
Machine Learning for Automatic Physical DBMS Tuning

Ivan Beschastnikh and Andrew Guillory

December 6, 2007

Abstract
Tuning a DBMS that experiences varying workload is chal-
lenging. Database administrators cannot be expected to
monitor the workload and react with appropriate tunings,
therefore automation is essential. In this report we out-
line a new method for automatic physical DBMS tuning
that uses machine learning to model and predict workloads,
and tune for the future. Our method builds on previous ap-
proaches by exploiting predictability of DBMS workload
without assuming full knowledge. We present results on a
set of synthetic workloads generated from the TPCH query
templates.

1 Introduction
The performance of a DBMS is highly dependent on the
physical design of the database. Automatic physical de-
sign tuning seeks to automatically choose a physical de-
sign based on workload information. Previous approaches
to this problem have been limited by assumptions con-
cerning knowledge of the workload. We propose to use
machine learning (ML) to overcome these limitations by
learning a model of the history of the workload and pre-
dicting changes in the workload.

Application that benefit from automatic DBMS tun-
ing include data warehousing architectures, popular high-
traffic web-sites, and many more. For example, consider
a data warehousing application that collects sales informa-
tion from all the regional stores on a daily basis during
the weekdays. After receiving a week of data, the appli-
cation proceeds to compute over the data on the week-
ends. This scenario is meant to illustrate that time varying
workload may be stable and predictable, allowing for time-
dependent tuning of the DBMS. Throughout the paper, we
motivate our parts of our approach by using an example
DBMS backend designed for a retail store that experiences
different workloads on weekdays than on weekends.

Our second example application is YouTube.com that at-
tracts millions of users daily. The visitation workload of
YouTube for the recent month is plotted in Figure 1. The
peak visit times occur on the weekends. Learning this pat-
tern and using it to optimize the underlying DBMS may

Figure 1: YouTube.com is an example of a high-traffic
site that exhibits predictable time-dependent visitation pat-
terns. Learning such workloads and tuning at appropriate
times may improve throughput.

benefit user throughput, and page-load latency. For ex-
ample, the DBMS may be tuned for high traffic on the
weekends and weekdays after 6pm. However, on weekday
mornings, the DBMS may be tuned to support data mining
activities.

In the next section we review related work on automatic
tuning. We then present a step by step overview of our ap-
proach in Section 3. We explain our experimental method-
ology and present experimental results in Section 4 and
Section 5. We then proceed with discussion and future
work in Section 6. We conclude with Section 7.

2 Related Work

Offline Set Based Tuning. Early work on automatic
physical design tuning focused on recommending indexes
by considering example database workloads. The example
workloads usually take the form of a set of typical queries
to the database. This work has since been integrated into
several major commercial database management systems
(e.g. MS SQL Tuning Advisor) and is a significant step
towards automating database tuning. A drawback of set-
based tuning is that it requires a database analyst to de-
cide on a single representative workload in advance. Real
world database applications often involve temporally vary-
ing workloads which may, as previously discussed, dra-
matically change over time

1

Time
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Time
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

 T1 T2 T3 T4

Time
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

 C1 C2 C1 C2

Time
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

 C1 C2 C1 C2 C1

?

Now

Input

Phases 1,2

Phase 3

Phase 4

Figure 2: ML phases in our algorithm. The qi are queries,
Tj are tunings associated with [bracketed] sets of queries,
and Ck are clusters of tunings learned (and then predicted)
by the algorithm.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Time
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Time

Figure 3: Query workload can be segmented so that times
between query groups are long enough to allow for DBMS
re-tuning (top). If such a segmentation does not exists, an
algorithm with a threshold for the maximum number of
queries allowed in a gap can be used (bottom).

Offline Sequence Based Tuning. Follow up work at-
tempted to overcome the limitations of set based tuning by
using a sequence of queries [1]. This work allowed for
temporally varying workloads unlike previous set-based
approaches. However, this approach again requires the as-
sumption that a database analyst knows the workload – the
set of queries and their ordering.

