
Relational Data Markets

544 Class Project – Fall 2007

Ben Birnbaum
birnbaum@cs.washington.edu

Alex Jaffe
ajaffe@cs.washington.edu

1. INTRODUCTION
It is hard to overestimate the value of information as a re-
source. In the last several years, the number and variety
of structured information sources has soared, and yet, cen-
tralized access to these resources remains limited. The inte-
gration of these (possibly heterogeneous) data sources is a
major topic of database research. In this paper, we propose a
paradigm in which the sharing of information is incentivized
by monetary gain. Such systems have been proposed before,
notably in Mariposa [10]. However, these systems typically
place value on the resources used to access the data and
not on the data itself. We propose Relational Data Markets
(RDMs), distributed database systems in which providers
can set arbitrary costs for their data, and clients can collect
data from multiple overlapping providers of their choice, in
order to fill their needs at minimal cost. We consider the
theoretical models underlying such choices by clients, leav-
ing the design of a full-scale system for future work.

To make the setting concrete, consider the following sce-
nario. A large retail corporation, Huge-Mart, wishes to gen-
erate customized e-mails to their mailing list subscribers.
These e-mails should feature products that the customer is
likely to be interested in; they should contain discounts that
are tailored to the customer’s spending patterns and income;
and they should be customized in tone in order to appeal
to the customer’s demographic. Huge-Mart is likely to have
some information about its customers already, perhaps ac-
quired from its customer reward program. However, this
might not be enough for the directed marketing needed to
maximize profits. Therefore, Huge-Mart might turn to out-
side market research firms that aggregate data about cus-
tomer demographics, habits, and opinions.

Instead of relying solely on market research firms, Huge-
Mart could instead learn about its customers using an RDM.
It would decide on a set of features that will be used to
generate its e-mail, such as age, income, credit score, and
marital status. It would also have a list of customer names
and a value to acquiring this information about each of these
customers based on information already known. The set of
attributes defines a table schema, which would then act as
a query through the RDM to find data providers who offer
some subset of these columns, for some subset of the row ids
(names) that Huge-Mart is interested in.

In response its query, Huge-Mart would be given a listing
of providers, along with the rows and columns they have
available and the cost they are willing to sell a row for.
These providers would run the gamut from other corpora-
tions selling their collected data, to social networking sites,
to wrappers on top of GPS units and cell phones. No single
provider would have all of the rows or columns, but in ag-
gregate, Huge-Mart might be able to purchase them all. It
would like to do so in such a way that maximizes the value
of the rows completely purchased while minimizing the total
cost paid to the various providers. Having decided on a set
of rows it would like to purchase from each provider, Huge-
Mart authorizes the purchases, and is then able to query
the specified data as if it were in a standard distributed
database.

Applications of RDMs extend beyond marketing. For ex-
ample, consider data collection for large-scale scientific re-
search, such as the NSF NEPTUNE project, which con-
sists of an enormous network of sea-floor data labs used for
oceanographic data collection and routing. This network
is being built to monitor the ocean’s processes on a large
scale with overall goals such as better understanding global
warming. We propose that research projects like NEPTUNE
could consist of a large number of distributed data collec-
tion sources, rather than one central project. If this were
the case, then it could more efficiently use data already be-
ing collected by private parties, such as temperature mea-
surements from fishing companies, ocean-floor maps from
the military, or salinity measurements by independent sci-
entists. Of course not of all of these parties would be willing
to share their information for free, and this is where RDMs
would play a role.

Motivated by these scenarios, we examine several versions of
an optimization problem that might arise in an automated
system for aggregating data in an RDM. In this paper, we
study the computational hardness of these problems, and
develop algorithms for those problems that are tractable.
We go on to design heuristic algorithms for some of our in-
tractable problems, and run implementations of these algo-
rithms on data generated according to two different models
for random RDMs. Finally, we study the performance of
these algorithms statistically, both in terms of optimality,
and running time.

2. RELATED WORK
We know of no pre-existing database research in which the
value and cost of data itself, rather than the resources to ac-
cess it, are considered. Therefore, much of this section sur-
veys the fundamental techniques in the literature that would
be essential to the construction of a a functioning RDM. We
also discuss other database systems in which monetization is
considered, though usually for the purposes of distributing
computational rather than information resources.

The problem of providing the user with a single, consistent
view of data that in reality comes from multiple sources is
known as data integration [7]. In commercial settings, this is
sometimes known as Enterprise Information Integration [4].
One approach to data integration is data warehousing, the
practice of collecting data from many sources, remapping its
schemas for consistency, and storing it in a single database,
often with automated updates. This practice has dropped in
popularity, in comparison to more versatile systems in which
data remains on its source machines, but is nonetheless ac-
cessed consistently by the user in real-time, as in [11]. This
model is more appropriate for our proposal, since storing
the data of multiple providers in a single repository would
require a central arbiter whom the providers trust not to
share or even examine their data, adding an extra layer of
complexity.

Many papers address the problem of distributed query opti-
mization specifically. Here the focus is less on how to design
a large-scale system. Instead authors focus on the algorith-
mic question of how to plan queries, with the knowledge that
the tables are spread across multiple systems over a network.
Such optimization techniques should be built into a system
implementing our proposal, since at the least, traditional
distributed queries must be run in order to identify the set
of relevant tuples for our algorithms to consider buying.

