can assure prompt re-
sponses to user queries if the data being queried is within
the scope of the materialized view. However, the cost of
constructing the materialized view from the full relation is
not trivial. And it is very hard to decide the proper time
range where the relevant data will be located for complex
queries. Fixed heuristics on the time range and data source
for the materialized view will lead to limited query flexibil-
ity. If user queries need to explore data out of the scope
of the materialized view, the overall performance could be
worse than a plain system without OVMI.

In [9], Theodore et al describe Data Depot, a general
purpose tool for generating warehouses from stream data
sources. Data Depot supports efficient query processing
by providing complex materialized views over an underly-
ing database. The database is partitioned chronologically
such that only selected partitions are affected by updates.
Data Depot provides a declarative mechanism for specifying
the temporal relationships between partitions of material-
ized views and their sources with simple formulas. Data
Depot also supports complex dependencies and correlations
for speeding up query processing. With all these advantages,
none the less, the extra cost of maintaining complex materi-
alized views is costly. And the materialized views themselves
could be arbitrarily complex and non-monotonic. Data De-
pot can work in both offline and online environments, while
the latter requires high insertion rate and has less resources
left for query processing. The cost of the data warehousing
solution is formidable for many small or mid-sized corpora-
tions or non-profit institutions. In this sense, an RDBMS
based approach is desirable.

In [6], a column based relational DBMS is proposed. In

this approach, data are stored by columns rather than by
rows. Careful data compression is performed to minimize
the disk bandwidth usage. The data is grouped into differ-
ent column-based projections. The same column may exist
in multiple projections, possibly sorted on a different at-
tribute in each of them. This overall design is targeted at
optimizing the reading performance. While C-Store will cer-
tainly improve the performance of selection queries if the
columns and indexes referred by the queries exist in the
column projection, this approach has several disadvantages
which make it inappropriate for NIDS tasks: 1) It consumes
a huge amount of computation resources for data encod-
ing, decoding and sorting. This will limit its application in
NIDS where computation resources are scarce. 2) It is op-
timized for read-only tasks. As NIDS with forensic analysis
is naturally write-intensive, and query response needs to be
prompt, C-Store is not suitable.

Our work will focus on avoiding the extra cost of main-
taining materialized views and providing a solution based
on “off-the-shelf” commercial RDBMSs. We will address
our methodology in the next section.

3. METHODOLOGY

To improve the query processing and data insertion per-
formance of an “off-the-shelf” relational database for net-
work forensic application, we will explore data partitioning
and indexing techniques. The key idea of data partition-
ing involves subdividing a table into multiple smaller pieces.
Each of these partitions will contain a subset of the original
data. This is useful when the original table is large and the
portion related to each query can be separated from each
other by attribute columns or over a particular attribute.
For instance, we can partition the network flow database
with time as the partition key. If we issue a query over a
time period T, we only need to access the partitions with
flow data that overlaps with T which saves us time from
scanning the whole table. This kind of partitioning also
speeds up data insertion. Since newly arrived flow data
will only affect the latest partition, after the data inser-
tion, we only need to rebuild the index over that partition
instead of the whole table. The challenge will be to find
a good way to partition the table so that the partitioning
overhead is relatively small comparing with the performance
gain and the partition size suits most queries well. Indexing
is another technique for optimizing query performance by
enabling rapid random lookup. Depending on the kinds of
indexes and the attributes on which the indices are built,
indexing can speed up different kinds of queries.

In particular, we are interested in optimizing drill-down queries

and recursive queries that often appear in network foren-
sic analysis. However, due to time constraint, we haven’t
investigated specific strategy for optimizing them in this
work. Yet our experiments show that partitioning with in-
dexing are very effective for optimizing the query perfor-
mance for general queries including “drill-down” and recur-
sive queries.

4. IMPLEMENTATION

In this section, we will outline our system setup and the
properties of our data traces, followed by the implementa-
tion details of each of our system modules: data insertion,
indexing and partitioning.

Router NIDS

Insert flow dat: | Partitioning &
Indexing agent

Insert flow data

Network admin

. alett
\ausion ‘ ®
F J
Ore,»,S o o
gy A

Relational
DBMS

Figure 1: Our system architecture

4.1 System setup

An NIDS system consists of a historical flow database that
stores all the network flow data from a router. When an
attack is detected by the NIDS, it will send an alert to the
network administrator, who then issue forensic queries to
verify and find the origin of the attack. We proposed to use
an “off-the-shelf” RDBMS as the historical flow database
and implemented a partitioning and indexing agent on top
of that to enable fast data insertion and low query processing
time. Figure 1 shows our system architecture.

