
Dependability, Abstraction,
and Programming

David Lomet
Microsoft Research
lomet@microsoft.com

2/24/09 1

Dependability
  Randell:

  Dependability is the system property that integrates such
attributes as availability, safety, security, survivability,
maintainability.

  Key point: dependability is more than just availability

  Hoare: *
  The price of reliability is utter simplicity- and this is a

price that major software manufacturers find too high to
afford.

  Key point: unless it is easy, natural, and simple,
programming for dependability may well compromise it.

  * Tony now works for Microsoft

2/24/09 2

Current situation
  Gray: on availability

  Everyone has a serious problem
  The BEST people publish their stats
  The others HIDE their stats
  Key point: we have a problem

  Patterson:
  Service outages are frequent

  65% of IT managers report that their websites were
unavailable over a 6-month period;

  Outage costs are high
  Social effects: negative press, loss of customers who

click over to a competitor
  Key point: not only do we have a problem, but it is a

costly problem

  Patterson argues for fast recovery
2/24/09 3

Talk Outline

  Dependability
  Need for dependability
  Scalability and availability techniques

  Abstraction
  What’s right/wrong with transactions
  State management in a “stateless” world
  A new “abstraction (to be revealed)

  Making it work
  Implementing the “new” abstraction
  Phoenix project approach
  “Magic” applied to problem

  Summary

2/24/09 4

TP App Server uses
transactions to access
the DBMS

DBMS

Web Server

TP App Server
…

 IP Sprayer

Web Server

TP App Server

Internet

Slide from Phil Bernstein
2/24/09 5

Scalability/Availability Techniques

 Web based enterprise systems scale
  Frequently with decent availability

 Key is “stateless” mid-tier servers
  Application instantiated anywhere in

middle tier
  No difficulty re-instantiating elsewhere

 But there is state
  Just not in the execution state
  How to handle it??

2/24/09 6

Talk Outline

  Dependability
  Need for dependability
  Scalability and availability techniques

  Abstraction
  What’s right/wrong with transactions
  State management in a “stateless” world
  A new “abstraction (to be revealed)

  Making it work
  Implementing the “new” abstraction
  Phoenix project approach
  “Magic” applied to problem

  Summary

2/24/09 7

Transactions are Terrific but…
  Why terrific?

  Clean semantics, simple and natural to use in
database interactions, implementable with good
performance

  One of two abstractions upon which Database
systems are built
  Other is relational model

  What is the problem?
  Half of enterprise system outside of transaction

boundary- the application half
  Databases recover to last transaction
  What happens to applications?

2/24/09 8

Transactions for Applications

Network
call

call

Server Process

Server Process

Server Process

Request Q

Each method call is a transaction
1. Read state from a transactional queue
2. Invoke the method
3. Write state to the transactional queue

Reply Q

call

Mid-tier
application

2/24/09 9

Stateless Application Step

Invoke Step Read Queue

Read/write
Database

Write Queue

Return

Start
Trans

End
Trans

Continue

Database

No code
outside of

Trans

State lives
in Queue

2/24/09 10

Problems
  Two phase commit

  Performance and latency
  Site autonomy (crucial in internet environment)

  Error handling
  No part of program outside of transaction boundary
  When app step is within a transaction, who handles

transaction failures?
  Not program logic-- At least not in middle tier
  Frequently post to an error queue

  Unnatural “string of beads” style
  Program needs to be re-arranged to fit model
  Especially when multiple servers need to be involved

  E.g. an airline and a car rental company
  Essentially, programmer manages state
  Stored in database and/or transactional queue
  Program organized to facilitate state management

We need a
new

“abstraction
”

2/24/09 11

What’s in a Good Abstraction
  Clean semantics, simple and natural

  But this is not enough
  “Do what I mean” is simple and natural

  Implementable with
  Good performance
  Robustness (reliable and predictable)

  SO THAT- programmer can delegate to the system some
important aspect of his problem
  If too complicated or not sufficiently robust, abstraction can

get in the way
  Historical examples of great abstractions

  Transactions: delegated concurrency control and recovery
while presenting isolated view of system

  Relational model: delegated physical database design
and query processing/optimization to system while
presenting “data independent” conceptual view

2/24/09 12

New Abstraction for Applications

  But old! Stateful Programming Model
  Simple: programmers naturally do it!
  Easy to understand

  Execution state captures much of the application state
  Without having to otherwise manifest it
  This part of state “manages itself” as program executes

  Delegated to the system
  Programmer can focus on “business logic”

  Making program easier to write, understand, debug, maintain
  Must be applied to Enterprise Applications

  Quest for “exactly once” execution semantics
  Equivalent to failure-free execution

  With high availability & scalability
  Requires state persistence & management

  Well “Ha Ha!”
  Can’t be made scalable & available!!!
  How is state captured, moved, re-instantiated?

2/24/09 13

Stateful Application

Request 50
copies of book Order from

Supplier A

Only has 35

Order from
Supplier B

Supplier A

Supplier B

Get rest =15

Transaction
Boundary

Continue

State before,
between, and after

transactions

Transaction
Boundary

2/24/09 14

 Stateful Applications
 (Historically)

Stateful
Program

Network

The problem with stateful
apps is the risk of losing
state as a result of a failure

call

call

Mid-tier
Application

Server Machine

To

Client

Any resource
manager may
have results of

partial execution 2/24/09 15

Talk Outline

  Dependability
  Need for dependability
  Scalability and availability techniques

  Abstraction
  What’s right/wrong with transactions
  State management in a “stateless” world
  A new “abstraction (to be revealed)

  Making it work
  Implementing the “new” abstraction
  Phoenix project approach
  “Magic” applied to problem

  Summary

2/24/09 16

Making Stateful Apps Work #1

2/24/09 17

Making Stateful Apps Work #2

  Providing Availability & Scalability
  State is on log

  So app can be deleted and re-instantiated for
scalability, and can survive crashes

  Application replayed from log to re-instantiate
  After failure
  Or for scalability, manageability

  To redeploy elsewhere
  Ship log elsewhere

2/24/09 18

Phoenix Project (with Roger Barga)
  Provide robust, dependable applications

  Available, scalable, …
  Using stateful program abstraction

  No explicit program logic for dependability
  That is delegated to Phoenix system

  Based on .NET infrastructure
  Component software
  Uses .NET remoting

  Contexts, interception
  Automatic logging of messages

  Checkpointing, replay, monitoring, etc.

