
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska

Fall 2006

Lecture 3 - Relational Model

CSE 544 - Winter 2009

Announcements

•  Projects
–  Need to find a partner

–  Please email us your teams by Monday

•  Monday is a holiday: no class

•  How are paper reviews going?
–  Reading questions? Submissions?

•  Any problems with HW1?

CSE 544 - Winter 2009 2

CSE 544 - Winter 2009

References

•  E.F. Codd. A relational model of data for large shared
data banks. Communications of the ACM, 1970. Sections
1.1-1.4 and all of Section 2.

•  R&G book, chapters 3 (except 3.5), 4, and 5

3

CSE 544 - Winter 2009

Outline

•  Codd’s proposal for relational model
–  Relational model

•  Discussion of Codd’s paper Sections 1, 2.2, and 2.3 (no slides)

–  Relational algebra
•  Discussion of Codd’s paper Section 2 (no slides)

•  Modern relational model
–  Definitions
–  Integrity constraints
–  Algebra and calculus
–  Brief review of SQL
–  Logical data independence with views

4

CSE 544 - Winter 2009

Relation Definition

•  Database is collection of relations

•  Relation R is subset of S1 x S2 x … x Sn

–  Where Si is the domain of attribute i

–  n is number of attributes of the relation

•  Relation is basically a table with rows & columns
–  SQL uses word table to refer to relations

5

CSE 544 - Winter 2009

Properties of a Relation

•  Each row represents an n-tuple of R
•  Ordering of rows is immaterial
•  All rows are distinct
•  Ordering of columns is significant

–  Because two columns can have same domain
–  But columns are labeled so
–  Applications need not worry about order
–  They can simply use the names

•  Domain of each column is a primitive type

•  Relation consists of a relation schema and instance

6

CSE 544 - Winter 2009

More Definitions

•  Relation schema: describes column heads
–  Relation name

–  Name of each field (or column, or attribute)
–  Domain of each field

•  Degree (or arity) of relation: nb attributes

•  Database schema: set of all relation schemas

7

CSE 544 - Winter 2009

Even More Definitions

•  Relation instance: concrete table content
–  Set of tuples (also called records) matching the schema

•  Cardinality of relation instance: nb tuples

•  Database instance: set of all relation instances

8

CSE 544 - Winter 2009

Example

•  Relation schema
 Supplier(sno: integer, sname: string, scity: string, sstate: string)

•  Relation instance

sno sname scity sstate

1 s1 city 1 WA

2 s2 city 1 WA

3 s3 city 2 MA

4 s4 city 2 MA

9

CSE 544 - Winter 2009

Integrity Constraints

•  Integrity constraint
–  Condition specified on a database schema

–  Restricts data that can be stored in db instance

•  DBMS enforces integrity constraints
–  Ensures only legal database instances exist

•  Simplest form of constraint is domain constraint
–  Attribute values must come from attribute domain

10

CSE 544 - Winter 2009

Key Constraints

•  Key constraint: “certain minimal subset of fields is a
unique identifier for a tuple”

•  Candidate key
–  Minimal set of fields

–  That uniquely identify each tuple in a relation

•  Primary key
–  One candidate key can be selected as primary key

11

CSE 544 - Winter 2009

Foreign Key Constraints

•  A relation can refer to a tuple in another relation

•  Foreign key
–  Field that refers to tuples in another relation

–  Typically, this field refers to the primary key of other relation

–  Can pick another field as well

12

CSE 544 - Winter 2009

Key Constraint SQL Examples

CREATE TABLE Part (
 pno integer,

 pname varchar(20),

 psize integer,
 pcolor varchar(20),

 PRIMARY KEY (pno)
);

13

CSE 544 - Winter 2009

Key Constraint SQL Examples

CREATE TABLE Supply(
 sno integer,

 pno integer,

 qty integer,
 price integer

);

14

CSE 544 - Winter 2009

Key Constraint SQL Examples

CREATE TABLE Supply(
 sno integer,

 pno integer,

 qty integer,
 price integer,

 PRIMARY KEY (sno,pno)
);

15

CSE 544 - Winter 2009

Key Constraint SQL Examples

CREATE TABLE Supply(
 sno integer,

 pno integer,

 qty integer,
 price integer,

 PRIMARY KEY (sno,pno),
 FOREIGN KEY (sno) REFERENCES Supplier,
 FOREIGN KEY (pno) REFERENCES Part

);

