
KAMD: A Progress Estimator for MapReduce Pipelines

Kristi Morton, Abe Friesen
University of Washington

Seattle, WA
{kmorton,afriesen}@cs.washington.edu

ABSTRACT
Limited user-feedback exists in cluster computing environ-
ments such as MapReduce. Accurate, time-oriented progress
indicators could provide much utility to users in this domain,
where job execution times can have high variance due to the
amount of data being processed, the amount of parallelism
available, and the types of operators (often user-defined)
that perform the processing. This feedback would help users
make informed decisions, such as whether a job should be
terminated and restarted at a later time when the cluster
has more resources available. However, none of the tech-
niques used by existing tools or available in the literature
provide a non-trivial progress indicator for queries running
in a distributed environment. In this paper, we apply re-
cently developed techniques for estimating the progress of
single-site SQL queries to parallel environments. In particu-
lar, we target environments where queries consist of MapRe-
duce job pipelines. We also present techniques that improve
the accuracy and usefulness of progress estimators operating
in this environment. We implemented our estimators in the
Pig system and demonstrate its performance on experiments
with real data (search logs) and with a real cluster.

1. INTRODUCTION
Very limited user-feedback exists in cluster computing en-

vironments such as MapReduce. Additionally, the high vari-
ance in job execution times due to dynamic parallelism and
large datasets results in very unpredictable query times. It
would greatly benefit users if running MapReduce [3] jobs
could accurately report their progress. This feedback could
be useful in a number of ways. If the user sees that the query
will take much longer than expected he may be able to con-
clude that there is a mistake in the query without waiting
for the results. Additionally, this information could allow
the user to make better use of the time spent waiting on the
query. Finally, this would enable the user to make informed
decisions, such as whether to terminate and restart the job
at a later time when more resources become available.

MapReduce [3] is a programming model for processing
and generating large data sets. Users specify a map function
that generates a set of key/value pairs, and a reduce func-
tion that merges or aggregates all values associated with
the same key. A single combination of a map function and a
reduce function is called a MapReduce job. MapReduce pro-
grams are automatically parallelized and executed on a large
cluster of commodity machines. Data partitioning, schedul-
ing, and inter-machine communication are all handled by
the run-time system. This programming framework allows

programmers to easily write parallel, distributed software.
In order to extend the MapReduce model beyond the sim-

ple one-input, two-stage data flow model and to remove the
need to constantly rewrite basic operations, Olston et. al de-
veloped the Pig system [9]. Pig compiles queries written in
Pig Latin, a language that combines the high-level declara-
tive style of SQL with the low-level procedural programming
model of MapReduce. Compiled Pig Latin queries are sub-
mitted to the MapReduce cluster as MapReduce jobs, which
can be viewed as a series of pipelines. The power and flexi-
bility of Pig Latin and the Pig System allow query optimiza-
tion, ad-hoc data analysis of large datasets, and the ability
to operate over plain input files that contain no schema in-
formation. For these reasons, Pig is quickly becoming a very
popular system for data analysis. Furthermore, because Pig
generally operates on very large datasets, progress informa-
tion would greatly assist users and reduce frustration.

Current work on progress estimators in DBMSs focuses
only on single-node SQL queries running in isolation. The
techniques developed thus far include modeling the fraction
of “work” completed or the time remaining based on the it-
erator model of query execution. This model relies on hav-
ing accurate initial cardinality estimates of the input base
tables. These estimates are based on database statistics
(e.g. histograms) and execution feedback. Even in single-
node DBMS systems, cardinality estimation is a nontrivial
task and is subject to errors.

Our goal is to provide accurate estimates of MapReduce
jobs in terms of the fraction of work complete and fraction
of time remaining when good cardinality estimates are avail-
able. We apply the existing techniques from the literature [2,
1, 5, 4, 8, 7] to MapReduce jobs and present techniques that
improve the accuracy and usefulness of progress estimators
operating in a distributed environment. We implement these
techniques in Hadoop, an open source MapReduce pack-
age, and Pig, an open source engine for compiling Pig Latin
scripts to MapReduce jobs. These estimation techniques
are not directly translatable to MapReduce for a number
of reasons. First, no static database statistics are available
to MapReduce jobs because the data and schemas are dy-
namically specified per job. Second, the execution behavior
in this environment is much more dynamic and is subject
to throttling due to the available parallelism. For example,
Hadoop dynamically provisions the execution of subtasks
based on system resource availability. As such, any progress
estimator will have to deal with speculative execution, ma-
chine failures, and variations in data partitioning as any of
these could dramatically alter the estimate. Additionally,

a time estimator will have to consider network congestion,
machine load, data skew, and variations in processing power
across machines, none of which have been considered in pre-
vious work. Third, while Pig Latin provides features similar
to SQL, it is not equivalent to SQL and its operator set.
Finally, while Pig provides a rich set of operators, users are
still able to define their own functions to operate on the data
within a map or reduce. Estimating progress within these
functions will be very difficult.

In this paper, we implement and improve upon three
progress estimation techniques from the SQL literature. Of
these, two report progress as the fraction of work completed
and the third reports the time remaining. We evaluate the
accuracy of these estimators with and without our improve-
ments by testing them on a Pig Latin script which performs
queries over various sample sizes of the 42 MB ‘excite’ data
set. This script and data set are provided in the standard
Pig software distribution.

In Section 2 we discuss related query estimation work for
SQL queries. Section 3 provides an overview of the prob-
lem and our model of a MapReduce query executing in a
distributed environment. In Section 4 we present our solu-
tion, its merits, and its limitations. Section 5 analyzes the
functionality, properties, and performance of our estimator.
Finally, we conclude in Section 6.

2. RELATED WORK
There has been significant recent work on developing

progress indicators for SQL queries executing within single-
node DBMSs [1, 2, 4, 5, 6, 7, 8] Our approach extends these
earlier efforts to parallel queries. In particular, we focus on
estimating the progress of MapReduce pipelines.

Chaudhuri et al. [2] propose to estimate the percentage
complete of a query by using the GetNext() model (gnm) of
work. This model defines the progress of a query as the frac-
tion of tuples output so far by all operators in the query plan,
where the total number of tuples is determined from cardi-
nality estimates. The gnm’s use of cardinality estimates for
all intermediate nodes in the query plan can lead to highly
inaccurate results. To address this challenge, Chaudhuri et
al. introduced the Driver Node Estimator (dne). The dne
breaks a query plan into pipelines, which are maximal sub-
trees of concurrently executing operators. The progress of
each pipeline is then derived from the progress of its in-
put operators, called driver nodes, for which input cardi-
nalities are known accurately when the pipeline starts. As
the query progresses, cardinality estimates of all pipelines
are refined, resulting in increasingly more accurate progress
estimates. In follow-up work [1], Chaudhuri et al. extended
their approach with two additional estimators. The first of
these, pmax, provides increased accuracy in the case of in-
put data skews while the second, safe, provides an estimate
that is worst case optimal. All of these techniques (gnm,
dne, pmax, and safe), however, strive to produce a single
value of query progress and cannot provide non-trivial guar-
antees in the general case [1]. In this paper, we show how to
adapt the dne and gnm techniques to parallel queries. We
extend them to output accurate time estimates in addition
to percent work done.