The Microsoft SQL Server 2005[2] was used as our database
backend. The partitioning and indexing agent was imple-
mented in Java. It would connect to the database using
JDBC|8] and issue SQL commands to it for performing data
insertion, indexing and partitioning operations. These oper-
ations were interleaved so that data was inserted in real-time
and queries were processed promptly. The SQL Server run
on the Microsoft Windows Server 2003[3] on a machine with
3.00GHz Intel Xeon qualcore CPU, 4.00GB of RAM and one
750GB SCSI harddisk.

4.2 Analysis of the data traces

For our experiments, we used two traces: Trace 1 is a
10-hour network trace from a medium-size Internet Service
Provider (ISP). This trace was collected in April 2003. It
contains flow records from two hosts infected by a Code Red
worm (out of 389 hosts), scanning hundreds of thousands of
IP addresses, making it suitable for testing RDBMS perfor-
mance in the presence of security events. Trace 2 is a 22-day
network trace from a small enterprise collected in October-
November 2006. In order to achieve the best performance,
we converted and represented the attributes of the network
flow data using as little memory as possible. Table 1 shows
the schema of the main attributes of our database.

Table 1: Schema of our network flow database.

Columne Type Description
start_ts 8-byte int start time of flow
(seconds elapsed since epoch)
protocol | 1-byte int TCP, UDP, ICMP, etc

(mapped to a number)

cli_ip 4-byte int client TP
(converted to int)
srv_ip 4-byte int server IP

(converted to int)

cli_port 2-byte int client port
srv_port 2-byte int server port
app char(30) application

200000 x

-~ % - -time interval = 72 sec
—6—time interval = 48 sec

—=—time interval = 24 sec f x
time interval = 12 sec =

N
a
=3
S
=3
3

100000 -

Partition size (# of tuples)

50000

Time

Figure 2: Variation of partition sizes with different par-
titioning time interval

The partitioning procedure could be performed over the
time line, the number of tuples and different attributes.
To determine along which dimension and how partitioning
should be performed, we measured the variation of partition
sizes for different partitioning time interval and collected
data statistics over informative attributes (srv-ip, srv_port,
cli_ip, cli_port, app).

Figure 2 showed the variation of partition sizes with parti-
tioning time interval of 12, 24, 48 and 72 seconds. It showed
large variation in partition sizes over time. In particular,
much more traffic was generated in the day time than at
night. The statistics also gave us some hints for deciding on
the partition boundaries. We could also see that a smaller
partitioning time interval was more favorable as it resulted
in less variation in partition sizes, ensuring more uniform
performance in our system. However, small partitions would
incur more overhead in partition management and impact
performance. Therefore, we decided to experiment with dif-
ferent partitioning time interval in our project.

Figure 3 shows the data statistics over the srv_ip, srv_port,
cli_ip, cli_port and app attribute. The graph was plotted
with a log-log scale. We observed that the distribution of
data values of the srv_ip, srv_port, cli_ip and cli_port at-
tributes roughly followed a Zipf curve. The distribution of
the app attribute was less skewed, but it also had a few
dominating data values and many unpopular ones. These
properties made partitioning over attributes non-uniform
and unsuitable. The statistics also gave us insights in in-
dexing. We could see the cardinality of the attributes were
different. It would be interesting to evaluate the effect of
cardinality on the indexing time.

4.3 Data insertion

To cope with the high data insertion rate of a NIDS,
we needed a mechanism that could insert data in batches
at high speed. Microsoft SQL Server provided us with a
bulk insert command which could import a data file into a
database table in a user-specified format. We experimented
with it using the data trace 1 that we described above. A
number of optimization techniques were used to maximize
the data insertion rate. Firstly, we altered the database re-
covery model from “full” to “simple”. This minimized the
amount of data that had to be written to the transaction log.
For example, it would only record “A bulk insert command
was issued” instead of the exact position and data involved.
Although this would risk losing all the data upon system