16

CSE 544 - Winter 2009

Key Constraint SQL Examples

CREATE TABLE Supply(
 sno integer,

 pno integer,

 qty integer,
 price integer,

 PRIMARY KEY (sno,pno),
 FOREIGN KEY (sno) REFERENCES Supplier
 ON DELETE NO ACTION,
 FOREIGN KEY (pno) REFERENCES Part
 ON DELETE CASCADE

);

17

CSE 544 - Winter 2009

General Constraints

•  Table constraints serve to express complex constraints
over a single table

CREATE TABLE Part (
 pno integer,
 pname varchar(20),
 psize integer,
 pcolor varchar(20),
 PRIMARY KEY (pno),
 CHECK (psize > 0)
);

•  It is also possible to create constraints over many tables
18

CSE 544 - Winter 2009

Outline

•  Codd’s proposal for relational model
–  Relational model

•  Discussion of Codd’s paper Sections 1, 2.2, and 2.3 (no slides)

–  Relational algebra
•  Discussion of Codd’s paper Section 2 (no slides)

•  Modern relational model
–  Definitions
–  Integrity constraints
–  Algebra and calculus
–  Brief review of SQL
–  Logical data independence with views

19

CSE 544 - Winter 2009

Relational Queries

•  Query inputs and outputs are relations

•  Query evaluation
–  Input: instances of input relations

–  Output: instance of output relation

20

CSE 544 - Winter 2009

Relational Algebra

•  Query language associated with relational model

•  Queries specified in an operational manner
–  A query gives a step-by-step procedure

•  Relational operators
–  Take one or two relation instances as argument

–  Return one relation instance as result

–  Easy to compose into relational algebra expressions

21

CSE 544 - Winter 2009

Relational Operators

•  Selection: σcondition(S)
–  Condition is Boolean combination (∧,∨) of terms

–  Term is: attr. op constant, attr. op attr.
–  Op is: <, <=, =, ≠, >=, or >

•  Projection: πlist-of-attributes(S)

•  Union (∪), Intersection (∩), Set difference (–),

•  Cross-product or cartesian product (×)

•  Join: R θ S = σθ(R × S)

•  Division: R/S, Rename ρ(R(F),E)

22

CSE 544 - Winter 2009

Selection & Projection Examples

no name zip disease

1 p1 98125 flu

2 p2 98125 heart

3 p3 98120 lung

4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)

no name zip disease

2 p2 98125 heart

4 p4 98120 heart

zip disease

98125 flu

98125 heart

98120 lung

98120 heart

πzip,disease(Patient)

πzip (σdisease=‘heart’(Patient))

zip

98120

98125

23

CSE 544 - Winter 2009

Relational Operators

•  Selection: σcondition(S)
–  Condition is Boolean combination (∧,∨) of terms

–  Term is: attr. op constant, attr. op attr.
–  Op is: <, <=, =, ≠, >=, or >

•  Projection: πlist-of-attributes(S)

•  Union (∪), Intersection (∩), Set difference (–),

•  Cross-product or cartesian product (×)

•  Join: R θ S = σθ(R × S)

•  Division: R/S, Rename ρ(R(F),E)

24

CSE 544 - Winter 2009

Cross-Product Example

age zip disease

54 98125 heart

20 98120 flu

AnonPatient P Voters V

P.age P.zip disease

54 98125 heart

54 98125 heart

20 98120 flu

20 98120 flu

name V.age V.zip

p1 54 98125

p2 20 98120

p1 54 98125

p2 20 98120

P x V

name age zip

p1 54 98125

p2 20 98120

25

CSE 544 - Winter 2009

Different Types of Join

•  Theta-join: R θ S = σθ(R x S)
–  Join of R and S with a join condition θ

–  Cross-product followed by selection θ

•  Equijoin: R θ S = πA (σθ(R x S))
–  Join condition θ consists only of equalities