The standard approach to distributed query optimization
considers network transfer to be a bottleneck in the speed
of query processing [1]. In contrast, more recent work [2]
has addressed how query optimization should be performed
over high-speed networks, such as broadband internet con-
nections, where a more fine-grained tradeoff between local
computation and network transfer speed must be considered.

Huebsch et al. [5] propose a distributed query optimiza-
tion technique that is well-suited for a very large number
of databases, not just a large amount of data over a few
databases. The authors of [9] propose a query planning pro-
cess that is optimized for the specificities of web-based APIs.
An RDM could benefit from the encapsulation and modu-
larity of such a model, especially since many of the data
sources may be based off of pre-existing web-services.

The system bearing perhaps the most resemblance to an
RDM is the economic bidding system of the distributed
database Mariposa [10]. Mariposa, like our proposal, is
meant to support distributed databases in which not all of
the parties involved have mutual goals. They propose an
economic model for a) incentivizing the distribution of data
from those who have it to those who want it, and b) de-
termining which of those who want it actually may access
it. Note that a) is is a goal of our model as well, but b) is

not relevant to RDMs. This is because Mariposa operates
under a limited-resources assumption, and charges clients
based on the amount of resources it expects to expend on
their query, rather than an externally defined value of the
data itself. This assumption leads to a database being able
to service only a fraction of its clients, and it hence uses an
auction system to determine who is given the privilege. Of
course, computing resources are always limited, but we are
more interested in heterogenous data utilities, which can be
more easily studied by assuming unbounded computational
resources.

Mariposa’s protocols can be prohibitively time-consuming,
due to the high cost of performing so many auctions in real-
time. Fortunately, our model is simpler in that providers
set fixed prices for their data. This is a reasonable limita-
tion, because RDMs are intended to support a large number
of data providers, less so than a large number of data cus-
tomers. Note that an RDM would be interesting even with
only a single customer of the data.

Jain and Kanna [6] take a perspective similar to Mariposa’s,
considering the cost of data in terms of the processing time
to retrieve it. Rather than designing a system for such data
services, the authors perform a game-theoretic analysis of
various pricing schemes for data. This kind of analysis would
be interesting to perform on our models, as price-setting is
essentially the dual of the optimization problems we consider
in this paper. However, the analysis of [6] is not directly rel-
evant to us, since they assume a uniform utility for data, and
are interested primarily in the pricing of a single provider’s
data.

For the purposes of our analysis, we have assumed that all
providers share a consistent schema, and have correct data.
However, in a real system, it is likely that the providers
would in fact have very different formats and structures for
the data. Integrating such databases is a difficult problem,
but luckily it has been studied extensively, and the introduc-
tion of pricing should not change the efficacy of pre-existing
solutions. Cohera [11], a substantial content integration sys-
tem built on top of Mariposa, was designed specifically for
a task such as ours. It is intended for the e-business set-
ting, in which many heterogeneous databases with different
owners must be made to function together. This multiple-
owners problem is one of the key issues in designing an RDM.
It seems that many integration and query processing needs
of an RDM would be sufficiently handled by Cohera, with
monetary exchange, query, and optimization systems built
on top of their system.

3. MODEL
We model the data aggregation problem in an RDM as fol-
lows. A user is interested in purchasing data from a canon-
ical table D, with m rows and n columns. The user can
purchase data from this table from a set of ` providers, each
of which sells some some subset of rows and columns of D.
In particular, for 1 ≤ k ≤ `, provider k has a table Dk,
which consists of a subset Rk ⊆ [m] of the rows and a sub-
set Ck ⊆ [n] of the columns. Each provider k also has a cost
pk for each row.

The first variation of this problem that we have studied is

called the FullRowMaxUtility model. In this model the
user has a budget B and must purchase rows from providers
without spending more than B. In other words, the user
must select a subset of rows Sk ⊆ Rk from each provider
k such that

P
k |Sk|pk ≤ B. The user has a utility ui for

each row i in D, and her goal is to maximize the sum of
the utilities of the rows that she has purchased completely.
More precisely, given that Sk is the subset of rows purchased
from provider k, we can define a predicate FULL(i) to be
true if and only if

S
k:i∈Sk

Ck = [n]. The utility of the user

is
P

i:FULL(i) pi. Such a model is motivated by scenarios
in which a user seeking data would only find a use for the
data when collecting feature information of products one is
considering purchasing.

The second variation is called the FullRowMinCost model.
This is the corresponding minimization to FullRowMaxU-
tility. Hence the formulation and optimization function
are identical, but the problem is to achieve (or beat) a fixed
utility U , while minimizing the budget expended to do so.
There are subtle differences in framing the problem in this
way: it is perhaps slightly less natural for a real-world sce-
nario, but matches up more closely with the algorithmic
mainstream, and moreover may permit an approximation
algorithm, unlike the maximization version.

The final variation we have studied is called the Partial-
RowMaxUtility model. In this model, we return to maxi-
mizing the utility achieved with a fixed budget B. However,
we now assign a value uij to each row-column pair. The
total utility the user gets is the sum of the uij ’s for each
row-column pair purchased.

4. THEORETICAL RESULTS
In this section, we prove some theoretical results on the mod-
els introduced in the last section. Our first result states that
not only is the FullRowMaxUtility model NP -hard, but
it is also hard to approximate to within any factor. The
proof of this result, which is given in the appendix, is based
on a reduction from SetCover.