1E+07
——sIv_ip

\‘ ~ ——srv_port
1.E+06 A —cli_ip
cli_port
— —application

1.E+05

1E+04

1.E+03

1E+02

Frequency of occurrence (log-scale)

1.E+01

\
\
\

1.E+00 T T T
1.E+00 1E+01 1.E+02 1E+03 1E+04 1E+05

Rank of data value (log-scale)

Figure 3: Distribution of data values for different at-
tributes plotted on a log-log scale. They roughly follow
the Zipf distribution.

crash, it would not matter for our application since one copy
of the data was kept in the data trace files. Secondly, a table
lock was used instead of individual row locks. This reduced
the overhead of acquiring and releasing locks tremendously.
Thirdly, we varied the batch sizes to tradeoff the overhead
of setting up the batches and the granularity of interleaving
the operations. Fourthly, we compressed the original net-
work flow data by some encoding tricks. For example, we
transformed the ip and mac_address attributes from string
to integers (actually we mapped all the attributes into in-
tegers, except for the application attribute). All these tech-
niques were very effective and could increase the throughput
by a hundred fold.

4.4 Indexing

In an NIDS system, forensic queries usually involve predi-
cates over multiple attributes. In particular, start_ts, srv_ip,
srv_port, cli_ip, cli_port, and app appear in most forensic
queries. Thus indexing over these attributes will signifi-
cantly improve the query performance. Yet the indexing
overhead and the performance gain in query processing will
depend on the way the indexes are built.

In general, SQL Server supports two kinds of indexes:
clustered and unclustered. Clustered index will sort the orig-
inal table according to the indexing key and store them in
this order physically, thus it can provide efficient index scan
and support range queries well. For unclustered index, the
most common kind is hash index which supports equality
predicates well. However, unclustered index do not sort the
table physically. Instead it maintains pointers to the data
and a scan will involve a traversal over these pointers. Be-
cause of the property of these indexes, there can only be one
clustered index, but more than one unclustered index on a
table. If the database engine can make use of a clustered
index to process a range query, it can perform a sequential
scan on the disk to retrieve the data and does not need to
traverse over many data pointers as with unclustered index.
This greatly speeds up the query processing time because
memory and disk are slow.

Although clustered index performs much better than un-
clustered one, building clustered index is usually more ex-
pensive. In our system, we chose to build a clustered index
for start_ts since it appears in most range predicates and un-
clustered indexes for the other main attributes shown above
since they are typically used in equality predicates.

NIDS table

Parilt Data within
artiton time interval t1

Staging table
Table lock @l gng
Data within @ Create check constraints
A . . L @ Create indexes
@ Split|partition 4“} @ Switch partition /N
@ Bulk insert
2
~
Data trace

Figure 4: The data partitioning procedure

4.5 Partitioning

Data partitioning involved breaking a table into smaller
ones so that data insertion, indexing and query processing
could be decoupled and the number of tuples needed to be
scanned for query processing could be minimized. The pro-
cedures for creating a partitioned table in Microsoft SQL
involved creating a partition function, a partition scheme
with that function and finally a table with that scheme.

We decided to use start_ts, the starting time of a net-
work flow, as the partitioning key because network foren-
sic queries often involved searching for tuples within a cer-
tain time frame where an attack was launched. With this
partitioning scheme, the query processing unit only needed
to scan the partitions relevant to that query instead of the
whole table, improving the response time dramatically. This
was called partition elimination. We broke down the table
into partitions using fixed time interval. Figure 4 shows the
data partitioning procedure.

The NIDS table was a partitioned table where all the net-
work flow data was stored. Initially, it was empty with no
partition in it. The staging table was a temporary non-
partitioned table used to aid the data insertion process.
Both tables had the same schema which was required for
moving data between them. The partitioning steps were:
(1) Data from a network trace would be bulk inserted into
the staging table in one batch by acquiring a table lock in-
stead of row locks. Each batch would contain data within
a fixed time interval, say with start_ts in between T; and
T;. (2) Indexes could be built on top of the data in the
staging table. This operation would be faster than creat-
ing the indexes during data insertion, where the latter case
involved reconstructing the indexes every time a new tuple
was inserted. We had chosen to build a clustered index on
start_ts and unclustered indexes for 5 other main attributes
in the schema. (3) Check constraints would be added to
the staging table, specifying the time interval to which the
data belonged. In this case, the constraint would be T; <
start_-ts <= Tj. (4) A new partition would be created in the
NIDS table by splitting the range of the latest partition into
two. This resulting range must match that of the check con-
straints specified in the staging table. In this example, the
initial range was -0o to oco. After splitting at 7}, two par-
titions with ranges (-oco, ;] and (7}, oo] respectively would
be created. The data in the staging table could be moved to
the (-oo, T}] partition in the next step as the constraint T; <
start_ts <= T; matched it. (5) By calling a switch partition
command, all the data in the staging table would be moved
to the new partition (-oco, Tj]. Since only meta-data in the
database was involved in this step, the operation was very

