
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska

Winter 2009

Lecture 7 - Query execution

and operator algorithms

CSE 544 - Winter 2009

CSE 544 - Winter 2009

References

•  Join processing in database systems with large main
memories. Leonard Shapiro. ACM Transactions on Database
Systems 11(3), 1986. Also in Red Book (3rd and 4th ed)

•  The Anatomy of a Database System. J. Hellerstein and M.
Stonebraker. Section 4. Red Book. 4th Ed.

•  Database management systems.

 Ramakrishnan and Gehrke.

 Third Ed. Chapters 12, 13 and 14.

2

CSE 544 - Winter 2009

Outline

•  Steps involved in processing a query
–  Logical query plan

–  Physical query plan
–  Query execution overview

•  Operator implementations
–  One pass algorithms

–  Two-pass algorithms

–  Index-based algorithms

3

Query Evaluation Steps

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

4

CSE 544 - Winter 2009

Example Database Schema

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)

View: Suppliers in Seattle
CREATE VIEW NearbySupp AS

SELECT sno, sname
FROM Supplier

WHERE scity='Seattle' AND sstate='WA'

5

CSE 544 - Winter 2009

Example Query

•  Find the names of all suppliers in Seattle who supply part
number 2

SELECT sname FROM NearbySupp

WHERE sno IN (SELECT sno

 FROM Supplies

 WHERE pno = 2)

6

CSE 544 - Winter 2009

Steps in Query Evaluation

•  Step 0: admission control
–  User connects to the db with username, password

–  User sends query in text format

•  Step 1: Query parsing
–  Parses query into an internal format

–  Performs various checks using catalog
•  Correctness, authorization, integrity constraints

•  Step 2: Query rewrite
–  View rewriting, flattening, etc.

7

CSE 544 - Winter 2009

Rewritten Version of Our Query

Original query:
SELECT sname
FROM NearbySupp
WHERE sno IN (SELECT sno
 FROM Supplies
 WHERE pno = 2)

Rewritten query:
SELECT S.sname
FROM Supplier S, Supplies U
WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno
AND U.pno = 2;

8

CSE 544 - Winter 2009

Continue with Query Evaluation

•  Step 3: Query optimization
–  Find an efficient query plan for executing the query

–  We will spend a whole lecture on this topic

•  A query plan is
–  Logical query plan: an extended relational algebra tree

–  Physical query plan: with additional annotations at each node
•  Access method to use for each relation

•  Implementation to use for each relational operator

9

CSE 544 - Winter 2009

Extended Algebra Operators

•  Union ∪, intersection ∩, difference -

•  Selection σ

•  Projection π

•  Join

•  Duplicate elimination δ

•  Grouping and aggregation γ

•  Sorting τ

•  Rename ρ

10

CSE 544 - Winter 2009

Logical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

11

CSE 544 - Winter 2009

Query Block

•  Most optimizers operate on individual query blocks

•  A query block is an SQL query with no nesting
–  Exactly one

•  SELECT clause

•  FROM clause

–  At most one
•  WHERE clause

•  GROUP BY clause

•  HAVING clause

12

CSE 544 - Winter 2009

Typical Plan for Block (1/2)

R S

join condition

σ selection condition

π fields

join condition

…

SELECT-PROJECT-JOIN
Query

...

13

CSE 544 - Winter 2009

Typical Plan For Block (2/2)

π fields

γ fields, sum/count/min/max(fields)

havingcondition

σ selection condition

join condition

… …
14

CSE 544 - Winter 2009

How about Subqueries?

SELECT Q.name
FROM Person Q
WHERE Q.age > 25
 and not exists
 SELECT *
 FROM Purchase P
 WHERE P.buyer = Q.name
 and P.price > 100

15

CSE 544 - Winter 2009

How about Subqueries?

SELECT Q.name
FROM Person Q
WHERE Q.age > 25
 and not exists
 SELECT *
 FROM Purchase P
 WHERE P.buyer = Q.name
 and P.price > 100

Purchase Person

buyer=name
 age>25

name

σ

Person

Price > 100

σ

name

-

16

CSE 544 - Winter 2009

Physical Query Plan

•  Logical query plan with extra annotations

•  Access path selection for each relation
–  Use a file scan or use an index

•  Implementation choice for each operator

•  Scheduling decisions for operators

17

CSE 544 - Winter 2009

Physical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

18

CSE 544 - Winter 2009

Final Step in Query Processing

•  Step 4: Query execution
–  How to synchronize operators?