Online Tuning. Most recent approaches automatic tun-
ing as an online problem [2]. In this approach new tunings
are recommended automatically as the workload changes.
Like the offline sequence based approach, this approach
can adapt to changes in the workload. However, unlike the
offline approaches, the online model requires no up-front
knowledge concerning the sequence or the actual queries
composing the workload. One problem with the online
method presented in [2], is that it does not make any at-
tempt to predict changes in the workload – it reacts to
changes as they occur. Moreover, as the physical tuning
requires substantial compute time, tunings typically lag be-
hind workload changes. As a consequence of this lag, the
algorithm in [2] requires non-trivial modifications to avoid
tuning oscillation.

3 Proposed Approach
We suggest an approach to combine the strengths of the
offline sequence based approach and the online approach.
Our tuning advisor executes online as in [2], while main-
taining a temporal model of the workload with it can use
to predict and plan ahead for workload changes as in [1].
Here we present our prediction model of database work-
loads. We also present a simple decision algorithm to in-
terpret predictions, and to decide on the best course of ac-
tion.

Our method takes in a historical trace SQL queries. It
groups these queries based on their co-occurrence into sets,
for which it then generates tunings using the MS SQL tun-
ing advisor. It then clusters tunings based on tuning fea-
tures. Next, it outputs a probability distribution over clus-
ters. This distribution encodes confidence of the system as
to the most likely sequence of tuning clusters to occur next.
These predictions are then used to decide what changes if
any to make to the physical design of the DBMS. These
phases are illustrated in Figure 2).

Ideally the above process is repeated as new queries ar-
rive. To avoid overhead, the most expensive steps (running
of the MS SQL tuning advisor in particular) can be run less
frequently. In our experiments, we train by executing the
learning steps once at the beginning of the experiment.

3.1 Trace Segmentation
In the first phase we segment the query workload into tem-
porally coherent groups of queries. The purpose of this
phase is to identify periods of time in the workload during
which we could have made changes to the database tun-
ing (alternatively identify times during which we could not
have made tuning changes). The assumption here is that
it is unacceptable to make changes to the database tuning
during periods of high workload. This assumption may be
easily relaxed depending on the application. For example,
a database backend for a retail store may experience many
queries during the store operating hours when purchases
are being made and fewer queries at night. In this phase
we want to identify the store operating hours so that we can
avoid making changes to the tuning during these times.

There are a number of methods which could be used
to segment the trace. One simple approach would be to
look for gaps in between queries longer than a threshold
time value set to the minimum time it takes to re-tune the
database. A problem with this approach is that there might
be workloads for which there are no idle time periods in
the workload that are large enough to admit a retuning.
For this case we can redefine our threshold based on query
frequency within a sliding window of time or use a more
advanced technique to segment the sequence such as nor-
malized cuts segmentation. Figure 3 shows these two ap-

2

proaches. The shaded areas are pauses during which re-
tuning is possible. In our experiments we use the simple
gap threshold with an additional heuristic which allows for
segments with less than 6 queries.

3.2 Segment Tuning
In the second phase of the ML algorithm, we generate
tunings for each of the segments of queries from step
one. These tunings are sequences of CREATE INDEX and
CREATE STATISTICS statements that the tuning advisor
generates for the set of SQL queries for each of the seg-
ments from step one of the algorithm. For our retail store
example, we would generate tunings for every day of the
week for which we have identified the working hours in
phase one.

Note that we have essentially computed an offline tun-
ing sequence for the past sequence of queries. We could,
for example, use the more complicated offline sequence
based tuning method in [1]. This method simultaneously
segments and computes tunings for a sequence of queries
taking into consideration the cost of changing tunings. As
we do not have an implementation of this method, we in-
stead use a simpler approach to take advantage of an offline
set based tuner – the SQL Server tuning advisor. In the next
two phases we essentially extrapolate this offline tuning to
future dates.