fast. The next batch of data could then be bulk inserted
into the staging table and the above steps (1)-(5) would be
repeated.

This insert and switch procedure was used instead of di-
rectly bulk inserting all the data into the partitions of the
NIDS table because of the following reasons. 1) If we wanted
to do bulk insert and query processing in the NIDS table at
the same time, row locks instead of table lock had to be used
to provide fine-grained data access. This would be inefficient
given that we were dealing with a huge number of tuples.
2) The drawback was related to the creation of indexes that
was mentioned above. There was no command for us to
specify the creation of indexes on a particular partition. It
could only be created on the whole table, which meant that
we had to create the indexes during data insertion and mod-
ify them on each insertion. Since both of these restrictions
would slow down the data insertion rate, we had chosen to
use the insert and switch procedure instead.

S. EXPERIMENTS

In this work, we designed experiments to evaluate our sys-
tem on the performance of three important tasks: indexing,
data insertion, and query processing. Indexing is crucial to
query performance, but its overhead has a significant impact
on the insertion rate. The two main goals for our overall sys-
tem performance are high data insertion rate and fast query
processing time. We will describe the evaluation methods
and experimental results in details in the following sections.

5.1 Evaluation for indexing

To evaluate the overhead of index construction, we de-
signed the following indexing experiments:
1) Indexing over different data types: int vs. string.
2) Indexing over attributes in same data type with different
cardinality.
3) Indexing over different number of attributes.
4) Indexing over different size of partitions.

We have built clustered indexes on the attribtues start_ts
(8-byte int), srv_ip (4-byte int), srv_port (2-byte int), cli-ip
(4-byte int), cli_port (2-byte int) and app (string) and a com-
posite index over all these 6 attributes in the order (start-ts,
sru_ip, cli_ip, srv_port, cli_port, app). We assumed a data
insertion rate of 3000 tuple/sec and evaluated the indexing
performance on partition sizes of 15 minutes, 30 minutes
and 60 minutes. We also assumed that the data partitions
have been filled up before we built the indexes, and they re-
mained unchanged during indexing. The results are shown
in Figure 5 .

We can learn a few things from this experiment. First,
we can see that the indexing time for string data type is
longer than that for int data type. This is reasonable since
clustered indexing needs to sort the whole table according
to the indexing key and sorting string attributes is cer-
tainly more costly than sorting int attributes. Thus we may
avoid indexing the application attribute for performance rea-
son. Second, even though the distribution of start_ts, srv_ip,
srv_port, cli_ip, cli_port are quite different, they require sim-
ilar amount of indexing time. This is because we were build-
ing indexes over static partitions. And in fact, data distribu-
tion can greatly affect the insertion rate if an index already
exists on a table during insertion. Lastly, it is interesting to
see that the indexing time for the composite index of all at-

250

Mstart_ts (clustered)

Esrv_ip (unclustered)

M srv_port (unclustered)

200 Ocli_ip (unclustered)

W cli_port (unclustered)

W app (unclustered) —
O composite index of all 6 attribtues|

N
a
S

Indexing time (sec)
5
3

50 1

15 30 45 60
Table size (min)

Figure 5: Indexing creation time for different attributes
and different table sizes Building a clustered index takes
much more time than a unclustered one

tributes is less than that for the application attribute alone.
As sorting is the dominating factor in creating clustered in-
dex, we predict this is related to the way the composite
index sorts the rows. When the composite index is being
created, the rows will be first sorted on the first attribute
start_ts and then on the second attribute if the rows have
the same start_ts value and so on for the other attributes.
Since most rows have distinct start_ts value in this trace,
after sorting on start_ts, few additional sorting on other at-
tributes needs to be performed. Sorting on the application
attribute is unlikely to happen since it is the last attribute
on the composite index. Thus, creating the composite index
requires fewer costly string comparisons and could be built
faster.