Luo et al. [5, 4] proposed estimators similar to those of
Chaudhuri et al. but they also estimate the remaining query
execution times, in addition to percent complete. To con-
vert the fraction of work done into the remaining processing

time, their approach observes the current speed with which
a pipeline processes its input data. It then either assumes
that all following pipelines will process their data at the
same speed [5] or it uses the output of the query optimizer
as an estimate of query execution time for those pipelines
that have not yet started [4]. Recent work also considers
the impact of concurrent queries and their expected com-
pletion times to improve estimates [6]. In contrast to those
techniques, our progress estimator converts progress to time
with per-phase rates, functions well in distributed environ-
ments, and is resilient to system variability such as load and
faults.

Query progress is related to the cardinality estimation
problem. Indeed, given accurate predictions of intermedi-
ate result sizes, the GetNext() model can directly be used
to compute query completion as a percentage. There exists
significant work in the cardinality estimation area including
recent techniques [7, 8] that continuously refine cardinality
estimates using online feedback from query execution. These
techniques can help improve the accuracy of progress indi-
cators; however, they are orthogonal to our approach since
we do not address the cardinality estimation problem in this
paper.

3. MAPREDUCE PROGRESS ESTIMA-
TION

In this section we present an overview of MapReduce jobs
and describe the challenges in applying the progress estima-
tion techniques from the literature to a MapReduce frame-
work.

3.1 Definitions
When a Pig Latin query is executed, Pig generates an

operator-based query plan. Each operator processes a sin-
gle key/value record at a time, much like the GetNext()
iterator model used in traditional DBMSs. Pig splits the
operators into multiple chained MapReduce jobs (as illus-
trated in Figure 1, taken from [9]) such that there can be
multiple operators in each map or reduce. For example, ev-
ery GROUP or JOIN operation forms a MapReduce boundary
and the other operators are pipelined into map and reduce
phases. Thus, the structure of the query plan is maintained
while allowing Hadoop to take care of copying and materi-
alizing data, handling failures, and balancing load.

Figure 1: Compiled Pig Latin into MapReduce Jobs

Within a MapReduce job, there are seven phases of exe-
cution, as illustrated in Figure 2. These are the split, record
reader, map runner, combine, copy, sort, and reducer phases.
The split phase does very minimal work as it only gener-

ates byte offsets at which the data should be partitioned.
We chose to ignore it in our estimator due to the negligible
amount of work that it performs. The next three phases
(record reader, map runner, and combine) are components
of the map and the last three (the copy, sort, and reducer
phases) are part of the reduce. An important point to note
is that the Pig operator code only executes within the map
runner and reducer phases; the other phases never change.
The record reader phase iterates through its assigned data
partition and generates key/value records from the under-
lying data blob. These records are passed into the map
runner and through the appropriate operators as they are
created. As records are output from the map runner, they
are passed to the combine phase which, if enabled, performs
pre-aggregation to reduce the amount of data that will need
to be transferred and then writes the records locally. If
the combine phase is not enabled, the records are just writ-
ten locally without any aggregation. Once the map task
is complete, a message is sent to waiting reduce tasks in-
forming them of the location of the map task’s output. The
copy phase of the reduce task then copies the data to the
node that the reduce task is executing on. After all of the
map task outputs have been copied to the reduce node, the
sort phase sorts the map output records. Once sorting is
complete, the reducer phase reads each record and passes
it through its own set of operators which generally perform
some sort of aggregation. The output records from the re-
ducer phase are written to disk as they are created. This is
possible because the input to the reducer phase is already
sorted.

Using the pipeline model presented in [2] and [5], an oper-
ator is defined as blocking if it does not produce any outputs
until it has consumed at least one of its inputs completely.
Each pipeline within a query plan consists of the tree of
connected operators that have no blocking connections be-
tween them. The driver nodes of a pipeline are the leaf
nodes of that pipeline. When Pig splits the operators into
the sequence of MapReduce jobs, it chooses the split points
such that each blocking operator always begins a map or
a reduce. This does not mean, however, that each map or
reduce begins with a blocking operator as Pig may choose
additional split points.

Figure 2: MapReduce DAG & Estimator Architec-
ture

In choosing how to construct our pipelines, the specific
MapReduce implementation details of Hadoop and Pig had
to be taken into consideration. Between separate MapRe-
duce jobs, Hadoop materializes the output of the last job to
the distributed file system (DFS). Thus, each job is its own
blocking pipeline. Within each job, we identified five distinct
pipelines. The first pipeline contains only the split phase,
which we ignore. The second pipeline consists of the entire

map operation and thus contains the record reader, map
runner, and combine phases. The third, fourth, and fifth
pipelines contain only the copy, sort, and reducer phases,
respectively, because each of these phases waits until the
previous phase has completed before beginning. It is impor-
tant to note that, although copy immediately operates on
each input it receives, it is still a blocking operator because
it does not receive any input from a map task until that
task has completed. The different pipelines are illustrated
in Figure 2.

3.2 Existing Pig/Hadoop Progress Estimates
The existing Pig/Hadoop query progress estimator pro-

vides poor estimation (see Section 5). This estimator only
considers the record reader, copy, and reducer phases for its
computation. The record reader phase progress is computed
as the percentage of bytes read in from the assigned data
partition. Copy phase progress is computed as the number
of map output files that have been completely copied divided
by the total number of files that need to be copied. Finally,
reducer progress is computed as the percentage of bytes that
have been read in so far. The progress of a MapReduce job
is computed as the normalized unweighted sum of the per-
cent complete of these three phases. The progress of a Pig
Latin query is then just the normalized unweighted sum of
the percent complete of all of the jobs in the query.

There are a number of problems with this approach. First,
an unweighted sum of the progress of different jobs assumes
that each job is performing the same amount of work. This,
however, is not the case. In a traditional DBMS, operators
at different points in the query plan can have widely differ-
ent cardinalities, especially after filters or joins. This same
variance holds for Pig queries as many of the operators are
the same. Second, computing the progress of a MapReduce
job as the unweighted sum of the progress of these three
phases is also inaccurate. While these three phases tend to
encapsulate a significant percentage of the total work done,
the amount of work performed in the map runner and com-
bine phases is not negligible.

3.3 The GetNext() Model
As described in [2], the GetNext() model uses the total

number of GetNext() calls issued throughout the duration
of the query’s execution over all operators in the execution
plan to represent the total work done by the query. Thus
the GetNext() model query progress (gnm) would be ideally
estimated as:

gnm =

P
i KiP
i Ni

(1)

Where Ki is the number of tuples that have flowed out of
an operator Opi at any point in the query execution and Ni

is the total number of GetNext() calls invoked on that oper-
ator across the entire query. To reduce the need to obtain Ni

from each operator, the authors proposed the Driver Node
Estimator (dne) which estimates Ni for all non-driver nodes
in a pipeline (where Op1 is the driver node of the pipeline)
as:

Ni =
N1

K1
Ki (2)

There are two main assumptions underlying the Get-
Next() model. The first assumption is that all of the un-

derlying CPU and I/O work for an operator can be encap-
sulated and amortized across all of the GetNext() calls for
that operator. The second assumption is that the average
amount of work performed by each call to GetNext() is ap-
proximately equal across operators. These assumptions are
shown to be valid in many single-node SQL queries in [2],
although additional consideration is required to handle spills
of tuples to disk.