3.3 Tuning Clustering
In the this phase we cluster the tunings from the prior step
based on the tables and fields that correspond to the in-
dices and statistics of the tunings. The tuning clusters cor-
respond to similarly performing tunings. This clustering
phase is necessary as segments of queries with identically
distributed queries may produce slightly different tunings
because of small differences in the frequencies of queries
or even randomization in the tuning advisor. In our run-
ning example, the retail store may experience different pur-
chasing patterns on weekdays and weekends. This could
then cause the weekday tunings to be significantly differ-
ent from weekend tunings. In this phase, we would group
together the weekday and weekend tunings into two dis-
tinct clusters.

We use a spectral clustering algorithm based on [4]. Our
clustering algorithm takes in as input a similarity matrix M
where Mi,j is a measure of the similarity between tuning i
and tuning j. To compute the similarity between two tun-
ings, we first count the number of shared indices, ignoring
columns referenced in INCLUDE statements. 1 We then
use the exponential of this count as a similarity measure.

1This procedure can be interpreted as a dot product of two large sparse
binary vectors. However, we do not explicitly compute these vectors.

To produce clusters from the similarity matrix, we re-
place the diagonal entries of the matrix (self similarity val-
ues) with 0, this step was normalizes for the differences in
the numbers of indices between tunings. We then normal-
ize the rows of the matrix to sum to 1 to create a stochastic
matrix. As described in [4], the first eigenvector (eigenvec-
tor corresponding to the largest eigenvalue) of this matrix
is normally constant, and the second eigenvector of the ma-
trix gives a relaxed solution to the normalized cuts cluster-
ing problem. When this solution is tight, the sorted values
of the second eigenvector are piecewise constant. To group
the tunings into k clusters, we run k-means on the rows of
the matrix v2, v3, ...vk where vi is the eigenvector corre-
sponding to the ith largest eigenvalue.

3.4 Prediction

In this step, we train a classifier to predict future sequences
of clusters. We create an additional cluster class com-
posed of gaps in the workload so that the classifier can
help predict these breaks. Our classifier takes as input
the prior sequence of clusters and features associated with
these clusters such as time of day, day of the week, etc.
The classifier then outputs cluster predictions for times in
the future. Back to our store example, the classifier would
learn that weekdays during working hours correspond to
the first cluster and that weekends during working hours
correspond to the second cluster. For future dates, the clas-
sifier would predict this same pattern.

In our system, we use logistic regression [3] because it
is reasonably fast and produces probabilities over clusters
as output. We train a separate binary classifier for each
cluster and for gaps between clusters (one against all mul-
ticlass classification). Each classifier takes in as input a
sparse binary vector encoding time of day and day of week
and produces as output a probability. As the classifiers are
trained separately for each cluster, these probabilities do
not sum to 1 across clusters. We normalize these proba-
bilities before proceeding to the next step. As an example,
Figure 5 plots cluster probabilities over time for one of our
experiments.

3.5 Decision Making

Having produced predictions of clusters for future dates.
The system must decide as to what course of action to take
next. There are a number of decisions that could be made.
The system could decide that it is not in its best interest to
re-tune the DBMS. This can happen if the predicted tun-
ings improve DBMS performance for only a few, or many
insignificant queries in the workload. This can also hap-
pen if the gap during which the DBMS will be tuning is
predicted to conflict with the workload, thus increasing the

3

execution time for queries that execute concurrently with
the tuning process.

The system could also decide that it needs to do the re-
tuning – it might be apparent that the coming gap will not
include any workload with high probability, indicating that
this time could be used for tuning the DBMS if an appro-
priate tuning is available. The question then is what tuning
should be uses. One approach is to use the most likely
tuning that is predicted in the near future. However, the
length of the tuning cluster may impact this decision. For
example, it makes more sense to tune for a cluster that will
dominate the probability space during the next 3 or more
hours rather than optimize for the next cluster as the next
cluster might persist only for a short time.

