CSE 544 Principles of Database Management Systems

Magdalena Balazinska Winter 2009 Lecture 17 - Stream Processing

Announcements

- Remember the final exam this Wednesday
 - During class
 - Open notes and open books
- Next week: project presentations Monday and Thursday
- Final reports due on Friday

References

Aurora: A New Model and Architecture for Data Stream
 Management. Daniel Abadi et. al. VLDB Journal. 12(2). 2003

Outline

Stream processing applications

- Examples
- Requirements

The Aurora stream processing engine

- Stream model and query model
- Processing model
- Operators
- Query examples
- Other features

Stream Processing

CSE 544 - Winter 2009

Application Domains

- Network monitoring
 - Intrusion, fraud, anomaly detection, click streams
- Financial services
 - Market feed processing, ticker failure detection
- Sensor-based environment monitoring
 - Weather conditions, air quality, car traffic
 - Civil engineering, military applications, etc.
- Medical applications
 - Patient monitoring, equipment tracking
- Near real-time data analytics

Requirements

Input data is pushed continuously

- Traditional DBMSs not designed for continuous loading or inserting of individual data items
- "DBMS-active, human passive" model

Users want to execute continuous queries

 Traditional DBMSs have no direct support for such queries. Can use triggers, but triggers do not scale

Low-latency processing

- Need to see results in near real-time
- Data is possibly high-volume and high-rate

Other Requirements

- Distribution
- Load management and load shedding
- Approximate processing, approximate answers
- Fault-tolerance and revision processing
- Exploiting data archives

Outline

Stream processing applications

- Examples
- Requirements

The Aurora stream processing engine

- Stream model and query model
- Processing model
- Operators
- Query examples
- Other features

Stream Data Model

- Stream: append-only sequence of tuples
- All tuples on a stream have same schema
- Timestamp is used for QoS

Query Model

Aurora Operators

- Order-agnostic
 - Filter
 - Мар
 - Union
- Order-sensitive
 - Aggregate
 - Join
 - BSort, Resample

Why do we need new operators?

- Ops cannot block & cannot accumulate state that grows with input

Filter Example

Filter Example

Map Example

new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

Map Example

new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

Union Example

Union Example

Aggregate Example

Aggregate Example

Join Example

Sample Query

- Application: network intrusion detection
- Schema of input stream

(src_ip,src_port,dst_ip,dst_port,time)

- Query
 - Alert me if an IP address establishes more than 100 connections per minute
 - and within 30 seconds of that event
 - the IP tries to connect to more than 10 distinct ports within a minute

Processing Model

23

Additional Features

Load management

– What happens when system is overloaded?

Fault-tolerance

- What happens if a node fails?
- What happens if the network fails?
- What happens if input data is wrong?

Exploiting data archives

- Historical queries, ad-hoc queries
- Integrating push-based processing with pull-based

•