
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska

Winter 2009

Lecture 8 - Query optimization

CSE 544 - Winter 2009 2

References

•  Access path selection in a relational database
management system.

 Selinger. et. al. SIGMOD 1979

•  Database management systems.

 Ramakrishnan and Gehrke.

 Third Ed. Chapter 15.

CSE 544 - Winter 2009 3

Outline

•  Basic query optimization algorithm

•  Typical query optimizer (based on System R)
–  Estimating the cost of a query plan

–  Search space

–  Algorithm for enumerating query plans

•  Other types of optimizers

CSE 544 - Winter 2009 4

Query Optimization Algorithm

•  For a query
–  There exists many physical query plans

–  Query optimizer needs to pick a good one

•  Basic query optimization algorithm
–  Enumerate alternative plans

–  Compute estimated cost of each plan
•  Compute number of I/Os

•  Optionally take into account other resources

–  Choose plan with lowest cost

–  This is called cost-based optimization

CSE 544 - Winter 2009 5

Outline

•  Basic query optimization algorithm

•  Typical query optimizer (based on System R)
–  Estimating the cost of a query plan

–  Search space

–  Algorithm for enumerating query plans

•  Other types of optimizers

CSE 544 - Winter 2009 6

Estimating Cost of a Query Plan

•  We already how to
–  Compute the cost of different operations

•  We still need to
–  Compute cost of retrieving tuples from disk with different access

paths (for more sophisticated predicates than equality)

–  Compute cost of a complete plan

CSE 544 - Winter 2009 7

Access Path

•  Access path: a way to retrieve tuples from a table
–  A file scan

–  An index plus a matching selection condition

•  Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition
–  Example: Supplier(sid,sname,scity,sstate)
–  B+-tree index on (scity,sstate)

•  matches scity=‘Seattle’

•  does not match sid=3, does not match sstate=‘WA’

CSE 544 - Winter 2009 8

Access Path Selection

•  Supplier(sid,sname,scity,sstate)

•  Selection condition: sid > 300 ∧ scity=‘Seattle’

•  Indexes: B+-tree on sid and B+-tree on scity

•  Which access path should we use?

•  We should pick the most selective access path

CSE 544 - Winter 2009 9

Access Path Selectivity

•  Access path selectivity is the number of pages
retrieved if we use this access path
–  Most selective retrieves fewest pages

•  As we saw earlier, for equality predicates
–  Selection on equality: σa=v(R)

–  V(R, a) = # of distinct values of attribute a
–  1/V(R,a) is thus the reduction factor

–  Clustered index on a: cost B(R)/V(R,a)

–  Unclustered index on a: cost T(R)/V(R,a)

–  (we are ignoring I/O cost of index pages for simplicity)

CSE 544 - Winter 2009 10

Selectivity for Range Predicates

Selection on range: σa>v(R)

•  How to compute the selectivity?

•  Assume values are uniformly distributed

•  Reduction factor X

•  X = (Max(R,a) - v) / (Max(R,a) - Min(R,a))

•  Clustered index on a: cost B(R)*X

•  Unclustered index on a: cost T(R)*X

CSE 544 - Winter 2009 11

Back to Our Example

•  Selection condition: sid > 300 ∧ scity=‘Seattle’
–  Index I1: B+-tree on sid clustered

–  Index I2: B+-tree on scity unclustered

•  Let’s assume
–  V(Supplier,scity) = 20

–  Max(Supplier, sid) = 1000, Min(Supplier,sid)=1
–  B(Supplier) = 100, T(Supplier) = 1000

•  Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70

•  Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50

CSE 544 - Winter 2009 12

Selectivity with
Multiple Conditions

What if we have an index on multiple attributes?

•  Example selection σa=v1 ∧ b= v2(R) and index on <a,b>

How to compute the selectivity?

