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Outline 

•  Basic query optimization algorithm 

•  Typical query optimizer (based on System R) 
–  Estimating the cost of a query plan 

–  Search space 

–  Algorithm for enumerating query plans 

•  Other types of optimizers 
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Query Optimization Algorithm 

•  For a query  
–  There exists many physical query plans 

–  Query optimizer needs to pick a good one 

•  Basic query optimization algorithm 
–  Enumerate alternative plans 

–  Compute estimated cost of each plan 
•  Compute number of I/Os 

•  Optionally take into account other resources 

–  Choose plan with lowest cost 

–  This is called cost-based optimization 
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Estimating Cost of a Query Plan 

•  We already how to 
–  Compute the cost of different operations 

•  We still need to 
–  Compute cost of retrieving tuples from disk with different access 

paths (for more sophisticated predicates than equality) 

–  Compute cost of a complete plan 
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Access Path 

•  Access path: a way to retrieve tuples from a table 
–  A file scan 

–  An index plus a matching selection condition 

•  Index matches selection condition if it can be used to 
retrieve just tuples that satisfy the condition 
–  Example: Supplier(sid,sname,scity,sstate) 
–  B+-tree index on (scity,sstate)  

•  matches scity=‘Seattle’ 

•  does not match sid=3, does not match sstate=‘WA’ 
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Access Path Selection 

•  Supplier(sid,sname,scity,sstate) 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 

•  Indexes: B+-tree on sid and B+-tree on scity 

•  Which access path should we use? 

•  We should pick the most selective access path 
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Access Path Selectivity 

•  Access path selectivity is the number of pages 
retrieved if we use this access path 
–  Most selective retrieves fewest pages 

•  As we saw earlier, for equality predicates 
–  Selection on equality: σa=v(R) 

–  V(R, a) = # of distinct values of attribute a 
–  1/V(R,a) is thus the reduction factor 

–  Clustered index on a:  cost B(R)/V(R,a) 

–  Unclustered index on a: cost T(R)/V(R,a) 

–  (we are ignoring I/O cost of index pages for simplicity) 
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Selectivity for Range Predicates 

Selection on range: σa>v(R) 

•  How to compute the selectivity? 

•  Assume values are uniformly distributed 

•  Reduction factor X 

•  X = (Max(R,a) - v) / (Max(R,a) - Min(R,a))  

•  Clustered index on a:  cost B(R)*X 

•  Unclustered index on a: cost T(R)*X 
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Back to Our Example 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 
–  Index I1: B+-tree on sid clustered 

–  Index I2: B+-tree on scity unclustered 

•  Let’s assume  
–  V(Supplier,scity) = 20 

–  Max(Supplier, sid) = 1000, Min(Supplier,sid)=1 
–  B(Supplier) = 100, T(Supplier) = 1000 

•  Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70 

•  Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50 
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Selectivity with 
Multiple Conditions 

What if we have an index on multiple attributes? 

•  Example selection σa=v1 ∧ b= v2(R)  and index on <a,b> 

How to compute the selectivity? 

•  Assume attributes are independent 

•  X = 1  /  (V(R,a) *  V(R,b)) 

•  Clustered index on <a,b>:  cost B(R)*X 

•  Unclustered index on <a,b>: cost T(R)*X 
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Back to Estimating  
Cost of a Query Plan 

•  We already how to 
–  Compute the cost of different operations  

–  Compute cost of retrieving tuples from disk with different access 
paths (for more sophisticated predicates than equality) 

•  We still need to 
–  Compute cost of a complete plan 
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Computing the Cost of a Plan 

•  Collect statistical summaries of stored data 

•  Compute cost in a bottom-up fashion 

•  For each operator compute 
–  Estimate cost of executing the operation 

–  Estimate statistical summary of the output data 
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Statistics on Base Data 

•  Collected information for each relation 
–  Number of tuples (cardinality) 

–  Indexes, number of keys in the index 
–  Number of physical pages, clustering info 

–  Statistical information on attributes 
•  Min value, max value, number distinct values 

•  Histograms 

–  Correlations between columns (hard) 

•  Collection approach: periodic, using sampling 
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Computing Cost of an Operator 

•  The cost of executing an operator depends 
–  On the operator implementation 

–  On the input data 

•  We learned how to compute this in the previous lecture 
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Statistics on the Output Data 

•  Most important piece of information 
–  Size of operator result 

–  I.e., the number of output tuples 

•  Projection: output size same as input size 

•  Selection: multiply input size by reduction factor 
–  Similar to what we did for estimating access path selectivity 

–  Assume independence between conditions in the predicate 

–  (use product of the reduction factors for the terms) 



CSE 544 - Winter 2009 18 

Estimating Result Sizes 

•  For joins R  ⋈ S 

–  Take product of cardinalities of relations R and S 
–  Apply reduction factors for each term in join condition 

–  Terms are of the form: column1 = column2 

–  Reduction: 1/ ( MAX( V(R,column1), V(S,column2)) 

–  Assumes each value in smaller set has a matching value in 
the larger set 
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Our Example 

•  Suppliers(sid,sname,scity,sstate) 

•  Supplies(pno,sid,quantity) 

•  Some statistics 
–  T(Supplier) = 1000 records 

–  B(Supplier) = 100 pages 

–  T(Supplies) = 10,000 records 
–  B(Supplies) = 100 pages 

–  V(Supplier,scity) = 20, V(Supplier,state) = 10 

–  V(Supplies,pno) = 3,000 

–  Both relations are clustered 
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Physical Query Plan 1 

Suppliers Supplies 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) Selection and project on-the-fly 
-> No additional cost. 