5.2 Evaluation for insertion

We first run a micro-benchmark to study how the inser-
tion rate is affected by the batch size and then investigate
more deeply on the insertion rate of different schemes im-
plemented in our system.

Figure 6 shows the insertion rate with different batch size
settings. As seen from the graph, the insertion rate increases
non-linearly with increasing batch sizes. This is because the
bulk insert command is processed by treating each batch as
one transaction. The larger the batch is, the fewer trans-
actions it will be required to perform, thus minimizing the
overhead and achieving a higher throughput. A batch size
of at least 50000 tuples is needed to achieve a high insertion
rate.

Figure 7 shows the data insertion rate of different schemes
with different partition sizes. In the graph, the insertion
rates for all schemes increase non-linearly with increasing
partition sizes because fewer transactions need to be per-
formed for larger partition sizes. This agrees with the results
in Figure 6. Among the different schemes, NPNI-T shows
the highest insertion rate, with a maximum of nearly 35000
tuples/sec. We can consider this as the ideal insertion rate
that partitioning and indexing schemes can achieve if there
is no overhead. However, NPNI-T is unrealistic for NIDS
applications because by acquiring a table lock, query pro-
cessing cannot be performed at the same time. If row locks
are acquired instead, as in NPNI-R, the insertion rate will be
dropped by 10000 tuples/sec due to more locking overhead.
Next, if partitioning is used (in the P scheme), the insertion
rate will be 5000 tuples/sec slower than that of NPNI-T

40000

512000

35000

30000

25000

20000 +

15000

Insertion rate (tuples/sec)

10000

5000

500

0

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000
Batch size (# of tuples)

Figure 6: The insertion rate with different batch sizes

35000 +

30000 ﬁ
25000 / /l |
o |
Y4

10000

Insertion rate (# of tuples/sec)

& o pariioring, No indexing, Table ock (NPM T)
5000 4—2 No indexing, Table locks

ity pamuomng No indexing, Row locks (NPN[R)

With partitioning, With indexing, Table lock ~ (P1}

—#—No partitioning, With indexing, Table lock (I-T)

—5-No With indexing, Row ocks (1)

0 T T

0 15 30 45 60
Partitioning time interval (sec)

Figure 7: The insertion rate for the overall system with
different partition sizes and different schemes

because of partition splitting and switching. However, this
overhead is not very significant as we see that the insertion
rate of P is still faster than that of NPNI-R. We have only
evaluated P with table lock, but not with row locks, since
partitioning enables the use of table lock by decoupling in-
sertion and query processing. It is unreasonable to use row
locks, which have worse performance, if table lock can be
used. If both partitioning and indexing are used (PI), the
insertion rate drops down to 15000 tuples/sec because we
are building 6 indexes which require much time. Despite the
slow down, the performance gain in query processing is ex-
pected to outweigh the overhead of index creation. Lastly,
the slowest schemes are with indexing only (I-T and I-R)
with table lock and row locks respectively. It is because
with indexes over the whole table without partitioning, all
these indexes have to be rebuilt after each bulk insertion.
The overhead is so large that using table lock or row locks
do not affect the result.

From these experiments, we observe that RDBMS system
can achieve the high data insertion rate required for NIDS
application. Even with the partitioning and indexing over-
head, the high insertion rate can still be sustained.

5.3 Evaluation for query processing

To show the benefit of partitioning and indexing in query
processing, we have executed 6 queries in our system with
and without data being inserted at the same time. Q1-Q4
are simple queries that allow us to evaluate different schemes
easily. Q1 selects all the traffic within a certain time range.

It allows a network administrator to check all the recent
traffic in details. Q2 selects the number of flows sent from
a host with IP x. This can be used to inspect any suspi-
cious hosts. Q3 selects all the traffic running an instance
of application a, enabling an administrator to narrow down
suspicious hosts in case he knows that there is a vulnerabil-
ity in application a. Q4, which is a combination of Q1 and
Q2, finds the number of flows sent from a host on a certain
port within a certain time range.