To apply the GetNext() model to Pig and Hadoop, we had
to include estimates of the additional non-operator-based
phases, such as copy. We chose to ignore the sort phase
in our progress computation as our tests showed that the
time spent in the sort phase is negligible, taking around 5
milliseconds. This is because map tasks sort their output
before passing it to a reduce task (see 4). Figure 2 shows
the locations in the MapReduce pipeline at which we retrieve
the K values, i.e. (a) through (e). Thus, the phases that
we use to estimate the progress of a MapReduce job are
the record reader, map runner, combine, copy, and reducer
phases. The GetNext() model inherently provides weights
for the different phases and jobs. This allows us to just sum
the K and N values across all jobs and phases to obtain a
weighted progress estimator.

Data compression is commonly used in distributed sys-
tems because network bandwidth generally creates one of
the main bottlenecks in the system. For this reason, Pig and
Hadoop allow users to process compressed files and to com-
press intermediate results when transferring data between
nodes. There is no correlation for compression within the
GetNext() model so our queries were performed on uncom-
pressed data with intermediate compression disabled.

3.4 Estimating Time-Remaining
The time-remaining estimator of [5] also uses cardinal-

ity estimates and K counts to compute the percentage of
work remaining to perform. The main difference is that the
progress of a pipeline is estimated as the sum of the input
and output tuples processed divided by the sum of the to-
tal number of tuples that the input and output nodes will
process. This results in the tuples output by intermediate
phases being double-counted. [5] reasons that this will ac-
count for any materialization or buffering of the data that
may be performed. In addition to this double-counting, the
current processing rate (in bytes/second) is estimated from
a ten second moving window. The time remaining is com-
puted by multiplying this processing rate by the amount
of work remaining to be performed. Unlike gnm and dne,
which assume that work done per tuple is the same across
all operators in the query, the time remaining estimator as-
sumes that all future segments process tuples at the same
speed. This is not a valid assumption in MapReduce or other
parallel environments, as discussed in Section 5. Follow-
up work in [4], however, uses the query optimizer’s CPU
and I/O cost estimates to improve the rate estimates. Un-
fortunately, Pig does not provide optimizer estimates; fur-
thermore, multiple operators can be combined into a single
map or reduce, and queries can contain user-defined func-
tions with no estimates available a priori. Our use of alpha
weights is based on the time-remaining approach but avoids
the limitations of cost estimation, as discussed in (Section
4).

Our implementation of this estimator is true to the [5] pa-
per, with the exception that we compute the processing rate

in terms of tuples per second. Time remaining is computed
as the product of the current throughput and the number of
tuples that remain to be processed.

3.5 Cardinality Estimates
In traditional DBMSs, complex histograms and statistics

are maintained about each relation and its component fields.
These statistics are used to estimate the cardinalities of the
operators in the query plan. In Pig and Hadoop, no statis-
tics are available. Such statistics would not make much sense
in Hadoop as users write their own map and reduce func-
tions which can perform drastically different functions on
the same data set. However, because Pig generates a query
plan from a set of common operators and the same data set
is often used for many queries, it might soon make sense
to compute these statistics to aid query plan optimization.
Statistic-driven cardinality estimation is a field of study or-
thogonal to our focus on progress estimation. To obtain our
estimates for the different Ni values, we recorded each Ni

from a previous run and used the actual values in our com-
putations. Thus, our estimators demonstrate the ideal case
where the Ni estimates are accurate.

4. KAMD PROGRESS ESTIMATOR
In this section we present the KAMD progress estimator

for MapReduce pipelines. KAMD generates an estimate of
the amount of time remaining. In doing so, it uses an esti-
mate of the time required to process a single record for each
phase of each job and an estimate of the number of records
that remain to be processed.

4.1 Alpha Weights
To compute the time remaining in a query, KAMD uses

an estimate of the time that it takes for each phase of each
job of the query to process a single tuple. We call this value
the alpha weight of the phase. In KAMD, alpha weights are
estimated by performing the same query on a small subset
of the data, which we justify in Section 5.1. Determining the
sample size and how to generate it is a difficult problem and
there is a lot of research in this area. However, sampling
is not a focus of this paper so we generally assumed that
random sampling was sufficient. Section 5.1 discusses the
accuracy of our sampling methods.

In addition to obtaining alpha weights from a sample run,
the alpha values for an actively executing phase are esti-
mated from the elapsed duration of the phase and the num-
ber of records that it has processed so far. To ensure sta-
bility, these measurements are incorporated into the KAMD
estimate only after three seconds have elapsed for a given
phase. These online alpha weight estimates are used to com-
pute the slowdown factor as discussed in Section 4.3.

Estimating the duration of each phase is a nuanced prob-
lem. In our initial implementation, we estimated the dura-
tion of a phase as the total amount of time between when
it received its first record to process and when it output its
final record. However, this method leads to extremely in-
accurate and variable alpha values due to the high amount
of coupling between phases, especially in a pipeline. For ex-
ample, the map runner phase operates on each record that
the record reader produces before the record reader pro-
duces another tuple (as the relational DBMS iterator model
would as well). These two phases exist concurrently, but
are only active in alternating cycles of reading each record

and then mapping each record. Estimating active duration
for each phase scales in a very complex way as the number
of records to process increases and simply estimating alpha
values for each phase becomes highly inaccurate. Thus, du-
ration has to be measured as only the amount of time that is
spent operating on a record by a phase. In addition to this
bookkeeping, when a phase has to wait for another phase to
complete this waiting time must be tracked separately (see
Section 4.5).

An important consideration for measuring duration in-
volves attempting to measure sub-millisecond phases with
timers that only provide single-millisecond resolution. While
this may not seem like a major issue, if one million records
are processed in a phase and each record takes half of a
millisecond, the total duration of the phase is still 500 sec-
onds, which is over 8 minutes. Measuring this duration can
be achieved by measuring the time to process multiple tu-
ples. This is difficult when phases are nested (as with record
reader and map runner), however, the solution is to subtract
the duration of the nested phase from the duration of the
outer phase. This must be done incrementally so that the
estimator is able to compute alpha values online.

4.2 Estimating Time Remaining
KAMD loads the sampled alpha weights when the full

query starts. It then computes the time remaining for each
phase as the number of records remaining for that phase to
process multiplied by the alpha weight of that phase (αji,
where j is the job and i is the phase) and then sums these
times across all jobs and phases. KAMD estimates the re-
maining work of a phase with the gnm. This will allow
KAMD to use dne when cardinality estimates are put into
place.

In gnm, dne, and the time-based estimator of [5], progress
is mainly computed from the number of tuples processed by
the different operators. However, each of these estimators
also consider the cost of data materialization. Gnm and dne
increment N for each tuple spilled to disk and increment K
for each spilled tuple that is read from disk. Alternatively,
the time-based estimator uses a double-counting mechanism
that is intended to account for data buffering or material-
ization between operators. To minimize the cost of machine
failure, Hadoop materializes all intermediate data to pre-
vent work from having to be redone if a failure were to oc-
cur. Additionally, due to the inherently distributed nature
of MapReduce, data must be transferred between different
machines within the cluster. To account for the amount
of work done, our estimator instruments (records Kji and
durationji) the record reader, map runner, combine, copy,
and reducer phases.