Theorem 1. It is NP -hard to approximate FullRow-
MaxUtility to any factor f .

Another hardness result holds for FullRowMinCost. Al-
though this is not as strong as the result for FullRow-
MaxUtility, it does imply that no efficient algorithm exists
that guarantees a worst-case performance within a constant
factor of optimal for this problem. The proof, again given
in the appendix, is based on an approximation-preserving
reduction from SetCover.

Theorem 2. It is NP -hard to approximate FullRowMin-
Cost to within a factor of O(log n).

On a positive note, we show with the following theorem that
PartialRowMaxUtility seems to be a more tractable prob-
lem.

Theorem 3. If each provider charges the same cost p
for a row, then there is a greedy algorithm for Partial-

RowMaxUtility that achieves an approximation ratio of
1− 1/e ≈ 0.63.

To prove this this theorem, we use a well-known result on
maximizing monotone submodular functions, which are de-
fined as follows.

Definition 1. Let f : 2X → R be a real-valued function
defined on subsets of some finite ground set X. The function
f is monotone if for all S ⊆ T ⊆ X, we have f(S) ≤ f(T).
The function f is submodular if for all S ⊆ T ⊆ X and for
all x ∈ X such that x 6∈ T , we have f(S ∪ {x}) − f(S) ≥
f(T ∪ {x})− f(T).

Intuitively, a submodular function is one that satisfies the
law of diminishing returns: the marginal value of an item de-
creases as the set gets larger. Given a submodular function
f and an integer r ≤ |X|, a natural optimization problem is
to find the r elements S ⊆ X that maximize f(S). We call
this the MaxSubmodular problem. Nemhauser, Wolsey,
and Fisher prove the following well-known theorem.

Theorem 4 ([8]). There is an algorithm for MaxSub-
modular that achieves an approximation ratio of 1− 1/e.

In fact, the algorithm of Theorem 4 is the natural greedy
algorithm: iteratively construct a set S, each time adding
the element x that maximizes the marginal utility f(S ∪
{x})−f(S). The proof of Theorem 3, given in the appendix,
gives a reduction from this restricted version of Partial-
RowMaxUtility to MaxSubmodular. Hence, this im-
plies that the algorithm that achieves the approximation
ratio of Theorem 3 is the greedy algorithm that purchases
row-column pairs to maximize the marginal utility at each
step.

If the cost for each provider is different, but the number of
providers is a constant, we show in the following theorem
that there is a polynomial-time algorithm for PartialRow-
MaxUtility.

Theorem 5. If ` is O(1), then there is a polynomial time
algorithm for PartialRowMaxUtility.

The algorithm that solves this version of PartialRowMaxU-
tility is a dynamic programming algorithm similar in spirt
to the classic pseudo-polynomial time algorithm for Knap-
sack. The proof of Theorem 5, again given in the ap-
pendix, first reduces PartialRowMaxUtility to a prob-
lem we call the KChoiceKnapsack problem and then gives
a polynomial-time algorithm for KChoiceKnapsack when
the number of costs is constant.

5. HEURISTIC ALGORITHMS
In this section, we investigate several heuristics for our mod-
els. We have shown that there are no polynomial-time algo-
rithms with reasonable approximation rations for the Full-
RowMaxUtility and FullRowMinCost models. There-
fore, it is important to find algorithms that perform well in

practice. Furthermore, even though PartialRowMaxU-
tility seems to be more tractable, it is still interesting to
investigate the performance of algorithms for this problem
on typical input cases.

5.1 Algorithms
A natural first heuristic to consider is one that greedily
makes purchases to maximize the new number of columns
obtained over cost. (We define a purchase to be an ordered
pair (i, k), where i is a row and k is a provider.) The hope is
that this algorithm will be likely to complete a large number
of rows for a small price, thereby achieving a large utility.
We call this algorithm 1-StageGreedy, which is defined
more precisely as follows. While there is still budget left,
make the purchase (i, k) that maximizes the ratio ∆cik/pk,
where ∆cik is the number of new columns in row i obtained
by the algorithm from the purchase (i, k), and pk is the price
per row charged by provider k. (Note that the value of ∆ci,k

depends on the columns already owned by the algorithm.)

Despite first impressions, choosing the purchase that gets
the most new columns is not necessarily an effective way to
complete rows. It is not hard to imagine a scenario in which
there are a large number of rows that need just one more pur-
chase to be completed, but 1-StageGreedy instead wastes
its money on uncompleted rows in which a large number of
new columns can be bought. Motivated by this concern, we
present the following algorithm, 2-StageGreedy.

2-StageGreedy uses a sub-procedure called
GreedyCompleteRow, which takes a row i and a budget
B as parameters, and attempts to find a set of purchases that
complete row i for a cost no greater than B. To complete
row i, this sub-procedure uses the same greedy heuristic as
1-StageGreedy: iteratively choose the purchase (i, k) that
is under the current budget and that maximizes ∆cik/pk.

2-StageGreedy works as follows. While there is still bud-
get b > 0 left, run GreedyCompleteRow(i, b) for each
uncompleted row i, to obtain a candidate set of purchases
that will complete row i. For each row i that Greedy-
CompleteRow can complete, let ri be the cost of the set of
purchases returned by GreedyCompleteRow. Now choose
the row i that maximizes ui/ri (where ui is the utility of row
i). Make the purchases given by GreedyCompleteRow,
and repeat.