Q1 - on time range:
SELECT * FROM NIDS
WHERE start_ts >=t;

Q2 - on IP:
SELECT count(*) FROM NIDS
WHERE srv_ip = x;

Q3 - on application:
SELECT * FROM NIDS
WHERE app = a;

Q4 - on time, IP and port:
SELECT count(*) FROM NIDS
WHERE start_ts >=t AND srv_ip = x AND srv_port = p;

We have also tested our system further by issuing more com-
plicated real-life network forensic queries. Q5 is an example
that looks for backdoor intrusions. It finds all pairs of ma-
licious “triggers”, in which a first attack flow causes the
victim to initiate a new flow back to the attacker to register
the success of the exploit. Q6 is an important query used
in network forensic analysis. It searches for all the hosts
infected by a malicious host. It traces the scope of the in-
fection using a signature of an attack, sending out traffic
through a certain port. In real NIDS, this is in the form
of a recursive query because the infected hosts will in turn
become malicious and infected other hosts. We will need
to trace the connection tree exhaustively. However, due to
time limitation of this project, our query only searches for
infected hosts directly connected to the malicious source.

Q5 - on backdoor intrusion:
SELECT * FROM NIDS a, NIDS b
WHERE a.srv_ip = b.cli_ip

AND a.cli_ip = b.srv_ip

AND a.srv_port = p

AND a.start_ts > tl

AND a.start_ts < b.start_ts

AND b.start_ts - a.start_ts < t2;

Q6 - searching for infected hosts:
SELECT start_ts, srv_ip,srv_port, cli_ip, cli_port
FROM NIDS,
(SELECT start_ts, srv_ip,srv_port, cli-ip, cli_port
FROM NIDS
WHERE srv_ip = x
AND start_ts >= t1
AND srv_port = p) as INFECTED
WHERE NIDS.srv_ip = INFECTED.cli_ip
AND NIDS.start_ts > INFECTED.start_ts
AND NIDS.start_ts - INFECTED.start_ts < t2
AND NIDS.srv_port = p;

100 —

80

TINPNI
OP(30sec)
OP(1min)
OP(5min)
al
OPI(30sec)
T PI(1min)
OPI(5min)

Time (sec)
>
3

N
3

O e [

Q1 - time range Q2-1P Q3-application Q4 - time+IP+port Q5 - backdoor Q6 - 1-level
Query recursive query

Figure 8: Query performance (time) without data in-
sertion

Pl

=
3

2
3

=
s

ONPNI
OP(30sec)
oP(1min)
OP(5min)
al
OPI(30sec)
oPI(1min)
PI TPI(5min)

]
S

5
S

@
3

o3
3

Relative speedup normalized by NPNI

IS
S

3

ool b o A med

Q1 - time range Q2-1P

n
S

o

Q3 - application Q4 - time+IP+port Q5 -backdoor Q6 - 1-level
Query recursive query

Figure 9: Query performance (speedup) without data
insertion

Figure 8 and 9 shows the query processing performance
of the four partitioning and indexing schemes: NPNI, P, I
and PI. For the partitioning schemes, several partitioning
time interval are also evaluated, abbreviated as P(time in-
terval). In this experiment we do not insert any data into
the table during query processing. We first construct tables
with different schemes, filled it with 45 mins of network flow
data from trace 2 and then run each of these queries over
it. We call this the offline mode. In this way, by removing
the partitioning and indexing overhead, it can measure the
net performance gain brought by partitioning and indexing
techniques. Figure 8 shows the actual query processing time
used to execute each query while Figure 9 shows the relative
performance speedup with reference to the NPNI scheme.
The scheme with the best performance for each query is
labeled in Figure 9. It can easily be seen that PI, P and I
outperform NPNI by a factor of 10 to 200. For Q1, P(5 min)
has the lowest query processing time because it is a query on
time range only. Accessing the time range using partition
is more effective than using the start_ts index. Moreover,
the partition size 5 minutes matches with the query data
range, giving the best performance. For Q2 and Q3, both I
and PI(5min) perform the best because the query involves
searching for a predicate and indexing can greatly improve
performance. On the other hand, the P schemes actually
have a worse performance than NPNI because partitioning
on time cannot help in searching for the IP and application
predicate and the overhead of partitioning will degrade the

120

80 TNPNI
OP(30sec)
OP(imin)
OP(smin)
al
OPI(30sec)
OPI(1min)
40 TPI(5min)

O O N 1

Q1 - time range Q2-IP

60

Time (sec)