Total cost of plan is thus cost of join: 
= B(Supplier)+B(Supplier)*B(Supplies) 
= 100 + 100 * 100 
= 10,100 I/Os 
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Suppliers Supplies 

sno = sno 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(On the fly) 

(2) σ pno=2 

(Scan 
 write to T1) 

Physical Query Plan 2 

Total cost 
= 100 + 100 * 1/20 * 1/10 (1) 
+ 100 + 100 * 1/3000 (2) 
+ 2 (3) 
+ 0 (4) 
Total cost  ≈  204 I/Os 

(3) 

(4) 
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Suppliers Supplies 

sno = sno 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(2) σ pno=2 

(Scan 
 write to T1) 

Plan 2 with Different Numbers 

Total cost 
= 10000 + 50 (1) 
+ 10000 + 4 (2) 
+ 4*50 + 2*4 + 4 + 50  (3) 
+ 0 (4) 
Total cost  ≈  20,316 I/Os 

What if we had: 
10K pages of Suppliers 
10K pages of Supplies 

Assuming naive 
two-pass sort 
algorithm 

(3) 

(4) 
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Supplies Suppliers 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Hash index on sno) 
Clustering does not matter 

(On the fly) 

(1) σ pno=2 

(Hash index on pno ) 
Assume: clustered 

Physical Query Plan 3 

Total cost 
= 1 (1) 
+ 4 (2) 
+ 0 (3) 
+ 0 (3) 
Total cost  ≈  5 I/Os 

(Use hash index) 

(2) 

(3) 

(4) 

(On the fly) 

4 tuples 
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Simplifications 

•  In the previous examples, we assumed that all index 
pages were in memory 

•  When this is not the case, we need to add the cost of 
fetching index pages from disk (see lecture 6) 
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Summary 

•  What we know 
–  Different types of physical query plans 

–  How to compute the cost of a query plan 
–  Although it is hard to compute the cost accurately 

•  We can now compare query plans 

•  Let’s now consider how the query optimizer searches 
through the space of possible plans 
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Outline 

•  Basic query optimization algorithm 

•  Typical query optimizer (based on System R) 
–  Estimating the cost of a query plan 

–  Search space 

–  Algorithm for enumerating query plans 

•  Other types of optimizers 
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Relational Algebra Equivalences 

•  Selections 
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R)) 

–  Cascading:  σc1∧c2(R) same as σc2(σc1(R)) 

•  Projections 
–  Cascading 

•  Joins 

–  Commutative : R ⋈ S same as S ⋈ R  

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T  
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Left-Deep Plans and 
Bushy Plans 

R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 
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Relational Algebra Equivalences 

•  Selects, projects, and joins 
–  We can commute and combine all three types of operators 

–  We just have to be careful that the fields we need are available 
when we apply the operator 

–  Relatively straightforward. See book 15.3. 

•  If you like this topic, more info in optional paper (by 
Chaudhuri), Section 4. 
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Search Space Challenges 

•  Search space is huge! 
–  Many possible equivalent trees 

–  Many implementations for each operator 
–  Many access paths for each relation 

•  Cannot consider ALL plans 

•  Want a search space that includes low-cost plans 



CSE 544 - Winter 2009 31 

System R Search Space 

•  Only left-deep plans 
–  Enable dynamic programming for enumeration 

–  Facilitate tuple pipelining from outer relation 

•  Consider plans with all “interesting orders” 

•  Perform cross-products after all other joins (heuristic) 

•  Only consider nested loop & sort-merge joins 

•  Consider both file scan and indexes 

•  Try to evaluate predicates early 
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Plan Enumeration Algorithm 

•  Idea: use dynamic programming 

•  For each subset of {R1, …, Rn}, compute the best plan 
for that subset 

•  In increasing order of set cardinality: 
–  Step 1: for {R1}, {R2}, …, {Rn} 

–  Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn} 
–  … 

–  Step n: for {R1, …, Rn} 

•  It is a bottom-up strategy 

•  A subset of {R1, …, Rn} is also called a subquery 
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Dynamic Programming Algo. 

•  For each subquery Q ⊆{R1, …, Rn} compute the 
following: 
–  Size(Q) 
–  A best plan for Q: Plan(Q) 

–  The cost of that plan: Cost(Q) 
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Dynamic Programming Algo. 

•  Step 1: Enumerate all single-relation plans 

–  Consider selections on attributes of relation 
–  Consider all possible access paths 

–  Consider attributes that are not needed 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 
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Dynamic Programming Algo. 

•  Step 2: Generate all two-relation plans 

–  For each each single-relation plan from step 1 
–  Consider that plan as outer relation 

–  Consider every other relation as inner relation 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 
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Dynamic Programming Algo. 

•  Step 3: Generate all three-relation plans 

–  For each each two-relation plan from step 2 
–  Consider that plan as outer relation 

–  Consider every other relation as inner relation 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 

•  Steps 4 through n: repeat until plan contains all the 
relations in the query 
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Commercial Query Optimizers 

DB2, Informix, Microsoft SQL Server, Oracle 8 

•  Inspired by System R 
–  Left-deep plans and dynamic programming 

–  Cost-based optimization (CPU and IO) 

•  Go beyond System R style of optimization 
–  Also consider right-deep and bushy plans (e.g., Oracle and DB2) 
–  Variety of additional strategies for generating plans (e.g., DB2 

and SQL Server) 
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Other Query Optimizers 

•  Randomized plan generation 
–  Genetic algorithm 

–  PostgreSQL uses it for queries with many joins 

•  Rule-based 
–  Extensible collection of rules 

–  Rule = Algebraic law with a direction 
–  Algorithm for firing these rules 

•  Generate many alternative plans, in some order 

•  Prune by cost 

–  Startburst (later DB2) and Volcano (later SQL Server) 