Map and reduce tasks execute in parallel on separate ma-
chines within a cluster. KAMD receives instrumentation
data that is an aggregate across all of the tasks of a job. This
allows KAMD to easily compute the average alpha weight
per phase per task by simply dividing the aggregate dura-
tion by the aggregate K value. See Section 4.4 for a more
in-depth discussion.

4.3 Slowdown Factor
KAMD computes a slowdown factor for each phase,

sji = αe
ji/α

s
ji

where αe
ji is the online measurement of αji and αs

ji is the

value computed from the dataset sample. The online alpha
measurement can only be generated for currently executing
or completed phases. However, the same phase across mul-
tiple jobs tends to perform similar amounts of I/O and CPU
work. Thus, KAMD propagates the most recently estimated
slowdown factor for a phase forward to the same phase of
jobs that have not yet started.

The slowdown factor provides a mechanism that can be
used to counteract systemic calculation errors in the sampled
alpha data. These errors can occur if the sample query is
performed on a different computer or if there is different
load on the system during sampling than when running the
actual query.

The slowdown factor does not account for situations where
the sampled alphas across phases are inconsistently inaccu-
rate. In this case, the slowdown factor can actually increase
estimation error. Unfortunately, it is very difficult to differ-
entiate whether a sampled alpha is inaccurate due to poor
sampling, load on the system, or due to actual variations
in processing time across jobs. However, if sampling incon-
sistencies have a normal distribution then they will, on av-
erage, cancel each other out and KAMD will provide fairly
accurate estimates (see Figure 5).

4.4 Handling Parallelism
Since KAMD measures the aggregate Kji and duration

across all tasks, it simply calculates the average alpha weight
for a single task. The total amount of remaining processing
time for a phase then is the alpha weight multiplied by the
number of records remaining to be processed. KAMD cur-
rently assumes that tasks that execute in parallel operate
on identically-sized partitions of data. Hadoop attempts to
partition the data as uniformly as possible among tasks.

Using this assumption, the remaining processing time for
a phase just needs to be divided by the pipeline width to
estimate the remaining running time of a phase. The degree
of parallelism depends on the number of tasks and the num-
ber of nodes (known at run-time), and the pipeline width is
calculated as the lesser of the two. An accurate estimate of
the number of map tasks that will be created for a job can
be obtained by dividing the amount of data to be processed
at each stage by the system-configured blocksize of Hadoop.
Finally, the number of reduce tasks for a job is specified in
the Pig Latin script by the PARALLEL operator. Thus, the
formula used by KAMD to estimate time remaining is as
follows.

t.r. =
X

j

X
i

sjiα
s
ji(Nji −Kji)

pipelineWidthji
(3)

4.5 The Combine Phase
The map runner phase writes its output records into a

combine buffer. Once the combine buffer reaches a pre-
specified limit (defaults to 80% full), the combine phase be-
gins operating on that portion of the buffer while the map
runner continues writing to the remainder of the buffer. To
allow the map runner to write while the combine phase is
executing, a separate thread is created to perform the com-
bine. This thread first sorts the data in the buffer, performs
the combine (if one is specified) and then spills the com-
bined data to disk. This process leads to a race between
the map runner phase and the sort, combine, spill (SCS)

thread. If the map runner fills the remainder of the buffer
before the SCS thread finishes operating on the first por-
tion of the buffer then the map runner must block and wait
for the SCS thread to complete as there is no more space
in the buffer. However, if the SCS thread completes first
then the map runner does not have to wait and the SCS
thread gets recreated the next time the buffer reaches the
specified limit. When the map runner runs out of records
to process, there are usually a number of records remaining
in the buffer. These must be sorted, combined, and then
spilled, like the rest of the records, however, this is now per-
formed in serial with the map runner. We will refer to this
serial SCS portion as the non-overlapped SCS. Finally, all of
the spill files are merged and written to disk as a single file
for each reduce task. Thus, to estimate the total remaining
time in a map task we had to calculate the remaining wait
time, the non-overlapped SCS time, and the merge and write
time. Fortunately, we were able to ignore the merge time as
the number of files to merge is generally quite small; these
files are already sorted, and the merge typically completes
in 15-20 milliseconds.

The wait time for a single buffer within a single map task
is calculated by subtracting the time that it would take for
the map read and runner phases to fill up the remainder of
a single buffer from the time that it would take for the SCS
thread to process the buffer. This wait time is then multi-
plied by the number of times that the buffer limit will be
reached to estimate the total amount of wait time that will
occur in the map task. The wait time for a single map task
is then multiplied by the length of the map task pipeline
(calculated as the total number of map tasks for a job di-
vided by the number of nodes that can concurrently execute
those map tasks) to obtain the total wait time for a job. The
record reader, map runner, combine, and spill phases are all
estimated using equation 3. However, the sort phase must
be estimated slightly differently due to the non-linear cost of
sorting. The time remaining for the sort phase is calculated
as equation 3 multiplied by the log of the buffer limit that
the SCS thread operates on. KAMD does not estimate the
wait time perfectly because progress for the sort phase can-
not be accurately computed. The sort operation is opaque,
so its duration is not incorporated into the time remaining
estimate until the combine phase begins reporting progress.
Additionally, it is extremely difficult to estimate the number
of records that remain to be sorted, combined, and spilled
due to the high level of parallelism in MapReduce and the
additional complications caused by the blocking nature of
these phases. Instead, KAMD measures the amount of time
that all map runners have spent waiting to write and sub-
tracts that from the total estimated wait time.

The non-overlapped time is simpler to estimate.We divide
the total number of records for a map task by the buffer
limit and take the remainder to obtain an estimate of the
number of records that will have to be processed in the non-
overlapped SCS. This remainder estimate will always be the
last set of records processed by a map task. Once this num-
ber is obtained, the previously discussed methods are used
to compute time remaining. Progress of the non-overlapped
SCS component can be estimated by calculating how many
of the final set of records each map task has processed. This
is not complicated when we assume that all map tasks pro-
cess identical sets of data.

Proper estimation of the complicated interactions between

all of these phases is necessary for an accurate estimator.
This is evaluated in Section 5.3.

4.6 Job and Task Setup and Teardown Times
When a query is run on Pig and Hadoop, there are some

system-dependent, constant-cost time penalties that occur.
These penalties generally involve administration, setup, and
teardown of the processes and threads needed to run MapRe-
duce queries. The most significant three that we measured
were: (a) the time from the instantiation of a job until the
first work done by a map task, (b) the time from the end
of a map task until the reduce task copy phase receives the
message containing the map output location, and (c) the
time from the end of the final reduce task until the start
of the next job. KAMD accounts for (a) by recording the
start time of each job and subtracting the amount of elapsed
time from that value to estimate how much setup time is left
for the first map task. Our system took approximately five
seconds for this setup time. KAMD does not account for
(b) and (c). The time taken for (b) is on the order of two
to three seconds but typically occurs in parallel with other
operations and thus has a less significant effect. (c) is also
on the order of two to three seconds but is more difficult
to instrument, which we take into consideration for future
work.

4.7 Adding Compression Estimates
As mentioned in Section 3.3, data compression is com-

monly used in distributed systems. While our progress es-
timator does not properly handle compression and decom-
pression, it should be straightforward to add this logic to our
estimator. Percent-complete progress estimators for com-
pression and decompression already exist and our estimator
could incorporate existing techniques combined with an al-
pha weight to calculate the amount of time remaining in
the operation. The ability to easily incorporate progress
estimates that are not based on the GetNext() model is a
direct result of working in the time domain.