In our experiments we re-tune the database whenever the
classifier predicts a gap and the following predicted clus-
ter is different from the currently tuned for cluster. When
tuning for a particular cluster, we use tuning advisor rec-
ommended tunings created for the union of all the queries
that fall into the cluster in the training workload.

4 Test Methodology
We have created a 1 GB instance of the TPCH benchmark
database using MS SQL Server 2005 and written code to
generate workload sequences using the TPCH query tem-
plates. We use all of the TPCH query templates except for
one which creates and then drops a temporary table which
we had difficulty executing with SQL Server. These work-
loads are meant to roughly reflect a database workload that
we imagine a real DBMS might experience. We have also
written code to compare tunings for sets of queries and to
extract features from tuning advisor recommendations.

Our first test workload, called Wselects, consists entirely
of SELECT statements. For this workload we divided the
query templates from the TPCH benchmark into two sub-
sets: Qfast and Qslow, consisting of queries which take
less than 10 seconds and more than 10 seconds to com-
plete on an untuned database respectively. In our workload,
queries are chosen uniformly at random from Qfast except
for Sundays for which queries are chosen uniformly at ran-
dom from Qslow. Between 9 AM and 5 PM, queries occur
each minute with probability .25, and during other times
queries occur with probability .005. For this workload we
use a month of training workload, with which we tune and
build a predictive model, and a week of test workload on
which we test our model.

We implemented our system in Python, interfacing with
SQL Server through pyodbc and the sqlcmd. We use our
own implementation of spectral clustering using numpy
and the implementation provided by the authors of [3] for
binary logistic regression. We compare our method to of-
fline set based tuning (e.g. tuning on all queries in the train-

ing workload as one cluster).
For our experiments we use SQL Server Database Tun-

ing Advisor. We restrict the tuning advisor to run for
30 minutes and also randomly sub-sample to ensure that
workloads given to the tuning advisor consist of no more
than 1000 queries. We have found that with too many
queries, the tuning advisor is unable to make recommen-
dations in the allotted time.

5 Results

Tunings

Tu
ni
ng
s

5 10 15 20 25 30

5

10

15

20

25

30

Student Version of MATLAB

Figure 4: A similarity matrix of tunings for different seg-
ments in Wselects workload. Darker colors indicate higher
similarity. The dark bands represent weekend tunings, the
light bands represent weekday tunings.

Our simple segmentation strategy is sufficient separate
out the 9 AM to 5 PM segments in Wselects, with one
additional outlier segment incorrectly identified during off
hours. Figure 4 shows the tuning similarity matrix for these
segments. The dark bands in the similarity matrix cor-
respond to Sundays, the light bands correspond to week-
days. Our clustering method correctly identified these two
groups. Figure 5 shows cluster probabilities over time.
The red cluster corresponds to weekends, the blue corre-
sponds to Sundays. The probabilities correctly correlate
with the workload for these days.

The total running time for Wselects using our approach
and using the set-based approach for comparison are plot-
ted in 6. As visible from the figure, our approach performs
worse than the set-based approach on both clusters. We be-
lieve that this is because of limitations of using the tuning
advisor for our recommendations. We discuss these limi-
tations in the next section.

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Fri Sat Sun Mon Tue Wed Thu

C
lu

s
te

r
P

ro
b
a
b
ili

ty

Time

Cluster 1 Cluster 2 GAP

Figure 5: Tuning cluster probabilities for three clusters of
the Wselect workload over time. Cluster 1 corresponds
to weekdays, and cluster 2 corresponds to weekend. The
GAP cluster corresponds to times of day for which no
queries were run. The probabilities are normalized to sum
to 1.

6 Discussion
Necessary workload properties Our approach makes
certain assumptions concerning properties of the database
workload. We think these assumptions are reasonable, but
we haven’t validated them on real world workloads.

In the segmentation phase of our approach, we assume
there are identifiable regions within the workload trace dur-
ing which we can tune and that these gaps separate segment
the workload. In the clustering phase, we assume that dif-
ferent workloads will produce different database tunings.
Finally, in the prediction phase, we assume that the se-
quence of workload changes is predictable and periodic.