–  Projection πA drops all redundant attributes

•  Natural join: R S = πA (σθ(R x S))
–  Equijoin

–  Equality on all fields with same name in R and in S

26

CSE 544 - Winter 2009

Theta-Join Example

age zip disease

54 98125 heart

20 98120 flu

AnonPatient P Voters V

P.age P.zip disease

20 98120 flu

name V.age V.zip

p2 20 98120

P P.age=V.age ∧ P.zip=A.zip ∧ P.age < 50 V

name age zip

p1 54 98125

p2 20 98120

27

CSE 544 - Winter 2009

Equijoin Example

age zip disease

54 98125 heart

20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip

p1 54 98125

p2 20 98120

age P.zip disease name V.zip

54 98125 heart p1 98125

20 98120 flu p2 98120

28

CSE 544 - Winter 2009

Natural Join Example

age zip disease

54 98125 heart

20 98120 flu

AnonPatient P Voters V

P V

name age zip

p1 54 98125

p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

29

CSE 544 - Winter 2009

More Joins

•  Outer join
–  Include tuples with no matches in the output

–  Use NULL values for missing attributes

•  Variants
–  Left outer join

–  Right outer join
–  Full outer join

30

CSE 544 - Winter 2009

Outer Join Example

age zip disease

54 98125 heart

20 98120 flu

33 98120 lung

AnonPatient P Voters V

P o V

name age zip

p1 54 98125

p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

33 98120 lung null

31

CSE 544 - Winter 2009

Example of Algebra Queries

Q1: Names of patients who have heart disease

πname(Voter (σdisease=‘heart’ (AnonPatient))

32

CSE 544 - Winter 2009

More Examples

Using relations from Lecture 2
 Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10

πsname(Supplier Supply (σpsize>10 (Part))

Q3: Name of supplier of red parts or parts with size greater than 10

πsname(Supplier Supply (σpsize>10 (Part) ∪ σpcolor=‘red’ (Part)))

(Many more examples in the book)

33

CSE 544 - Winter 2009

Extended Operators
of Relational Algebra

•  Duplicate elimination (δ)
–  Since commercial DBMSs operate on multisets not sets

•  Aggregate operators (γ)
–  Min, max, sum, average, count

•  Grouping operators (γ)
–  Partitions tuples of a relation into “groups”
–  Aggregates can then be applied to groups

•  Sort operator (τ)

34

CSE 544 - Winter 2009

Relational Calculus

•  Alternative to relational algebra

•  Declarative query language
–  Describe what we want NOT how to get it

•  Tuple relational calculus query
–  { T | p(T) }

–  Where T is a tuple variable

–  p(T) denotes a formula that describes T
–  Result: set of all tuples for which p(T) is true

–  Language for p(T) is subset of first-order logic

35

CSE 544 - Winter 2009

Sample TRC Query

Q1: Names of patients who have heart disease

{ T | ∃ P ∈ AnonPatient ∃ V ∈ Voter

 (P.zip = V.zip ∧ P.age = V.age ∧ P.disease = ‘heart’ ∧ T.name = V.name) }

36

CSE 544 - Winter 2009

Outline

•  Codd’s proposal for relational model
–  Relational model

•  Discussion of Codd’s paper Sections 1, 2.2, and 2.3 (no slides)

–  Relational algebra
•  Discussion of Codd’s paper Section 2 (no slides)

•  Modern relational model
–  Definitions
–  Integrity constraints
–  Algebra and calculus
–  Brief review of SQL
–  Logical data independence with views

37

CSE 544 - Winter 2009

Structured Query Language: SQL

•  Influenced by relational calculus

•  Declarative query language

•  Multiple aspects of the language
–  Data definition language

•  Statements to create, modify tables and views

–  Data manipulation language
•  Statements to issue queries, insert, delete data

–  More

38

CSE 544 - Winter 2009

SQL Query

 SELECT <attributes>
 FROM <one or more relations>
 WHERE <conditions>

Basic form: (plus many many more bells and whistles)

39

CSE 544 - Winter 2009

Simple SQL Query

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT *
FROM Product
WHERE category=‘Gadgets’

Product

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks “selection”
40

CSE 544 - Winter 2009

Simple SQL Query

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

“selection” and
“projection”

41

CSE 544 - Winter 2009

Details

•  Case insensitive:
–  Same: SELECT Select select
–  Same: Product product
–  Different: ‘Seattle’ ‘seattle’

•  Constants:
–  ‘abc’ - yes
–  “abc” - no

42

CSE 544 - Winter 2009

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

43

CSE 544 - Winter 2009

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

44

CSE 544 - Winter 2009

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’
 AND Price <= 200

Join
between Product

and Company

45

CSE 544 - Winter 2009

Tuple Variables

SELECT DISTINCT pname, address
FROM Person, Company
WHERE worksfor = cname

Which
address ?