5. EVALUATION
In this section, we evaluate the KAMD estimator, focus-

ing primarily on how we compare to the other estimators
from the literature. Additionally, we present the results of
computing alpha (throughput) values for our estimator from
different samples, the effects of random and systemic errors
on our estimator, and the ability of our estimator to perform
well for highly parallel queries.

5.1 Single-Node Alpha Tests
Experiment Since the KAMD estimator computes alpha

values (expressed in milliseconds per tuple) online for each
phase, the goal of the experiments in this section is to show
how well alphas computed on smaller subsets of the full data
set compare with alphas computed on the full data set. In
this experiment we use a large data set constructed from
concatenating five randomized copies of the original, 42 MB
‘excite’ data set. We run script1-hadoop.pig on the 5X data
set once for each of the subset sample alphas used to esti-
mate progress. For each run, the Pig script creates creates
5 MapReduce jobs. The results in Table 1 refer to running
the experiment on a single-node cluster. Table 2 shows the
results for running the same experiment locally on a single-
node machine. The weighted averages of the alpha values

across all phases and jobs is compared against the weighted
average of the ‘perfect’ sample collected from the entire 5X
data set. This comparison is expressed as a percent differ-
ence. Please refer to the Appendix for the full table showing
the comparison on a per phase level. We represent the al-
phas for each data set as a weighted average because it gives
a better overall representation of throughput. The table in
the Appendix shows that phases can have high variability
in throughput especially for shorter phases like map write.

Table 1: Cluster Alpha Summary
Cluster 50K(1%) 100K(2%) 500K(10%) 1X(20%) 5X(100%)

Duration (s) 75 105 289 390 642
Alpha 0.0211 0.0188 0.0197 0.0178 0.0159

(Wt. avg)
Alpha Error 32.41% 18.54% 23.66% 11.97% 0.00%

(%diff)

Table 2: Local Alpha Summary
Local 50K(1%) 100K(2%) 500K(10%) 1X(20%) 5X(100%)

Duration (s) 73 92 248 363 766
Alpha 0.0179 0.0167 0.0170 0.0175 0.0198

(Wt. avg)
Alpha Error 9.49% 15.48% 13.92% 11.46% 0.00%

(%diff)

Overhead It is interesting to note that the weighted aver-
age alphas collected from the sample runs on the cluster are
more pessimistic (i.e. lower throughput) than the ‘perfect’
run based on alphas sampled from the full data set. This is
perhaps a result of the effect of the cluster overhead, which is
a smaller component of the longer duration runs containing
the larger sample data sets. Figure 3 demonstrates the effect
of these pessimistic alphas on our estimator. Additionally,
the percent difference calculations for the alpha error on the
cluster are consistently higher than the calculations on the
local machine, suggesting that there is more overhead on a
cluster than on a local machine. This is not surprising as
the cluster includes additional network overhead, and it is
something that we will consider in future work to improve
our estimator.

Performance Figures 3 and 4 show a relative compar-
ison of the gnm, dne, Luo, original Pig, KAMD ‘perfect’
(in pink) and KAMD 2% sample alpha (in blue) estimators
running script1-hadoop.pig queries on the ‘excite’ 5X data
set on a single-node cluster. The 2% alpha sample was used
in these figures (as opposed to the other 1%, 10%, or 20%
samples) because it takes less than 16% of the full 5X run
time to generate and has a reasonable weighted alpha com-
pared to the ‘perfect’ alphas from the running the full 5X
data set (see Table 1). KAMD with 2% does quite well,
though its estimate is slightly pessimistic throughout due
to the pessimistic alphas computed on the 2% sample. The
error for both KAMD 2% and ‘perfect’ remains well under
10% across the duration of the run, unlike the other esti-
mators which tend to overestimate their progress. Figure 4
presents the error, which was computed as in [2]:

error =

˛̨̨̨
100 ∗ (ti − t0)

(tn − t0)
− fi

˛̨̨̨
(4)

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

,-./0123456137"3896/-141:

!"

$!"

&!"

(!"

*!"

#!!"

;
<9
=
<1
0
0
37
"
38
9
6
/
-1
41
:

!"#$%&'(")*"+*,(-'#%-"&(

!"#$%&"'(#)"$

>?@34<1A23-5A1

B<5=5A.-3;<9=<100

CDE3;<9=<100

FD,3;<9=<100

GH93;<9=<100

;1<I1843;<9=<100

J-/K.3;<9=<100

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

,-./0123456137"3896/-141:

!"

$!"

&!"

(!"

*!"

#!!"

;
<9
=
<1
0
0
37
"
38
9
6
/
-1
41
:

!"#$%&'(")*"+*,(-'#%-"&(

!"#$%&"'(#)"$

>?@34<1A23-5A1

B<5=5A.-3;<9=<100

CDE3;<9=<100

FD,3;<9=<100

GH93;<9=<100

;1<I1843;<9=<100

J-/K.3;<9=<100

Figure 3: Excite 5X data set, single-node cluster

! "!! #!! $!! %!! &!! '!!

()*+,-./012-/3,-45

!6

"!6

#!6

$!6

%!6

&!6
(
,
012
*
017
8
/(
99
7
9

!"#$%&#$'()!**'*

:-*,;9-/<*2-,

=91>18*)/-,012*0178/-9979

?<:/-,012*0178/-9979

@<(/-,012*0178/-9979

A;7/-,012*0178/-9979

B-9C-40/-,012*0178/-9979

D)+E*/-,012*0178/-9979

FE-/09-8./7C/*G-9*>-/7C/=91>18*)/-,012*0178/-9979H/*G-9*>-/7C/?<:/-,012*0178/-9979H/*G-9*>-/7C/@<(

-,012*0178/-9979H/*G-9*>-/7C/A;7/-,012*0178/-9979H/*G-9*>-/7C/B-9C-40/-,012*0178/-9979/*8./*G-9*>-/7C

D)+E*/-,012*0178/-9979/I 10E/()*+,-./012-/3,-45J//K7)79/,E7I ,/.-0*1),/*L7;0/*G-9*>-/7C/=91>18*) /
-,012*0178/-9979H/*G-9*>-/7C/?<:/-,012*0178/-9979H/*G-9*>-/7C/@<(/-,012*0178/-9979H/*G-9*>-/7C/A;7

-,012*0178/-9979H/*G-9*>-/7C/B-9C-40/-,012*0178/-9979/*8./*G-9*>-/7C/D)+E*/-,012*0178/-9979J//@-0*1), /

*9-/,E7I 8/C79/*G-9*>-/7C/=91>18*)/-,012*0178/-9979H/*G-9*>-/7C/?<:/-,012*0178/-9979H/*G-9*>-/7C/@<(
-,012*0178/-9979H/*G-9*>-/7C/A;7/-,012*0178/-9979H/*G-9*>-/7C/B-9C-40/-,012*0178/-9979H/*G-9*>-/7C/D)+E* /

-,012*0178/ -9979/ *8./()*+,-./ 012-/ 3,-45J/FE-/ .*0*/ 1,/C 1)0-9-./ 78/ BM?@(NKH/O,-/ (,012*0-,/*8./ PO<M@J

FE-/ BM?@(NK/ C1)0-9/ Q--+,/ ;,-R,*2+)-R-S410-R9*8.R"!!TR)18-,J)7>J/ FE-/ O,-/(,012*0-,/ C 1)0-9/ Q--+,
F9;-J/FE-/PO<M@/C1)0-9/Q--+,/"J/FE-/G1-I /1,/C 1)0-9-./78/(S4);,178,/3()*+,-./012-/3,-455H/I E14E

,+-41C 1-,/*/,-0J

! "!! #!! $!! %!! &!! '!!