Q3-application Q4 - time+IP+port Q5 - backdoor Q6 - 1-level
Query recursive query

Figure 10: Query performance (time) with data inser-
tion

50

©
&
]

CINPNI
OP(30sec)
OP(1min)
OP(5min)
[=]]
DIPI(30sec)
DPI(1min)
o1 OPI(5min)

1 e =t 3 e e

Q1 - time range Q2-1P

Relative speedup normalized by NPNI
N
b

Q3 - application Q4 - time+IP+port Q5 - backdoor Q6 - 1-level

recursive quen
Query query

Figure 11: Query performance (speedup) with data in-
sertion

performance. For Q4 to Q6, PI(5min) gives the best result
since the queries involves both time ranges and query pred-
icates. We also observe that the partition size has to match
well with the query data range for better performance. In
this experiment, a larger partition size usually works bet-
ter because our queries focus on a large time window. In
general, partitioning and indexing benefits most types of
queries.

To simulate a realistic NIDS, we ran our system under the
online mode, where it performed query processing and data
insertion at the same time. During the experiment, data
was continuously being inserted into the table at a rate of
3000 tuples/sec. After the data size had reached a certain
point, we issued the query. Note that data was still being
inserted at the same rate while the query was being pro-
cessed. This would impose substantial load on our system.
Figure 10 and 11 shows the query performance of the online
mode operation. Again Figure 10 shows the actual process-
ing time whereas Figure 11 shows the speedup relative to
the NPNI scheme. The scheme with the best performance
for each query is labeled in Figure 11. Similar to the offline
mode, we see that P, I and PI still outperform NPNI in most
cases, but by a factor of 10-45 times, given the overhead of
partitioning and indexing. It is interesting to see that I per-
form much better for Q1 and Q2. The reason is that I has
less overhead than PI and these two queries are too sim-
ple. They require so little query processing time that PI
cannot bring enough benefit to outweigh its overhead. We
expect PI to benefit more for complex queries. This is not a

problem since most forensic queries are fairly complicated.
One may also argue that if indexing alone can bring sub-
stantial speedup, partitioning should not be used. However,
as shown in Figure 7, I has the slowest data insertion rate
that makes it inappropriate for high data rate network. We
have only tested with a data rate of 3000 tuples/sec in this
experiment, but we expect I to perform worse if the data
rate is increased. For Q3 to Q6, PI(5min) gives the best
performance, showing its applicability for optimizing many
types of queries.

6. CONCLUSION AND FUTURE WORK

Forensic analysis is crucial in network intrusion detection
systems. A historical flow database in an NIDS needs to
suport: a) fast data insertion rate; b) low query processing
latency; ¢) online query processing with data insertion.

To meet these challenges, we propose building an NIDS us-
ing an “off-the-shelf” relational database system with data
partitioning and indexing techniques. Our experimental re-
sults have shown that partitioning over proper size with in-
dexing can not only improve the data insertion rate, but also
speed up query processing for up to 200 folds.

For future work, it would be interesting to study how the
right partition size can be determined adaptively with the
incoming query workload, experiment with different data in-
sertion rates and evaluate the query performance for more
complex queries. Further speedup for recursive queries could
also be achieved by unfolding the recursion and rewriting the
query with irrelevant data on the timeline pruned.

7. REFERENCES

[1] Microsoft Corporation Inc. Microsoft Open Database
Connectivity (ODBC).

[2] Microsoft Corporation Inc. Microsoft SQL Server 2005.

[3] Microsoft Corporation Inc. Microsoft Windows Server
2003.

[4] Microsoft Corporation Inc. Performance Monitor.

[5] Nathan Folkert et al. Optimizing Refresh of a Set of
Materialized Views. In Industrial Session: Data
Warehousing and Data Mining, pages 1043-1054.
Oracle Corporation, 2005.

[6] Stonebraker et. al. C-store: a Column-Oriented DBMS.
In Proceedings of the 2005 VLDB, pages 553-564, 2005.

[7] R. Geambasu, T. Bragin, J. Jung, and M. Balazinska.
On-Demand View Materialization and Indexing for
Network Forensic Analysis. In Proceedings of NetDB
2007, April 2007.

[8] Sun Microsystems Inc. The Java Database
Connectivity (JDBC).

[9] T.J and L.G. Generating a Data Stream Warehouse
using Data Depot. In -.