Person(pname, address, worksfor)
Company(cname, address)

SELECT DISTINCT Person.pname, Company.address
FROM Person, Company
WHERE Person.worksfor = Company.cname

SELECT DISTINCT x.pname, y.address
FROM Person AS x, Company AS y
WHERE x.worksfor = y.cname 46

CSE 544 - Winter 2009

Nested Queries

•  Nested query
–  Query that has another query embedded within it

–  The embedded query is called a subquery

•  Why do we need them?
–  Enables us to refer to a table that must itself be computed

•  Subqueries can appear in
–  WHERE clause (common)

–  FROM clause (less common)

–  HAVING clause (less common)

47

CSE 544 - Winter 2009

Subqueries Returning Relations

 SELECT Company.city
 FROM Company
 WHERE Company.name IN
 (SELECT Product.maker
 FROM Purchase , Product
 WHERE Product.pname=Purchase.product
 AND Purchase .buyer = ‘Joe Blow‘);

Return cities where one can find companies that manufacture
products bought by Joe Blow

Company(name, city)
Product(pname, maker)
Purchase(id, product, buyer)

48

CSE 544 - Winter 2009

Subqueries Returning Relations

 SELECT name
 FROM Product
 WHERE price > ALL (SELECT price
 FROM Purchase
 WHERE maker=‘Gizmo-Works’)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

You can also use: s > ALL R
 s > ANY R
 EXISTS R

49

CSE 544 - Winter 2009

Correlated Queries

 SELECT DISTINCT title
 FROM Movie AS x
 WHERE year <> ANY
 (SELECT year
 FROM Movie
 WHERE title = x.title);

 Movie (title, year, director, length)
 Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

50

CSE 544 - Winter 2009

Complex Correlated Query

Product (pname, price, category, maker, year)
•  Find products (and their manufacturers) that are more expensive than all

products made by the same manufacturer before 1972

Very powerful ! Also much harder to optimize.

SELECT DISTINCT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price
 FROM Product AS y
 WHERE x.maker = y.maker AND y.year < 1972);

51

CSE 544 - Winter 2009

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:

 sum, count, min, max, avg

52

CSE 544 - Winter 2009

Grouping and Aggregation

Conceptual evaluation steps:

1.  Evaluate FROM-WHERE, apply condition C1

2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)

4.  Compute aggregates in S and return the result

Read more about it in the book...

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

53

CSE 544 - Winter 2009

Outline

•  Codd’s proposal for relational model
–  Relational model

•  Discussion of Codd’s paper Sections 1, 2.2, and 2.3 (no slides)

–  Relational algebra
•  Discussion of Codd’s paper Section 2 (no slides)

•  Modern relational model
–  Definitions
–  Integrity constraints
–  Algebra and calculus
–  Brief review of SQL
–  Logical data independence with views

54

CSE 544 - Winter 2009

Physical Independence

•  Definition: Applications are insulated from changes in
physical storage details

•  Early models (IMS and CODASYL): No

•  Relational model: Yes
–  Yes through set-at-a-time language: algebra or calculus

–  No specification of what storage looks like
–  Administrator can optimize physical layout

55

CSE 544 - Winter 2009

Logical Independence

•  Definition: Applications are insulated from changes to
logical structure of the data

•  Early models
–  IMS: some logical independence

–  CODASYL: no logical independence

•  Relational model
–  Yes through views

56

CSE 544 - Winter 2009

Views

•  View is a relation

•  But rows not explicitly stored in the database

•  Instead

•  Computed as needed from a view definition

57

CSE 544 - Winter 2009

Example with SQL

Using relations from Lecture 2

 Supplier(sno,sname,scity,sstate)

 Part(pno,pname,psize,pcolor)

 Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts

AS

SELECT * FROM Part WHERE psize > 10;

58

CSE 544 - Winter 2009

Example 2 with SQL

CREATE VIEW Supply_Part2 (name,no)
AS
SELECT R.sname, R.sno
FROM Supplier R, Supply S
WHERE R.sno = S.sno AND S.pno=2;

59

CSE 544 - Winter 2009

Queries Over Views

SELECT * from Big_Parts
WHERE pcolor='blue';

SELECT name
FROM Supply_Part2

WHERE no=1;

60

CSE 544 - Winter 2009

Updating Through Views

•  Updatable views (SQL-92)
–  Defined on single base relation

–  No aggregation in definition
–  Inserts have NULL values for missing fields

–  Better if view definition includes primary key

•  Updatable views (SQL-99)
–  May be defined on multiple tables

•  Messy issue in general

61

CSE 544 - Winter 2009

Levels of Abstraction

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

62

CSE 544 - Winter 2009

Query Translations

Relational Algebra Expression (query plan)

Declarative SQL Query

Physical Query Plan

User or application

Optimizer

63