()*+,-./012-/3,-45

!6

"!6

#!6

$!6

%!6

&!6

(
,
012
*
017
8
/(
99
7
9

!"#$%&#$'()!**'*

:-*,;9-/<*2-,

=91>18*)/-,012*0178/-9979

?<:/-,012*0178/-9979

@<(/-,012*0178/-9979

A;7/-,012*0178/-9979

B-9C-40/-,012*0178/-9979

D)+E*/-,012*0178/-9979

FE-/09-8./7C/*G-9*>-/7C/=91>18*)/-,012*0178/-9979H/*G-9*>-/7C/?<:/-,012*0178/-9979H/*G-9*>-/7C/@<(

-,012*0178/-9979H/*G-9*>-/7C/A;7/-,012*0178/-9979H/*G-9*>-/7C/B-9C-40/-,012*0178/-9979/*8./*G-9*>-/7C

D)+E*/-,012*0178/-9979/I 10E/()*+,-./012-/3,-45J//K7)79/,E7I ,/.-0*1),/*L7;0/*G-9*>-/7C/=91>18*) /
-,012*0178/-9979H/*G-9*>-/7C/?<:/-,012*0178/-9979H/*G-9*>-/7C/@<(/-,012*0178/-9979H/*G-9*>-/7C/A;7

-,012*0178/-9979H/*G-9*>-/7C/B-9C-40/-,012*0178/-9979/*8./*G-9*>-/7C/D)+E*/-,012*0178/-9979J//@-0*1), /

*9-/,E7I 8/C79/*G-9*>-/7C/=91>18*)/-,012*0178/-9979H/*G-9*>-/7C/?<:/-,012*0178/-9979H/*G-9*>-/7C/@<(
-,012*0178/-9979H/*G-9*>-/7C/A;7/-,012*0178/-9979H/*G-9*>-/7C/B-9C-40/-,012*0178/-9979H/*G-9*>-/7C/D)+E* /

-,012*0178/ -9979/ *8./()*+,-./ 012-/ 3,-45J/FE-/ .*0*/ 1,/C 1)0-9-./ 78/ BM?@(NKH/O,-/ (,012*0-,/*8./ PO<M@J

FE-/ BM?@(NK/ C1)0-9/ Q--+,/ ;,-R,*2+)-R-S410-R9*8.R"!!TR)18-,J)7>J/ FE-/ O,-/(,012*0-,/ C 1)0-9/ Q--+,
F9;-J/FE-/PO<M@/C1)0-9/Q--+,/"J/FE-/G1-I /1,/C 1)0-9-./78/(S4);,178,/3()*+,-./012-/3,-455H/I E14E

,+-41C 1-,/*/,-0J

Figure 4: Estimation error on excite 5X data set,
single-node cluster

where fi is the percentage of overall run completion as re-
ported by the estimator, ti is the current time, tn is the time
when all the jobs complete, and (ti -t0)/(tn-t0) represents
the actual percentage of the jobs completed.

Of all the estimators from the literature, gnm performs the
best. Gnm gives more accurate estimates than dne because
it uses more accurate cardinality estimates for the different
pipeline nodes. It outperforms Luo’s because Luo’s assumes
that current progress is indicative of future progress, and
this is not a valid assumption in a MapReduce environment
— processing rates are inconsistent across jobs and phases
(see the Appendix). The original Pig estimator doesn’t per-
form well because it instruments a limited number of phases

and oversimplifies the effects of pipelining. Finally, the dis-
continuity in each of the estimators near 55% completion
(at 360 seconds elapsed time) is notable, and represents
the completion of the map tasks and the start of the reduce
phases within the first job of each run.

Skew The first of the five jobs that script1-hadoop.pig
query generates has 2 maps and 2 reduces; the small result
set produced by the first job limits the remaining jobs to
only 1 map and 1 reduce each. This leads to some data
skew across jobs, where the first job processes significantly
more tuples than subsequent jobs. Gnm, dne, and Luo’s
estimator overestimate progress because they assume that
the rate at which the first job processed tuples will apply to
subsequent jobs, despite the differences in parallelism.

5.2 Single-Node Alpha Perturbation Tests
In the experiments in this section, we study the effect of

inaccurate alphas by inducing two different types of errors:
random and systemic. Random errors for each phase may
occur due to the fact that we use a small subset of the data as
a sample. Additionally, even the ‘perfect’ run has estimation
error due to small variations between identical runs on the
same cluster. To study these effects, we add random errors
to the measured alphas for each phase. In separate runs
we introduce errors in the range +-10% and in the range
+-50%. We also consider systemic errors, which may occur
when a cluster is heavily-loaded, for example. To study this,
we introduce uniform error to the alpha for each phase, using
multipliers of 2X and 0.5X. The goal of this experiment is to
show the resilience of our estimator in the presence of error,
namely the importance of the slowdown factor.

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

,-./0123456137"3896/-1:1;

!"

$!"

&!"

(!"

*!"

#!!"

<
=9
>
=1
0
0
37
"
38
9
6
/
-1
:1
;

!"#$%&'()*+),%*-./0

<1=:?=@.:59A3B?A

CDE3:=1A23-5A1

/1=F18:G.-/H.G1E85:1G'I

=.A296G1==9=G#!"G1E85:1G'I

=.A296G1==9=G'!"G1E85:1G'I

0C0:1658G1==9=G!J'IG1E85:1G'I

0C0:1658G1==9=G$IG1E85:1G'I

"39F349:.-3K.EJ31-./0123:5613L0J3"39F349:.-3K.EJ3/1=F18:3/1=81A:3:5613896/-1:1J33M9-9=30H9N 0321:.5-0

.@9?:3<1=:?=@.:59A3B?AJ33O1:.5-03.=130H9N A3F9=31-./0123:561J34H132.:.3503F 5-:1=1239A3P013,0:56.:103.A2

BPQROJ3 4H13P013,0:56.:103F 5-:1=3S11/034=?1J34H13 BPQRO3F5-:1=3S11/03#J34H13L51N 3503 F 5-:1=1239A
<1=:?=@.:59A3 B?A3.A23 ,E8-?059A0371-./0123 :561;J34H13 <1=:?=@.:59A3 B?A3F 5-:1=3 H.036?-:5/-13616@1=0 3

01-18:12J34H13,E8-?059A0371-./0123:561;3F 5-:1=30/185F 5103.301:J

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

,-./0123456137"3896/-1:1;

!"

$!"

&!"

(!"

*!"

#!!"