Note that although we motivated 1-StageGreedy and 2-
StageGreedy for the FullRowMaxUtility model, the
versions of these algorithms that ignore budget and iterate
until the utility goal is met are equally well-motivated for
the FullRowMinCost model. (We refer to both versions
of these algorithms by the same name and use context to
disambiguate.)

For the PartialRowMaxUtility model, we have already
shown in Theorem 3 that the simple greedy heuristic that
chooses the purchase with the largest marginal utility is al-
ways within 63% of optimal when the price for each provider
is the same. This algorithm has a natural extension when
the price of a purchase varies from provider to provider,
which we call Greedy: choose the purchase that maximizes
the ratio of the marginal utility to cost. Although we do

not have any theoretical results for Greedy in the general
PartialRowMaxUtility model, it is still possible to test
its performance experimentally.

5.2 Experiments
To test the performance of these heuristic algorithms, we
implemented them in Python and ran experiments. Since
our motivation for studying these problems was based on
systems that have not yet been implemented, we do not have
real-world data on which to test our algorithms. Instead we
tested the algorithms on synthetic data, generated by the
following two models:

• Uniform takes five parameters: pr, the row proba-
bility; pc, the column probability; `, the number of
providers; m, the number of rows; and n, the num-
ber of columns. The model is generated as follows.
First, the canonical m×n table is created. Next, util-
ities are assigned to rows (in the FullRowMaxUtil-
ity and FullRowMinCost models) or row-column
pairs (in the PartialRowMaxUtility model). Utili-
ties are chosen independently and uniformly at random
between 0 and 1. The cost-per-row for each provider
is chosen similarly. Finally, each provider is assigned
row i independently with probability pr, and column
j with probability pc.

• PowerLaw takes four parameters: α, the parameter
for the power law; `, the number of providers; m, the
number of rows; and n, the number of columns. This
model is generated in the same way as Uniform, ex-
cept that for each provider, the row and column proba-
bilities are selected independently at random from the
following power law distribution f defined on [0, 1]:

f(α; x) =
1

α(x + cα)2
,

where cα = 1
2
(−1 +

p
1 + 4/α) is defined so that f

normalizes on [0, 1]. This model is motivated by the
fact that Zipf-like power laws seem to be found often
in real data. This ensures that a few providers will
have many more rows and columns than average.

Testing the optimality of these algorithms is a challenge
since even computing the value of the optimal solution is
intractable for all three models. Therefore, we define sev-
eral natural random algorithms as a baseline, and compare
our heuristics to these random algorithms. For the full-row
models, the random algorithms we implemented are defined
as follows.

• 1-StageRandom– While there is budget left (or the
utility goal is not met), make a purchase uniformly at
random from all feasible purchases that improve our
optimum.

• 2-StageRandom– While there is budget left (or the
utility goal is not met), pick a random row, and ran-
domly pick purchases for that row until the row is com-
pleted, buying them if a feasible solution is found.

Our motivation for 2-StageRandom is that it pro-
vides a more fair benchmark for 2-StageGreedy than
1-StageRandom, since 1-StageRandom does not to
give any preference for completing rows.

We also use 1-StageRandom as a benchmark against which
we can compare the Greedy algorithm in the PartialRow-
MaxUtility model.

Effect of Budget and Utility Goal
Our first experiment was designed to measure the solution
quality of our algorithms as a function of the budget (for the
maximization problems), or the utility goal (for the mini-
mization problem) for both the Uniform and PowerLaw
models. For the Uniform model, we set pc = pr and chose
values for pr `, m, and n that seemed to provide instances
that were neither trivial nor impossible to solve. We used
the same values of `, m, and n for the PowerLaw model,
and chose α such that the mean of f(α) was equal to pr (so
the row and column densities would have the same expected
values.) For the maximization problems, we varied the bud-
get from 6 to 400, and for the minimization problems, we
varied the utility goal from 0.5 to 40. The data from these
experiments, as well as the exact value of our parameters,
are shown in Figure 1.

Figure 1(a) shows the solution quality (measured by utility)
of 1-StageRandom, 1-StageGreedy, 2-StageRandom,
and 2-StageGreedy, on the FullRowMaxUtility prob-
lem generated from the Uniform model. Note that
2-StageGreedy performs at least as well as the other al-
gorithms for all budgets. For most budget values, the rela-
tive ordering of the other algorithms, from best to worst, is
1-StageGreedy, 2-StageRandom, and 1-StageRandom.
Also, note that the utilities of all the algorithms converge
to the same value as the budget gets large. This is because
once the budget is large enough, all of the algorithms have
enough money to obtain the maximum utility possible from
a problem.

There are two somewhat puzzling features of this graph.
First, for small budget values, 2-StageRandom, a seem-
ingly mindless algorithm, outperforms the more sensible
heuristic 1-StageGreedy. This might be explained by the
fact that for small budgets, only a small number of rows
can be afforded. Since 1-StageGreedy does not give pri-
ority to completing rows, it might spend all of its money
on purchases that do not complete any row. This is in con-
trast to larger budgets, when the early investment by 1-
StageGreedy on extra value-purchases can help complete
more rows later.

The other puzzling feature of Figure 1(a) is the spike in profit
the two greedy algorithms at budget 100. We have not yet
found a satisfying explanation for this phenomenon. It is not
likely to be a statistical error however, since it occurs in the
PowerLaw model as well. (Figure 1(b)). One possibility
is that there is a critical period in which the budget is large
enough to make new expensive purchases that are a mistake
but not large enough to overcome those mistakes. Whatever
the cause, this phenomenon seems interesting and requires
more careful investigation.