–  How to pass data between operators?

•  What techniques are possible?
–  One thread per process

–  Iterator interface
–  Pipelined execution

–  Intermediate result materialization

19

CSE 544 - Winter 2009

Iterator Interface

•  Each operator implements this interface

•  Interface has only three methods

•  open()
–  Initializes operator state

–  Sets parameters such as selection condition

•  get_next()
–  Operator invokes get_next() recursively on its inputs

–  Performs processing and produces an output tuple

•  close(): clean-up state

20

CSE 544 - Winter 2009

Pipelined Execution

•  Applies parent operator to tuples directly as they are
produced by child operators

•  Benefits
–  No operator synchronization issues

–  Saves cost of writing intermediate data to disk
–  Saves cost of reading intermediate data from disk

–  Good resource utilizations on single processor

•  This approach is used whenever possible

21

CSE 544 - Winter 2009

Pipelined Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

22

CSE 544 - Winter 2009

Intermediate Tuple Materialization

•  Writes the results of an operator to an intermediate table
on disk

•  No direct benefit but

•  Necessary for some operator implementations

•  When operator needs to examine the same tuples
multiple times

23

CSE 544 - Winter 2009

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

24

CSE 544 - Winter 2009

Outline

•  Steps involved in processing a query
–  Logical query plan

–  Physical query plan
–  Query execution overview

•  Operator implementations
–  One pass algorithms

–  Two-pass algorithms

–  Index-based algorithms

25

Why Learn About Op Algos?

•  Implemented in commercial DBMSs

•  Different DBMSs implement different subsets of these
algorithms

•  Good algorithms can greatly improve performance

•  Need to know about physical operators to understand
query optimization

CSE 544 - Winter 2009 26

CSE 544 - Winter 2009

Cost Parameters

•  In database systems the data is on disk

•  Cost = total number of I/Os

•  Parameters:
–  B(R) = # of blocks (i.e., pages) for relation R

–  T(R) = # of tuples in relation R

–  V(R, a) = # of distinct values of attribute a

27

CSE 544 - Winter 2009

Cost

•  Cost of an operation = number of disk I/Os to
–  read the operands

–  compute the result

•  Cost of writing the result to disk is not included
–  Need to count it separately when applicable

28

CSE 544 - Winter 2009

Notions of Clustering

•  Clustered-file organization (aka co-clustering)
–  Tuples of one relation R are placed with a tuple of another

relation S with a common value

•  Clustered relation
–  Tuples of relation are stored on blocks predominantly devoted to

storing that relation
–  Sometimes also called “clustered file organization”

•  Clustered index (aka clustering index)
–  When ordering of data records is close to the ordering of data

entries in the index

29

CSE 544 - Winter 2009

Cost Parameters

•  Clustered relation R:
–  Blocks consists mostly of records from this table

–  B(R) ≈ T(R) / blockSize

•  Unclustered relation R:
–  Its records are placed on blocks with other tables
–  When R is unclustered: B(R) ≈ T(R)

•  When a is a key, V(R,a) = T(R)

•  When a is not a key, V(R,a)

30

CSE 544 - Winter 2009

Cost of Scanning a Table

•  Clustered relation:
–  Result may be unsorted: B(R)

–  Result needs to be sorted: 3B(R)

•  Unclustered relation
–  Unsorted: T(R)

–  Sorted: T(R) + 2B(R)

31

CSE 544 - Winter 2009

One-pass Algorithms

Selection σ(R), projection Π(R)

•  Both are tuple-at-a-time algorithms

•  Cost: B(R), the cost of scanning the relation

Input buffer Output buffer Unary
operator

32

CSE 544 - Winter 2009

Join Algorithms

•  Logical operator:
–  Product(pname, cname) ⋈ Company(cname, city)

•  Propose three physical operators for the join, assuming
the tables are in main memory:
–  Hash join
–  Nested loop join