<
=9
>
=1
0
0
37
"
38
9
6
/
-1
:1
;

!"#$%&'()*+),%*-./0

<1=:?=@.:59A3B?A

CDE3:=1A23-5A1

/1=F18:G.-/H.G1E85:1G'I

=.A296G1==9=G#!"G1E85:1G'I

=.A296G1==9=G'!"G1E85:1G'I

0C0:1658G1==9=G!J'IG1E85:1G'I

0C0:1658G1==9=G$IG1E85:1G'I

"39F349:.-3K.EJ31-./0123:5613L0J3"39F349:.-3K.EJ3/1=F18:3/1=81A:3:5613896/-1:1J33M9-9=30H9N 0321:.5-0

.@9?:3<1=:?=@.:59A3B?AJ33O1:.5-03.=130H9N A3F9=31-./0123:561J34H132.:.3503F 5-:1=1239A3P013,0:56.:103.A2

BPQROJ3 4H13P013,0:56.:103F 5-:1=3S11/034=?1J34H13 BPQRO3F5-:1=3S11/03#J34H13L51N 3503 F 5-:1=1239A
<1=:?=@.:59A3 B?A3.A23 ,E8-?059A0371-./0123 :561;J34H13 <1=:?=@.:59A3 B?A3F 5-:1=3 H.036?-:5/-13616@1=0 3

01-18:12J34H13,E8-?059A0371-./0123:561;3F 5-:1=30/185F 5103.301:J Figure 5: Systemic and random alpha error, excite
5X data set, single-node cluster

Figure 5 demonstrates that when errors are added our es-
timator continues to perform well. Figure 6 shows that our
estimator is off by at most 12% during the worst-case 2X
systemic error, where each alpha is off by 2X and the es-
timator mistakenly underestimates the progress during the

! "!! #!! $!! %!! &!! '!!

()*+,-./012-/3,-45

!6!7

#6!7

%6!7

'6!7

86!7

"!6!7

"#6!7

(
,
012
*
019
:
/(
;;
9
;

!"#$%&'()*+),%*-./&0)).)

!"#$%#&'$()*+,%*

+-;<-40=*)+>*=-?410-=&@

;*:.92=-;;9;="!7=-?410-=&@

;*:.92=-;;9;=&!7=-?410-=&@

,A,0-214=-;;9;=!6&@=-?410-=&@

,A,0-214=-;;9;=#@=-?410-=&@

B>-/0;-:./9</*C-;*D-/9</E-;<-40/-,012*019:/-;;9;/F 10>/()*+,-./012-/3,-456//G9)9;/,>9F ,/.-0*1),/*H9I0 /

E-;0I;H*019:/JI:6//K-0*1),/*;-/,>9F :/<9;/()*+,-./012-/3,-456/B>-/.*0*/1,/< 1)0-;-./9:/L,-/(,012*0-,/*:.

JLMNK6/ B>-/L,-/(,012*0-,/< 1)0-;/O--+,/B;I-6/B>-/ JLMNK/<1)0-;/O--+,/"6/B>-/C1-F /1,/ < 1)0-;-./9:
E-;0I;H*019:/ JI:/*:./(?4)I,19:,/ 3()*+,-./012-/3,-4556/B>-/ E-;0I;H*019:/JI:/< 1)0-;/>*,/2I)01+)-

2-2H-;,/,-)-40-.6/B>-/(?4)I,19:,/3()*+,-./012-/3,-455/< 1)0-;/,+-41< 1-,/*/,-06

! "!! #!! $!! %!! &!! '!!

()*+,-./012-/3,-45

!6!7

#6!7

%6!7

'6!7

86!7

"!6!7

"#6!7

(
,
012
*
019
:
/(
;;
9
;

!"#$%&'()*+),%*-./&0)).)

!"#$%#&'$()*+,%*

+-;<-40=*)+>*=-?410-=&@

;*:.92=-;;9;="!7=-?410-=&@

;*:.92=-;;9;=&!7=-?410-=&@

,A,0-214=-;;9;=!6&@=-?410-=&@

,A,0-214=-;;9;=#@=-?410-=&@

B>-/0;-:./9</*C-;*D-/9</E-;<-40/-,012*019:/-;;9;/F 10>/()*+,-./012-/3,-456//G9)9;/,>9F ,/.-0*1),/*H9I0 /

E-;0I;H*019:/JI:6//K-0*1),/*;-/,>9F :/<9;/()*+,-./012-/3,-456/B>-/.*0*/1,/< 1)0-;-./9:/L,-/(,012*0-,/*:.

JLMNK6/ B>-/L,-/(,012*0-,/< 1)0-;/O--+,/B;I-6/B>-/ JLMNK/<1)0-;/O--+,/"6/B>-/C1-F /1,/ < 1)0-;-./9:
E-;0I;H*019:/ JI:/*:./(?4)I,19:,/ 3()*+,-./012-/3,-4556/B>-/ E-;0I;H*019:/JI:/< 1)0-;/>*,/2I)01+)-

2-2H-;,/,-)-40-.6/B>-/(?4)I,19:,/3()*+,-./012-/3,-455/< 1)0-;/,+-41< 1-,/*/,-06

Figure 6: Estimation error on excite 5X data set,
single-node cluster

map tasks of the first job. Additionally, in the systemic 0.5X
case, our estimator is only off by at most 10%. When the
alpha weights are off by significant but systemic amounts,
the slowdown factor is able to preserve the accuracy of our
estimator. Additionally, the random alpha errors seem to
cancel each other out. In the future we will investigate hav-
ing random errors that are uniformly positive or negative.
This will prevent them from canceling but will also hinder
the efficacy of the slowdown factor.

5.3 Parallelism and Skew
In this experiment, we run the same script1-hadoop.pig as

before on the cluster, but we increase the number of maps
and reduces as well as the number of nodes that are utilized.
The number of concurrent map tasks was increased by de-
creasing the Hadoop DFS block size from 128MB to 8MB.
The number of concurrent reduce tasks was increased by
adding the PARALLEL Pig Latin keyword to the Pig script to
explicitly use up to eight nodes in the cluster. This keyword
was only added to queries in the script1-hadoop.pig file that
contained operators responsible for generating reduces such
as: COGROUP, CROSS, DISTINCT, GROUP, JOIN and ORDER. The
added parallelism spawned 27 maps and 8 reduces in the
first job, 8 maps and 8 reduces in jobs 2, 3, and 5, and 8
maps and 1 reduce in job 4.

Figure 7 shows how the KAMD 2% estimator and KAMD
‘perfect’ compare to dne, gnm, Luo’s time-based estimator,
and the original Pig estimator for this experiment. All but
the original Pig estimator show very optimistic estimates of
work completed. It is interesting that the KAMD estimator
with the 2% sample (in blue) does the best of all estima-
tors. Both the KAMD ‘perfect’ (in pink) and 2% estimators
show optimistic estimates of completion; however, the 2%
estimator is consistently less optimistic relative to ‘perfect’.
This is because the alpha values that were computed on the
2% sample were less optimistic (i.e. reported more time to

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

,-./0123456137"3896/-141:

!"

$!"

&!"

(!"

*!"

#!!"