Figure 1(c) shows the solution quality (measured by cost)
of 1-StageRandom, 1-StageGreedy, 2-StageRandom,
and 2-StageGreedy on the FullRowMinCost problem
generated from the Uniform model. Again,
2-StageGreedy performs the best, since it spends the least
money of the four. The money spent by the algorithms
flattens as the utility goal gets high. This is because in this
range, the utility goals are impossible to attain, and each
algorithm ends up making purchases until it cannot make
any more. Thus, the money spent stops increasing past a
given utility goal.

For small utility goals, 1-StageRandom is better than both
1-StageGreedy and 2-StageRandom. We believe that
the reason that it is better than 1-StageGreedy is that for
small utility goals, just one row needs to be completed. As
seen earlier, 1-StageGreedy is slow to complete rows, and
so performs poorly at a small scale. A reason why it might be
better than 2-StageRandom is that since 2-StageRandom
chooses a random row and then keeps making purchases un-
til the row is complete, it can get stuck on a very costly
row. By not committing itself to a single row at a time
1-StageRandom, hedges its bets better.

Figure 1(e) shows the solution quality (measured by util-
ity) of Greedy and 1-StageRandom on the PartialRow-
MaxUtility problem from the Uniform model. Note that
Greedy performs significantly better than 1-StageRandom,
for small budget values, and the the two algorithms converge
towards the same solution quality for large budgets. Again,
this is because there is a point where the budgets become
large enough that any algorithm can obtain all possible util-
ity from the problem.

Figures 1(b), 1(d), and 1(f) show the performance of our al-
gorithms for all three problem models under the PowerLaw
model. The behavior of the algorithms is qualitatively the
same for the PowerLaw model as for the Uniform model,
which suggests that our conclusions about the algorithms
are not artifacts of the particular random model we use.

Effect of Number of Providers
Our second experiment was designed to measure the solu-
tion quality of our algorithms as a function of the number of
providers available. We tested our algorithms on both the
Uniform and PowerLaw models, although we only show
the results of the Uniform model here, since like the last ex-
periment, the algorithms behaved similarly on both models.
This time we fixed values of pr, pc, m, n, and B that seemed
to provide interesting instances. We varied `, the number
of providers, from 2 to 500. The results of this experiment,
as well as the exact value of our parameters, are shown in
Figure 2. We note that again 2-StageGreedy significantly
outperforms the other algorithms, but we omit a detailed
discussion of these results because of space constraints.

Running Time of the Algorithms
Our third experiment was designed to measure the running
time of our algorithms on both the Uniform and Power-
Law models. For comparison, all of the algorithms have
asymptotic running time at most O(m2 · (l + n)2). We fixed
values for pr, pc, α, n, and `, and measured the average
time for the algorithms to complete as a function of m, the

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400

Ut
ilit

y

Budget

Full-row utility maximization for uniform model

2-Stage Greedy
2-Stage Random
1-Stage Greedy

1-Stage Random

(a)

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

Ut
ilit

y

Budget

Full-row utility maximization for power law model

2-Stage Greedy
2-Stage Random
1-Stage Greedy

1-Stage Random

(b)

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

So
lu

tio
n

Co
st

Utility Goal

Full-row cost minimization for uniform model

2-Stage Greedy
2-Stage Random
1-Stage Greedy

1-Stage Random

(c)

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40

So
lu

tio
n

Co
st

Utility Goal

Full-row cost minimization for power law model

2-Stage Greedy
2-Stage Random
1-Stage Greedy

1-Stage Random

(d)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400

Ut
ilit

y

Budget

Partial-row utility maximization for uniform model

1-Stage Greedy
1-Stage Random

(e)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400

Ut
ilit

y

Budget

Partial-row utility maximization for power law model

1-Stage Greedy
1-Stage Random

(f)

Figure 1: The solution quality of the algorithms as a function of budget (for the maximization problems) and
utility goal (for the minimization problems). For the uniform model, the parameters used were pr = pc = 0.2,
m = 50, n = 20, and ` = 100. For the power-law model, the parameters used were α = 5.89, m = 50, n = 20, and
` = 100. Each graph shows the average results over ten randomly generated instances. Each deterministic
algorithm was run once per instance, and each randomized algorithm was run twice per instance.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500

Ut
ilit

y

Number of Providers

Full-row utility maximization for uniform model

2-Stage Greedy
2-Stage Random
1-Stage Greedy

1-Stage Random

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

So
lu

tio
n

Co
st

Number of Providers

Full-row cost minimization for uniform model

2-Stage Greedy
2-Stage Random
1-Stage Greedy

1-Stage Random

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 50 100 150 200 250 300 350 400 450 500

Ut
ilit

y

Number of Providers

Partial-row utility maximization for uniform model

1-Stage Greedy
1-Stage Random

Figure 2: The solution quality of our algorithms as
a function of the number of the number of providers
for the uniform model. The parameters used were
pr = pc = 0.2, m = 50, n = 20, B = 75 (for the maxi-
mization problems), and U = 15 (for the minimiza-
tion problems). Each graph shows the average re-
sults over ten randomly generated instances (except
for ` = 500, which was run on less instances because
of time constraints). Each deterministic algorithm
was run once per instance, and each randomized al-
gorithm was run twice per instance.

number of rows.To ensure that we were isolating the effect
of m on the running time we set B large enough in the
maximization problems to ensure that every row and col-
umn could be purchased, and set U large enough in the
minimization problem to ensure that every row and column
would be purchased. Figure 3 shows the result of this exper-
iment on the FullRowMaxUtility model (as well as the
specific parameter values). We also tested the algorithms
on the FullRowMinCost and PartialRowMaxUtility
models, but we omit the figures because they are very similar
to the results for FullRowMaxUtility.