–  Sort-merge join

33

CSE 544 - Winter 2009

Hash Join

Hash join: R ⋈ S

•  Scan R, build buckets in main memory

•  Then scan S and join

•  Cost: B(R) + B(S)

•  One pass algorithm when B(R) <= M

34

CSE 544 - Winter 2009

Nested Loop Joins

•  Tuple-based nested loop R ⋈ S

•  R is the outer relation, S is the inner relation

•  Cost: B(R) + T(R) B(S) when S is clustered

•  Cost: B(R) + T(R) T(S) when S is unclustered

for each tuple r in R do

 for each tuple s in S do

 if r and s join then output (r,s)

35

CSE 544 - Winter 2009

Page-at-a-time Refinement

•  Cost: B(R) + B(R)B(S) if S is clustered

•  Cost: B(R) + B(R)T(S) if S is unclustered

for each page of tuples r in R do

 for each page of tuples s in S do

 for all pairs of tuples

 if r and s join then output (r,s)

36

CSE 544 - Winter 2009

Nested Loop Joins

•  We can be much more clever

•  How would you compute the join in the following cases ?
What is the cost ?

–  B(R) = 1000, B(S) = 2, M = 4

–  B(R) = 1000, B(S) = 3, M = 4

–  B(R) = 1000, B(S) = 6, M = 4

37

CSE 544 - Winter 2009

for each (M-2) pages ps of S do

 for each page pr of R do

 for each tuple s in ps

 for each tuple r in pr do

 if “r and s join” then output(r,s)

Nested Loop Joins

•  Block Nested Loop Join

•  Group of (M-2) pages of S is called a “block”

38

CSE 544 - Winter 2009

Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

39

CSE 544 - Winter 2009

Nested Loop Joins

•  Cost of block-based nested loop join
–  Read S once: cost B(S)

–  Outer loop runs B(S)/(M-2) times, and each time need to read R:
costs B(S)B(R)/(M-2)

–  Total cost: B(S) + B(S)B(R)/(M-2)

•  Notice: it is better to iterate over the smaller relation first

40

CSE 544 - Winter 2009

Sort-Merge Join

Sort-merge join: R ⋈ S

•  Scan R and sort in main memory

•  Scan S and sort in main memory

•  Merge R and S

•  Cost: B(R) + B(S)

•  One pass algorithm when B(S) + B(R) <= M

•  Typically, this is NOT a one pass algorithm

41

CSE 544 - Winter 2009

One-pass Algorithms

Duplicate elimination δ(R)

•  Need to keep tuples in memory

•  When new tuple arrives, need to compare it with
previously seen tuples

•  Balanced search tree or hash table

•  Cost: B(R)

•  Assumption: B(δ(R)) <= M

42

CSE 544 - Winter 2009

One-pass Algorithms

Grouping:
 Product(name, department, quantity)
γdepartment, sum(quantity) (Product) Answer(department, sum)

How can we compute this in main memory ?

43

CSE 544 - Winter 2009

One-pass Algorithms

•  Grouping: γ department, sum(quantity) (R)

•  Need to store all departments in memory

•  Also store the sum(quantity) for each department

•  Balanced search tree or hash table

•  Cost: B(R)

•  Assumption: number of depts fits in memory

44

CSE 544 - Winter 2009

Outline

•  Steps involved in processing a query
–  Logical query plan

–  Physical query plan
–  Query execution overview

•  Operator implementations
–  One pass algorithms

–  Two-pass algorithms

–  Index-based algorithms

45

CSE 544 - Winter 2009

Two-Pass Algorithms

•  What if data does not fit in memory?