Necessary tuner properties Even if our ML algorithm
were to identify and predict the tuning clusters exactly, our
approach would not benefit the DBMS unless the tuning
advisor used has a particular property. We believe that this
constraint is fundamental in order for the tunings recom-
mended by the tuning advisor to be useful to any predic-
tion algorithm, including our ML algorithm. By proxy, this
property is also necessary for our ML algorithm to be rele-
vant to a DBMS.

Define two arbitrary sets of queries Q1, Q2 and two tun-
ings T1, T2 that are generated by the tuning advisor for
each of the query sets respectively. The property we need
states that the average performance of the database on
queries in Q1 tuned with the set of tunings in T1 should
be no worse than the performance on queries in Q1 tuned
with tunings in T2. Ideally, the average performance of
T1 should be significantly better than T2 on Q1 (assuming

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Sunday Weekday

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

With ML
Without ML

Figure 6: Total execution time comparisons for the ML
approach and the non-ML approach across the two query
clusters in our Wselects test workload. Our system per-
forms slightly worse than the set-based tuning approach.

that Q1 and Q2 are different – otherwise there would be no
reason to change the database tuning).

We’ve found that the SQL Server Tuning advisor only
sometimes satisfies this property. We believe that this is
the reason for the performance illustrated in Figure 6.

6.1 Future Work
Besides testing on real world workloads, there are many
opportunities for improving our approach. An important
improvement to the decision making algorithm involves re-
acting to workloads that deviate from what has been pre-
dicted. If there is a deviation, the decision engine might
need to re-evaluate whether tuning the DBMS is appro-
priate (perhaps the tuner should stop immediately if it is
in the middle of a tuning). More work may also use ob-
served workload to offset predictions and to learn new
variations and generate new cluster probabilities as the ob-
served workload varies and deviates from the training data
over time.

For our system, we selected the parameters of our seg-
mentation and clustering methods by hand (in particular
the thresholds for our segmentation method and the num-
ber of clusters for the clustering method). To perform well
on real world data sets we need methods for determining
these parameters automatically. It would be interesting to
experiment with simultaneously segmenting and clustering
the workloads.

Our initial YouTube example also demonstrates that
learning workload patterns may be useful for scheduling
DBMS applications. In this scenario, non-critical tasks can
be automatically scheduled to execute during times of low
visit activity. As these patterns may change over time, an

5

automatic learning-based approach is of high relevance to
the problem of scheduling applications that use the DBMS.

7 Conclusion
We have created a system to automatically tune a DBMS
for time-varying, but predictable workloads. Our method
segments the workload, tunes on the segments, clusters the
tunings, and uses logistic regression to predict future tun-
ing clusters. Our results indicate that the approach shows
promise and we think it may be improved dramatically. We
have also found that certain properties of the recommenda-
tions made by the tuning advisor must hold in order for
our algorithm to successfully improve performance. We
have outlined the steps of our approach and discussed is-
sues and future work relevant to applying machine learning
to DBMS tuning.

References
[1] S. Agrawal, E. Chu, and V. Narasayya. Automatic

physical design tuning: workload as a sequence. In
SIGMOD ’06: Proceedings of the 2006 ACM SIG-
MOD international conference on Management of
data, pages 683–694, New York, NY, USA, 2006.
ACM Press.

[2] N. Bruno and S. Chaudhuri. An online approach to
physical design tuning. In ICDE ’07: Proceedings of
the 23rd International Conference on Data Engineer-
ing, pages 826–835, 2007.

[3] P. Komarek and A. Moore. Making logistic regres-
sion a core data mining tool: A practical investigation
of accuracy, speed, and simplicity. Technical Report
CMU-RI-TR-05-27, Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA, May 2005.

[4] M. Meila and J. Shi. A random walks view of spectral
segmentation. In AI and Statistics (AISTATS) 2001,
2001.

6