Note that for all values of m, the algorithms from fastest to
slowest are 2-StageRandom, 2-StageGreedy,
1-StageRandom, and 1-StageGreedy. Although it may
seem surprising that the two-stage algorithms are faster than
the one-stage algorithms, the reason for this is actually fairly
simple. In the one-stage algorithms, the next purchase to
make is chosen from a large number of purchases (extend-
ing over many rows). This means that a large data struc-
ture containing the feasible purchases must be maintained
throughout the algorithm. In the two-stage algorithms, on
the other hand, the next purchase to make is always cho-
sen from the current row being completed. This more local
decision can be made much more efficiently.

The main conclusion that we can draw from this experiment
is that there is little advantage to the one-stage algorithms,
since 2-StageGreedy is more efficient, and produces higher
quality solutions except for small budgets or few providers.
Furthermore, greedy algorithms achieve much higher qual-
ity solutions than random algorithms, but are significantly
slower. This presents a reasonable tradeoff, between
2-StageGreedy and 2-StageRandom .

6. CONCLUSION AND FUTURE WORK
In this report we have motivated the need for Relational
Data Markets. We proposed a formal model for several op-
timization problems that are inherent in running queries in
such systems. We showed that these problems were all NP-
hard, and for the full-row models, they are even hard to
approximate to within a constant factor. For the Partial-
RowMaxUtility version of the problem, we gave an ap-
proximation algorithm and a polynomial-time dynamic pro-
gramming algorithm for two natural special cases. Beyond
these theoretical results, we proposed a heuristic for the full-
row models and ran experiments to show both that it pro-
duces relatively high-quality solutions and has a reasonable
running time.

There are several interesting directions for future work. Re-
garding our theoretical results, it would be interesting to find
an approximation algorithm for either the FullRowMin-
Cost problem or the general case of the PartialRowMaxU-
tility problem. For our heuristic results, it would be useful
to have a heuristic algorithm that has a performance as good
as 2-StageGreedy but that scales better for large values
of m.

A simplification that we have made is that the utility of a
row is known before the data in the column is known. In
practice, it seems more realistic that the utility of a row is
only known after the actual data inside the column is known.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160 180 200

Av
er

ag
e

tim
e

(s
ec

on
ds

)

Number of rows

Full-row utility maximization for uniform model

2-Stage Greedy
2-Stage Random
1-Stage Greedy

1-Stage Random

s

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180 200

Av
er

ag
e

tim
e

(s
ec

on
ds

)

Number of rows

Full-row utility maximization for power law model

2-Stage Greedy
2-Stage Random
1-Stage Greedy

1-Stage Random

Figure 3: The running time of the algorithms, as a function of m, the number of rows. The parameters used
were pr = pc = 0.2, α = 5.89, n = 20, ` = 20, and B = 75. The graphs show the average results over 10 instances.
Each deterministic algorithm was run once per instance, and each randomized algorithm was run twice per
instance.

We believe that there is a potential for interesting theoretical
models for this. An algorithm in this model would have to
pay to learn about the utility for a row, and would therefore
have to find a balance between exploring for new valuable
rows and completing rows it already knows are valuable.

Another interesting theoretical problem would be to exam-
ine RDMs from the point of view of the provider. We
have assumed the prices are fixed, but in future work we
would like to examine the game-theoretic decisions faced by
a provider in choosing a pricing scheme for its data.

Of course, one of the most interesting directions for future
work would be to actually implement an RDM. There are
a number of practical concerns that would have to be ad-
dressed. For example, we have assumed that schemas are
consistent between the different providers, which seems un-
likely to be the case in practice. We have also assumed that
every provider has gives trustworthy data, which is another
assumption that would have to be removed in a real system.

Although there are a number of challenges facing an imple-
mentor of an RDM, we believe that by providing incentives
to heterogeneous parties to provide useful data, RDMs have
the potential to help create more efficient data aggregation
in domains as diverse as direct marketing and oceanography.

7. REFERENCES
[1] P. M. G. Apers, A. R. Hevner, and S. B. Yao.

Optimization algorithms for distributed queries. IEEE
Trans. Softw. Eng., 9(1):57–68, 1983.

[2] S. Banerjee, V. O. K. Li, and C. Wang. Distributed
database systems in high-speed wide-area networks.
Selected Areas in Communications, IEEE Journal on,
11(4):617–630, 1993.

[3] U. Feige. A threshold of ln n for approximating set
cover. J. ACM, 45(4):634–652, 1998.

[4] A. Y. Halevy, N. Ashish, D. Bitton, M. Carey,
D. Draper, J. Pollock, A. Rosenthal, and V. Sikka.

Enterprise information integration: successes,
challenges and controversies. In SIGMOD ’05:
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 778–787,
New York, NY, USA, 2005. ACM Press.