•  Assume attributes are independent

•  X = 1 / (V(R,a) * V(R,b))

•  Clustered index on <a,b>: cost B(R)*X

•  Unclustered index on <a,b>: cost T(R)*X

CSE 544 - Winter 2009 13

Back to Estimating
Cost of a Query Plan

•  We already how to
–  Compute the cost of different operations

–  Compute cost of retrieving tuples from disk with different access
paths (for more sophisticated predicates than equality)

•  We still need to
–  Compute cost of a complete plan

CSE 544 - Winter 2009 14

Computing the Cost of a Plan

•  Collect statistical summaries of stored data

•  Compute cost in a bottom-up fashion

•  For each operator compute
–  Estimate cost of executing the operation

–  Estimate statistical summary of the output data

CSE 544 - Winter 2009 15

Statistics on Base Data

•  Collected information for each relation
–  Number of tuples (cardinality)

–  Indexes, number of keys in the index
–  Number of physical pages, clustering info

–  Statistical information on attributes
•  Min value, max value, number distinct values

•  Histograms

–  Correlations between columns (hard)

•  Collection approach: periodic, using sampling

CSE 544 - Winter 2009 16

Computing Cost of an Operator

•  The cost of executing an operator depends
–  On the operator implementation

–  On the input data

•  We learned how to compute this in the previous lecture

CSE 544 - Winter 2009 17

Statistics on the Output Data

•  Most important piece of information
–  Size of operator result

–  I.e., the number of output tuples

•  Projection: output size same as input size

•  Selection: multiply input size by reduction factor
–  Similar to what we did for estimating access path selectivity

–  Assume independence between conditions in the predicate

–  (use product of the reduction factors for the terms)

CSE 544 - Winter 2009 18

Estimating Result Sizes

•  For joins R ⋈ S

–  Take product of cardinalities of relations R and S
–  Apply reduction factors for each term in join condition

–  Terms are of the form: column1 = column2

–  Reduction: 1/ (MAX(V(R,column1), V(S,column2))

–  Assumes each value in smaller set has a matching value in
the larger set

CSE 544 - Winter 2009 19

Our Example

•  Suppliers(sid,sname,scity,sstate)

•  Supplies(pno,sid,quantity)

•  Some statistics
–  T(Supplier) = 1000 records

–  B(Supplier) = 100 pages

–  T(Supplies) = 10,000 records
–  B(Supplies) = 100 pages

–  V(Supplier,scity) = 20, V(Supplier,state) = 10

–  V(Supplies,pno) = 3,000

–  Both relations are clustered

CSE 544 - Winter 2009 20

Physical Query Plan 1

Suppliers Supplies

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supplies)
= 100 + 100 * 100
= 10,100 I/Os

CSE 544 - Winter 2009 21

Suppliers Supplies

sno = sno

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2

Total cost
= 100 + 100 * 1/20 * 1/10 (1)
+ 100 + 100 * 1/3000 (2)
+ 2 (3)
+ 0 (4)
Total cost ≈ 204 I/Os

(3)

(4)

CSE 544 - Winter 2009 22

Suppliers Supplies

sno = sno

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(2) σ pno=2

(Scan
 write to T1)

Plan 2 with Different Numbers

Total cost
= 10000 + 50 (1)
+ 10000 + 4 (2)
+ 4*50 + 2*4 + 4 + 50 (3)
+ 0 (4)
Total cost ≈ 20,316 I/Os

What if we had:
10K pages of Suppliers
10K pages of Supplies

Assuming naive
two-pass sort
algorithm

(3)

(4)

23

Supplies Suppliers

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Hash index on sno)
Clustering does not matter

(On the fly)

(1) σ pno=2

(Hash index on pno)
Assume: clustered

Physical Query Plan 3

Total cost
= 1 (1)
+ 4 (2)
+ 0 (3)
+ 0 (3)
Total cost ≈ 5 I/Os

(Use hash index)

(2)

(3)

(4)

(On the fly)

4 tuples

CSE 544 - Winter 2009 24

Simplifications

•  In the previous examples, we assumed that all index
pages were in memory

•  When this is not the case, we need to add the cost of
fetching index pages from disk (see lecture 6)