;
<9
=
<1
0
0
37
"
38
9
6
/
-1
41
:

!"#$%&'(")*"+*,(-'#%-"&(

!"#$%&"'(#)"$

>?@34<1A23-5A1

B<5=5A.-3;<9=<100

CDE3;<9=<100

FD,3;<9=<100

GH93;<9=<100

;1<I1843;<9=<100

J-/K.3;<9=<100

"39I3L94.-3E.@M31-./012345613N0M3"39I3L94.-3E.@M31-./01234561O3"39I3L94.-3E.@M39<5=5A.-O3"39I3L94.-

E.@M3CDEO3"39I3L94.-3E.@M3FD,O3"39I3L94.-3E.@M3GH93/1<81A4345613896/-141O3"39I3L94.-3E.@M3/1<I184

/1<81A43 45613896/-1413.A23"3 9I3L94.-3E.@M310456.412P.-/K.P/1<81A4P4561P896/-141M33 Q9-9<30K9R 0
214.5-03.S9H43"39I3L94.-3E.@M31-./01234561O3"39I3L94.-3E.@M39<5=5A.-O3"39I3L94.-3E.@M3CDEO3"39I3L94.-

E.@M3FD,O3"39I3L94.-3E.@M3GH93/1<81A4345613896/-141O3"39I3L94.-3E.@M3/1<I1843/1<81A4345613896/-141

.A23"39I3 L94.-3E.@M3 10456.412P.-/K.P/1<81A4P4561P896/-141M33F14.5-03 .<130K9R A3 I9<3;TCF,UQ3 .A2 3
1-./0123 4561M3LK132.4.3 503I 5-41<1239A3 V013,0456.4103.A23 WVDTFM3LK13V013 ,0456.4103I 5-41<3X11/03 L<H1M

LK13 WVDTF3I5-41<3X11/03 #M3LK13N51R 3503 I 5-41<1239A3;TCF,UQ3.A23 ,@8-H059A0371-./01234561:M3LK1

;TCF,UQ3 I5-41<3X11/03H01Y0.6/-1Y#!!ZM3LK13,@8-H059A0371-./01234561:3 I 5-41<30/185I 5103.3014M

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

,-./0123456137"3896/-141:

!"

$!"

&!"

(!"

*!"

#!!"

;
<9
=
<1
0
0
37
"
38
9
6
/
-1
41
:

!"#$%&'(")*"+*,(-'#%-"&(

!"#$%&"'(#)"$

>?@34<1A23-5A1

B<5=5A.-3;<9=<100

CDE3;<9=<100

FD,3;<9=<100

GH93;<9=<100

;1<I1843;<9=<100

J-/K.3;<9=<100

"39I3L94.-3E.@M31-./012345613N0M3"39I3L94.-3E.@M31-./01234561O3"39I3L94.-3E.@M39<5=5A.-O3"39I3L94.-

E.@M3CDEO3"39I3L94.-3E.@M3FD,O3"39I3L94.-3E.@M3GH93/1<81A4345613896/-141O3"39I3L94.-3E.@M3/1<I184

/1<81A43 45613896/-1413.A23"3 9I3L94.-3E.@M310456.412P.-/K.P/1<81A4P4561P896/-141M33 Q9-9<30K9R 0
214.5-03.S9H43"39I3L94.-3E.@M31-./01234561O3"39I3L94.-3E.@M39<5=5A.-O3"39I3L94.-3E.@M3CDEO3"39I3L94.-

E.@M3FD,O3"39I3L94.-3E.@M3GH93/1<81A4345613896/-141O3"39I3L94.-3E.@M3/1<I1843/1<81A4345613896/-141

.A23"39I3 L94.-3E.@M3 10456.412P.-/K.P/1<81A4P4561P896/-141M33F14.5-03 .<130K9R A3 I9<3;TCF,UQ3 .A2 3
1-./0123 4561M3LK132.4.3 503I 5-41<1239A3 V013,0456.4103.A23 WVDTFM3LK13V013 ,0456.4103I 5-41<3X11/03 L<H1M

LK13 WVDTF3I5-41<3X11/03 #M3LK13N51R 3503 I 5-41<1239A3;TCF,UQ3.A23 ,@8-H059A0371-./01234561:M3LK1

;TCF,UQ3 I5-41<3X11/03H01Y0.6/-1Y#!!ZM3LK13,@8-H059A0371-./01234561:3 I 5-41<30/185I 5103.3014M

Figure 7: Excite 5X data set, 8-node cluster

process each tuple) than the alphas computed on the per-
fect estimator’s 5X data set. The alphas for 2% are less
optimistic in general on the cluster (which is evident in our
results in Table 1) because their estimates for time per tu-
ple contain a higher percentage of overhead than the larger
samples.

Parallelism skew Since this experiment is a parallel ver-
sion of the experiment in Section 5.1, the same data skew
across jobs exists. Additionally, there are challenges with
parallelism skew, in which the first job spawns over three
times as many map tasks as subsequent jobs. This par-
allelism skew amplifies the existing data skew because the
same percentage of records are processed but the first job
has much greater speedup than subsequent jobs. The dis-
continuities in Figure 3 now occur much earlier, with the
reduce phases in the first job starting at 25% completion
as shown in Figure 7. The new discontinuity present at
15% completion represents the start of the combine phase
(and its SCS thread), and demonstrates the limitations of
progress estimation models that assume uniform time per
unit of work. Unfortunately, our estimator is also affected
by both parallelism skew and data skew, although to a much
lesser degree. We intend to investigate using critical paths
in our estimator to better handle all types of data skew.

6. CONCLUSION AND FUTURE WORK
Estimating progress is a complicated problem in both

single-node and cluster environments. We applied tech-
niques from the literature and found that they were fun-
damentally flawed in a cluster environment. For example,
dne and gnm assume uniform throughput, and Luo’s time-
based estimator assumes that recent throughput is a perfect
predictor of future throughput across all phases. We have
demonstrated that the KAMD estimator provides the most
accurate estimates in the MapReduce environment and is
capable of handling highly-parallel queries. In future work,
we intend to run our experiments on a wider variety of Pig

Latin queries as well as on larger data sets such as the 54 GB
astronomy data set from the University of Washington Nu-
ageDB group. We plan to examine the use of critical paths
in our estimator to compensate for data skew. Additionally
we will instrument and account for network and scheduling
overhead in cluster environments. Finally, we will continue
to explore robustness in handling random errors, including
errors which are random but uniformly biased towards pos-
itive or negative shifts.

7. REFERENCES
[1] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When

can we trust progress estimators for SQL queries. In
Proc. of the SIGMOD Conf., Jun 2005.

[2] S. Chaudhuri, V. Narassaya, and R. Ramamurthy.
Estimating progress of execution for SQL queries. In
Proc. of the SIGMOD Conf., Jun 2004.

[3] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proc. of the 6th OSDI
Symp., 2004.

[4] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke.
Increasing the accuracy and coverage of SQL progress
indicators. In Proc. of the 20th ICDE Conf., 2004.

[5] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke.
Toward a progress indicator for database queries. In
Proc. of the SIGMOD Conf., Jun 2004.

[6] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query
SQL progress indicators. In Proc. of the 10th EDBT
Conf., 2006.

[7] C. Mishra and N. Koudas. A lightweight online
framework for query progress indicators. In Proc. of the
23rd ICDE Conf., 2007.

[8] C. Mishra and M. Volkovs. ConEx: A system for
monitoring queries (demonstration). In Proc. of the
SIGMOD Conf., Jun 2007.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proc. of the SIGMOD Conf., pages
1099–1110, 2008.