[5] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo,
S. Shenker, and I. Stoica. Querying the internet with
pier, Sept. 2003.

[6] S. Jain and P. K. Kannan. Pricing of information
products on online servers: Issues, models, and
analysis. Management Science, 48(9):1123–1142, 2002.

[7] M. Lenzerini. Data integration: a theoretical
perspective. In PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
233–246, New York, NY, USA, 2002. ACM Press.

[8] G. Nehmauser, L. Wolsey, and M. Fisher. An analysis
of the approximations for maximizing submodular set
functions. Mathematical Programming, 14:265–294,
1978.

[9] U. Srivastava, K. Munagala, J. Widom, and
R. Motwani. Query optimization over web services. In
VLDB ’06, 2006.

[10] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A
wide-area distributed database system. VLDB
Journal: Very Large Data Bases, 5(1):48–63, 1996.

[11] M. Stonebraker and J. M. Hellerstein. Content
integration for e-business. In SIGMOD ’01:
Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 552–560,
New York, NY, USA, 2001. ACM.

APPENDIX
Proof of Theorem 1. Suppose we had an algorithm that

could find a solution to FullRowMaxUtility in polyno-
mial time that was guaranteed to be within 1/f of the op-
timal solution. We will show how such an algorithm can be
used to solve the SetCover problem exactly, which is NP -
hard. The intuition behind the proof is that the completion
of each row is in essence a set cover problem, so maximizing
the number of completed rows is tantamount to maximizing
the number of set cover instances solved. Yet not even a
single set cover instance can be solved in polynomial time.

Consider an instance (S, U, k) of the set cover problem, where
U is the universe of elements which must be covered, S is
the set of subsets of U , and the goal is to cover U with
k elements of S. We reduce this instance of set cover to
FullRowMaxUtility as follows. The canonical table D
will contain only a single row, and n = |U | columns, one
for each element of the set cover universe. Each set in S
will be represented by a single provider, selling the subset
of columns corresponding the elements in S. Finally, the
utility of the single row will be 1, the cost of each provider’s
subset of the columns is 1, and the user’s budget is k.

It is easy to see that in the above formulation, a solution to
the set cover instance exists if and only if there is there is
a solution to the FullRowMaxUtility problem achieving
utility 1. If such a solution exists, then since the providers
have uniform cost, the subsets of k providers cover the entire
row, and hence the corresponding k sets in S cover U . On
the other side, if a solution to the set cover instance exists,
then the corresponding k providers will cover the entire row,
achieving utility 1 with budget B = k.

Finally, we need only to see that any approximation algo-
rithm for FullRowMaxUtility in fact has equivalent be-
havior to an exact algorithm, on input generated from this
reduction. If a utility 1 solution exists, any f -approximation
algorithm will find it, because it is guaranteed to find a so-
lution having utility ≥ opt

f
= 1

f
. Yet no fractional solutions

exist to these instances, so such a solution must itself have
utility ≥ 1. On the other hand, if no utility 1 solution ex-
ists, the maximum utility achievable is 0, so the approxima-
tion algorithm will neccessarily produce a utility 0 solution.
Hence, an f approximation algorithm for FullRowMaxU-
tility for f > 0, is equivalent to an exact algorithm for the
purposes of the reduction from Set Cover. Our reduction
clearly operates in polynomial time, so an f -approximation
algorithm for cannot exist unless Set Cover is in P, that is,
unless P = NP.

Proof of Theorem 2. We prove this result again by re-
duction from set cover. We will use the same mapping as to
FullRowMaxUtility but because we will show that the
reduction to the minimization version is approximation pre-
serving. This means that any approximation algorithm for
FullRowMinCost will imply an approximation algorithm
with the same approximation factor for Set Cover. Since Set
Cover isknown to be log n-inapproximable [3], this implies
that FullRowMinCost is log n-inapproximable as well.

Consider the reduction from set cover to FullRowMaxU-
tility described above, with the modification that the bud-

get is left to vary, and the utility that must be achieved is
fixed to 1. We show that for each solution to the resulting
FullRowMinCost instance, using budget b, there exists a
corresponding solution to the set cover instance with cost
b, and vice versa. Note that we are now considering the
minimization version of Set Cover, rather than simply the
decision problem. A solution to the Set Cover instance hav-
ing cost b is a set of b sets in S, that cover U . Each of these
sets si corresponds to a provider for the FullRowMinCost
problem, selling the subset of columns corresponding to the
elements of si. Hence, the union of these si cover the entire
row, implying a b-budget solution (since each provider has
unit cost). On the other side, a b-budget solution to the
FullRowMinCost instance is a set of b providers whose
columns cover the entire row. Hence, the corresponding
sets in the set cover instance cover all of U , and there is
a b-cost solution to the set cover instance. Since there is
a bijection between solutions of the set cover instance and
the FullRowMinCost instance, and the corresponding so-
lutions have the same cost, the optimum values of the in-
stances are the same. Any f -approximation algorithm for
FullRowMinCost will achieve a cost of f • opt, which is
easily converted to a solution of cost f •opt for the set cover
instance. Hence, the reduction is approximation preserving.

Proof of Theorem 3. The proof is by reduction to Max-
Submodular. Define a purchase to be a row-provider pair
(i, k), which indicates that row i was bought from provider
k. Let f be a function from sets of purchases to real num-
bers that indicates the utility of that set of purchases. More
precisely, for a set of purchases S, let

PS = {(i, j) : ∃k such that (i, k) ∈ S and j ∈ Ck}

be the set of row column pairs contained in that purchase,
and let f(S) =

P
(i,j)∈PS

uij .