•  Need to process it in multiple passes

•  Two key techniques
–  Hashing

–  Sorting

46

CSE 544 - Winter 2009

Two Pass Algorithms
Based on Hashing

•  Idea: partition a relation R into buckets, on disk

•  Each bucket has size approx. B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

•  Does each bucket fit in main memory ?
– Yes if B(R)/M <= M, i.e. B(R) <= M2

47

CSE 544 - Winter 2009

Hash Based Algorithms for δ

•  Recall: δ(R) = duplicate elimination

•  Step 1. Partition R into buckets

•  Step 2. Apply δ to each bucket

•  Cost: 3B(R)

•  Assumption: B(R) <= M2

48

CSE 544 - Winter 2009

Hash Based Algorithms for γ

•  Recall: γ(R) = grouping and aggregation

•  Step 1. Partition R into buckets

•  Step 2. Apply γ to each bucket

•  Cost: 3B(R)

•  Assumption: B(R) <= M2

49

CSE 544 - Winter 2009

Simple Hash Join

R ⋈ S
•  Step 1:

–  P = min(M-3, B(S))
–  Choose hash function h and set of hash values s.t. P blocks of S

tuples will hash into that set
–  Hash S and either insert tuple into hash table or write to disk

•  Step 2
–  Hash R and either probe the hash table for S or write to disk

•  Step 3
–  Repeat steps 1 and 2 until all tuples are processed

50

CSE 544 - Winter 2009

•  Build a hash-table for M-3 pages of S

•  Write remaining pages of S back to disk

Simple Hash Join

. . .

. . .

Original
relation S

Hash table for P blocks of S
(M-3 pages)

Input buffer for S Output buffer

. . .

Passed over tuples of S

Unused

51

CSE 544 - Winter 2009

•  Hash R using the same hash function

•  Probe hash table for S or write tuples of R back to disk

Simple Hash Join

. . .

. . .

Original
relation R

Hash table for P blocks of S
(M-3 pages)

Input buffer for R Output buffer

. . .

Join results
and passed over R tuples

•  Repeat these two steps until all tuples are processed

•  Requires many passes
52

CSE 544 - Winter 2009

Partitioned (Grace) Hash Join

R ⋈ S
•  Step 1:

–  Hash S into M-1 buckets
–  Send all buckets to disk

•  Step 2
–  Hash R into M-1 buckets
–  Send all buckets to disk

•  Step 3
–  Join every pair of buckets

53

CSE 544 - Winter 2009

•  Partition both relations using hash fn h

•  R tuples in partition i will only match S tuples in partition i.

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

Partitioned Hash Join

54

CSE 544 - Winter 2009

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

Partitioned Hash Join

•  Read in partition of R, hash it using h2 (≠ h)
–  Build phase

•  Scan matching partition of S, search for matches
–  Probe phase

55

CSE 544 - Winter 2009

Partitioned Hash Join

•  Cost: 3B(R) + 3B(S)

•  Assumption: min(B(R), B(S)) <= M2

56

CSE 544 - Winter 2009

Hybrid Hash Join Algorithm

•  Assume we have extra memory available

•  Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

•  Partition R into k buckets
–  First t buckets join immediately with S
–  Rest k-t buckets go to disk

•  Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

57

CSE 544 - Winter 2009

Hybrid Hash Join Algorithm

•  How to choose k and t ?
–  Choose k large but s.t. k <= M

–  Choose t/k large but s.t. t/k * B(S) <= M
–  Moreover: t/k * B(S) + k-t <= M

•  Assuming t/k * B(S) >> k-t: t/k = M/B(S)

58

CSE 544 - Winter 2009

Hybrid Hash Join Algorithm

•  How many I/Os ?

•  Cost of partitioned hash join: 3B(R) + 3B(S)

•  Hybrid join saves 2 I/Os for a t/k fraction of buckets

•  Hybrid join saves 2t/k(B(R) + B(S)) I/Os

•  Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

59

CSE 544 - Winter 2009

External Sorting

•  Problem: Sort a file of size B with memory M

•  Where we need this:
–  ORDER BY in SQL queries

–  Several physical operators

–  Bulk loading of B+-tree indexes.

•  Will discuss only 2-pass sorting, for when B < M2

60

CSE 544 - Winter 2009

External Merge-Sort: Step 1

•  Phase one: load M pages in memory, sort

Disk Disk

.
Size M pages

Main memory

Runs of length M pages
61

CSE 544 - Winter 2009

External Merge-Sort: Step 2

•  Merge M – 1 runs into a new run

•  Result: runs of length M (M – 1)≈ M2

Disk Disk

.
Input M

Input 1

Input 2
. . . .