CSE 544 - Winter 2009 25

Summary

•  What we know
–  Different types of physical query plans

–  How to compute the cost of a query plan
–  Although it is hard to compute the cost accurately

•  We can now compare query plans

•  Let’s now consider how the query optimizer searches
through the space of possible plans

CSE 544 - Winter 2009 26

Outline

•  Basic query optimization algorithm

•  Typical query optimizer (based on System R)
–  Estimating the cost of a query plan

–  Search space

–  Algorithm for enumerating query plans

•  Other types of optimizers

CSE 544 - Winter 2009 27

Relational Algebra Equivalences

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))

–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
–  Cascading

•  Joins

–  Commutative : R ⋈ S same as S ⋈ R

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

CSE 544 - Winter 2009 28

Left-Deep Plans and
Bushy Plans

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

CSE 544 - Winter 2009 29

Relational Algebra Equivalences

•  Selects, projects, and joins
–  We can commute and combine all three types of operators

–  We just have to be careful that the fields we need are available
when we apply the operator

–  Relatively straightforward. See book 15.3.

•  If you like this topic, more info in optional paper (by
Chaudhuri), Section 4.

CSE 544 - Winter 2009 30

Search Space Challenges

•  Search space is huge!
–  Many possible equivalent trees

–  Many implementations for each operator
–  Many access paths for each relation

•  Cannot consider ALL plans

•  Want a search space that includes low-cost plans

CSE 544 - Winter 2009 31

System R Search Space

•  Only left-deep plans
–  Enable dynamic programming for enumeration

–  Facilitate tuple pipelining from outer relation

•  Consider plans with all “interesting orders”

•  Perform cross-products after all other joins (heuristic)

•  Only consider nested loop & sort-merge joins

•  Consider both file scan and indexes

•  Try to evaluate predicates early

CSE 544 - Winter 2009 32

Plan Enumeration Algorithm

•  Idea: use dynamic programming

•  For each subset of {R1, …, Rn}, compute the best plan
for that subset

•  In increasing order of set cardinality:
–  Step 1: for {R1}, {R2}, …, {Rn}

–  Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
–  …

–  Step n: for {R1, …, Rn}

•  It is a bottom-up strategy

•  A subset of {R1, …, Rn} is also called a subquery

CSE 544 - Winter 2009 33

Dynamic Programming Algo.

•  For each subquery Q ⊆{R1, …, Rn} compute the
following:
–  Size(Q)
–  A best plan for Q: Plan(Q)

–  The cost of that plan: Cost(Q)

CSE 544 - Winter 2009 34

Dynamic Programming Algo.

•  Step 1: Enumerate all single-relation plans

–  Consider selections on attributes of relation
–  Consider all possible access paths

–  Consider attributes that are not needed

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

CSE 544 - Winter 2009 35

Dynamic Programming Algo.

•  Step 2: Generate all two-relation plans

–  For each each single-relation plan from step 1
–  Consider that plan as outer relation

–  Consider every other relation as inner relation

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

CSE 544 - Winter 2009 36

Dynamic Programming Algo.

•  Step 3: Generate all three-relation plans

–  For each each two-relation plan from step 2
–  Consider that plan as outer relation

–  Consider every other relation as inner relation

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

•  Steps 4 through n: repeat until plan contains all the
relations in the query

CSE 544 - Winter 2009 37

Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

•  Inspired by System R
–  Left-deep plans and dynamic programming

–  Cost-based optimization (CPU and IO)

•  Go beyond System R style of optimization
–  Also consider right-deep and bushy plans (e.g., Oracle and DB2)
–  Variety of additional strategies for generating plans (e.g., DB2

and SQL Server)

CSE 544 - Winter 2009 38

Other Query Optimizers

•  Randomized plan generation
–  Genetic algorithm

–  PostgreSQL uses it for queries with many joins

•  Rule-based
–  Extensible collection of rules

–  Rule = Algebraic law with a direction
–  Algorithm for firing these rules

•  Generate many alternative plans, in some order

•  Prune by cost

–  Startburst (later DB2) and Volcano (later SQL Server)