The function f is clearly monotone. We also claim that it
is submodular. To see this, consider two sets of purchases
S ⊆ T , and a purchase (i, k) 6∈ T . Let S′ = S ∪ {(i, k)} and
T ′ = T ∪ {(i, k)}. Then

f(S′)− f(S) =
X

(i′,j)∈(P{(i,k)}\PS)

ui′j

and

f(T ′)− f(T) =
X

(i′,j)∈(P{(i,k)}\PT)

ui′j .

Since S ⊆ T , we have PS ⊆ PT , and hence P{(i,k)} \ PS ⊇
P{(i,k)} \PT . Therefore, f(S′)−f(S) ≥ f(T ′)−f(T), which
proves that f is submodular.

Given that the price of each row is p, let α = bB/pc. With-
out loss of generality, we can assume that the optimal solu-
tion makes α purchases from providers, since f is monotone.
Hence, the PartialRowMaxUtility problem is the prob-
lem of selecting a set of α purchases that maximizes the
utility f . Since f is monotone submodular, by Theorem 3,
the greedy algorithm for this problem achieves an approxi-
mation of 1− 1/e.

Proof of Theorem 5. In order to prove this theorem,
we reduce it to a problem we call KChoiceKnapsack. An
instance of KChoiceKnapsack consists of n items that may
be purchased, each with k variants. Each variant of each
item has an arbitrary utility for acquiring it, but each items
must be purchased in only one or zero of its k variants. The
costs are more constrained: there are only k possible costs
total, one for each variant, and the ith variant of each item
has the same costs as the ith variant of each other. The goal,
then, is to maximize the total utility of the items purchased,
while remaining under a budget B. Formally, an instance
is composed of an utility matrix U ∈ Rn×k, a cost vector
C ∈ Rk, and a budget B ∈ R.

The straightforward reduction from PartialRowMaxUtil-
ity to KChoiceKnapsack relies on the observation that
the choices we make for the purchasing columns for a given
row are independent of those for another row, except in so
far as we must choose how much we wish to spend on a given
row based on the necessary expenditure for the other rows.
This is where the k-choice component comes in. If there
are ` providers, then for a given row there are ≤ 2` ways to
buy entries from that row: we can purchase the columns for
that row offered by any subset of the providers; (note that
multiple subsets of the providers may share both the same
total cost and utility for that row). Furthermore, the cost of
a given subset of providers is the same for every row. Thus,
letting k = 2`, we can reduce the problem to an instance of
KChoiceKnapsack where each item corresponds to a row,
and each variant corresponds to a subset of the providers we
can purchase it from.

KChoiceKnapsack remains a hard problem in general, but
if we constrain the number of choices k to a constant, cor-
responding to a constant number of providers in Partial-
RowMaxUtility, we show that the problem has a polyno-
mial time algorithm.

We describe a dynamic programming-based algorithm for
KChoiceKnapsack which computes the optimal solution
in time Poly(k, n, m). Since ` is a constant, and the reduc-
tion from PartialRowMaxUtilityto KChoiceKnapsack
sets k = 2`, the algorithm runs in Poly(n, m).

At each level of the dynamic programming, we will compute
the optimal solution using some restricted piece of our bud-
get, after making only the first i choices. Specifically, we
define the function q(b, i) to be the maximum utility that
can be achieved, by expending cost b on the first i items.
The update procedure is defined as follows.

q(b, i) = max{q(b, i− 1), maxk{(ui,k + q(b− ci, i− 1)}}

, where ui,k is the utility of the kth variant of the ith item,
and ci is the cost of the ith item.

The intuitive explanation for the above update formula is
that for each item, we may choose not to make any choice,
thus our cost and utility choosing among the first i items
remains that of choosing among the first i − 1. Otherwise,
we can make one of the k choices, and earn the utility of
that choice, along with the maximum utility achievable by
spending the remaining budget on the first i items.

To find our final result, we must compute q(B, m). In or-
der to do this, we compute each value q(b, i) for integers
b ≤ B and i ≤ m, computing the function for smaller pa-
rameters first, and using these for larger values. Note that
the dependency of computing the values for a given pair of
parameters depends only parameter pairs in which i is de-
creased, so there is a valid order in which to evaluate the
function differing parameters.

We now need only show that the number of parameter pairs
on which we must evaluate q is polynomial in m and n; since
the update procedure takes polynomial time (assuming that
the dependent values have already been computed), this will
imply that the full algorithm runs in polynomial time. B
may be super-polynomial in m and n. Fortunately, it is easy
to see that we need only compute q(b, i) for values of b that
are potential costs of choosing variants of the items. There
are at most k different costs to consider; since there are m
items, we need only consider values b = B−

P
1≤j≤k(aj · ci)

for all sets of k integers aj s.t.
P

1≤j≤k aj ≤ m. Here aj

indicates the number of items for which variant j is selected.
There are clearly fewer than mk such sets of aj , since each
aj can take one of at most m different values. Hence, only
mk values of b must be considered. Furthermore, there are
at most m values for the second parameter, hence the total
number of pairs of parameters for which q must be com-
puted is mk+1, which, because ` is constant, is polynomial
in m.