Output

If B <= M2 then we are done

Main memory

62

CSE 544 - Winter 2009

External Merge-Sort

•  Cost:
–  Read+write+read = 3B(R)

–  Assumption: B(R) <= M2

•  Other considerations
–  In general, a lot of optimizations are possible

63

CSE 544 - Winter 2009

Two-Pass Algorithms
Based on Sorting

Duplicate elimination δ(R)

•  Trivial idea: sort first, then eliminate duplicates

•  Step 1: sort chunks of size M, write
–  cost 2B(R)

•  Step 2: merge M-1 runs, but include each tuple only once
–  cost B(R)

•  Total cost: 3B(R), Assumption: B(R) <= M2

64

CSE 544 - Winter 2009

Two-Pass Algorithms
Based on Sorting

Grouping: γa, sum(b) (R)

•  Same as before: sort, then compute the sum(b) for each
group of a’s

•  Total cost: 3B(R)

•  Assumption: B(R) <= M2

65

CSE 544 - Winter 2009

Two-Pass Algorithms
Based on Sorting

Join R ⋈ S

•  Start by sorting both R and S on the join attribute:
–  Cost: 4B(R)+4B(S) (because need to write to disk)

•  Read both relations in sorted order, match tuples
–  Cost: B(R)+B(S)

•  Total cost: 5B(R)+5B(S)

•  Assumption: B(R) <= M2, B(S) <= M2

66

CSE 544 - Winter 2009

Two-Pass Algorithms
Based on Sorting

Join R ⋈ S

•  If B(R) + B(S) <= M2

 Or if we use a priority queue to create runs of length 2|M|

 (see paper)

•  If the number of tuples in R matching those in S is small
(or vice versa) we can compute the join during the merge
phase

•  Total cost: 3B(R)+3B(S)

67

CSE 544 - Winter 2009

Outline

•  Steps involved in processing a query
–  Logical query plan

–  Physical query plan
–  Query execution overview

•  Operator implementations
–  One pass algorithms

–  Two-pass algorithms

–  Index-based algorithms

68

CSE 544 - Winter 2009

Review: Access Methods

•  Heap file
–  Scan tuples one at the time

•  Hash-based index
–  Efficient selection on equality predicates

–  Can also scan data entries in index

•  Tree-based index
–  Efficient selection on equality or range predicates
–  Can also scan data entries in index

69

CSE 544 - Winter 2009

Index Based Selection

•  Selection on equality: σa=v(R)

•  V(R, a) = # of distinct values of attribute a

•  Clustered index on a: cost B(R)/V(R,a)

•  Unclustered index on a: cost T(R)/V(R,a)

•  Note: we ignored the I/O cost for the index pages

70

CSE 544 - Winter 2009

Index Based Selection

•  Example:

•  Table scan (assuming R is clustered)
–  B(R) = 2,000 I/Os

•  Index based selection
–  If index is clustered: B(R)/V(R,a) = 100 I/Os

–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

•  Lesson
–  Don’t build unclustered indexes when V(R,a) is small !

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

71

CSE 544 - Winter 2009

Index Nested Loop Join

R ⋈ S

•  Assume S has an index on the join attribute

•  Iterate over R, for each tuple fetch corresponding tuple(s)
from S

•  Cost:
–  Assuming R is clustered

–  If index on S is clustered: B(R) + T(R)B(S)/V(S,a)

–  If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

72

CSE 544 - Winter 2009

Summary of External
Join Algorithms

•  Block Nested Loop Join: B(R) + B(R)*B(S)/M

•  Hybrid Hash Join: (3-2M/B(S))(B(R) + B(S))
Assuming t/k * B(S) >> k-t

•  Sort-Merge Join: 3B(R)+3B(S)
Assuming B(R)+B(S) <= M2

•  Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
Assuming R is clustered and S has clustered index on a

73

CSE 544 - Winter 2009

Summary of Query Execution

•  For each logical query plan
–  There exist many physical query plans

–  Each plan has a different cost
–  Cost depends on the data

•  Additionally, for each query
–  There exist several logical plans

•  Next lecture: query optimization
–  How to compute the cost of a complete plan?

–  How to pick a good query plan for a query?

74