2/24/09 19

Phoenix Component Types

2/24/09 20

Interaction Contracts
Bi-lateral (sender/receiver) contracts

  Committed interaction contract (CIC)
  PCOM⇔PCOM
  Guarantees that interaction persists across failures

  Transactional interaction contract (TIC)
  PCOM⇔TCOM
  Permits transactional component to abort
  But final commit is persistent

  External interaction contract (XIC)
  PCOM⇔XCOM
  Permits interaction with external world, which does not

play by our rules
  Only failures during interaction are not masked

2/24/09 21

CIC XIC “SQL
Server”

App
Server
Process

TIC

Browser

Using DHTML

2/24/09 22

Phoenix/App Phoenix/App

Log Log

Component
App 1

Component
App 2

CIC

App see .NET interface CIC: keeps App’s recoverable

Recovery Infrastructure

2/24/09 23

GREAT! But….

2/24/09 24

  How is it possible to have persistent stateful
applications without logging?

  It isn’t, but…
  We can remove logging requirements from part

of the system
  Especially the middle tier
  Permitting those apps to be failed over and re-

instantiated anywhere

  There is a limited precursor for this
  Though we will permit much more

2/24/09 25

Current Phoenix Model

Multiple clients have multiple message interactions with a mid-tier Pcom that
does logging. The mid-tier Pcom interacts with multiple backend servers in
multiple transactions, and may read state at any time.

client
Pcom Pcom Tcom

Testable
State

Log in
mid-tier

Tcom

client
Pcom

System
 read

Log at
client

2/24/09 26

e-Transactions *

client
App
server
Process

backend
server

A single client has a single request/reply
interaction with a middle-tier app server that does
no logging. The app server interacts with the
backend server in a single transaction, propagating
client request id.

Testable
State

No log in
mid-tier

Client supplies
request id for

backend server

This is indeed a
stateful application.
State lives outside of
backend transaction.

* S. Frolund and R. Guerraoui: A Pragmatic Implementation of e-Transactions.
19th IEEE Symp on Reliable Distributed Systems, 186-195, (2000)

2/24/09 27

A client can have multiple message interactions
with a mid-tier LLcom that does not log.
The LLcom interacts with multiple Tcoms-
via Idempotent interactions.

client
Pcom LLcom Tcom

Idempotent
Service

No Log in
mid-tier

Tcom

Logless Persistent Components
 (LLcom’s)

Functional
creation call

Logging occurs both
at client (Pcom) and
at backend (Tcom)
for testable state

This is merely an
example. Many

LLcom’s in middle
tier are permitted.

System
 read

 Pcom
client
Pcom

Client logs user input,
calls to LLCOM

2/24/09 28

LLCOM

Request 50
copies of book Order from

Supplier A

Only has 35

Order from
Supplier B

TCOM A

Get rest =15

Transaction
Boundary

Continue

State before,
between, and after

transactions

TCOM B

Functional
Create

PCOM

LLCOM

Transaction
Boundary

2/24/09 29

2/24/09 30

Some Real Pluses
1.   No log vs optimized log

  No mechanism to support
2.   Middle tier not “recovery aware”

  Except to support “functional create”
3.   Excellent normal case performance

  No logging- indeed, no interception!
4.   No state needing to be shipped

  For failover, scalability, manageability
  Create call simply goes to another system

5.   No increased logging elsewhere
  Tcom’s must log for idempotence

  In any event to cope with in-doubt outcomes
  But will need to retain logged info longer

  Pcom at client must log
  In any event to capture user input

But there are limitations
  Middle tier cannot look around in deciding what to

do in two ways
  Cannot decide which deal to accept at a backend server

based on reads
  Cannot decide which backend server to invoke based on

reads

  Fundamental problem is that reads are rarely
idempotent
  Can change on re-execution!

  We want to exploit non-idempotent reads
  And still be recoverable

2/24/09 31

2/24/09 32

Each interaction
determined by
preceding ones,
not by execution

paths

I1 I2 I3

Tcom1 Tcom2 Tcom3

First execution
controls outcome

Replayed
path can

stray

  Idempotence: duplicate requests are
executed exactly once and return same
reply
  IR(A1,I1) ○ IR(A1,I1) = IR(A1,I1)

  Generalized Idempotence: requests with
the same request id executed exactly once
and return same reply
  Even when other arguments are different!
  Request ID’s are normal message duplicate

detection technique currently
  GIR(Ax,I1) ○ GIR(A1,I1) = GIR(A1,I1)

2/24/09 33

  E-Proc: for “exploratory” reads
  Non-idempotent reads must occur only in E-proc
  E-proc ends always with GIR request

  To same service
  With same request id
  But potentially different other arguments

  No posting of exploratory read info outside of E-proc
  Only result of GIR request passed outward

  Only E-proc’s GIR result impacts LLcom
  E-proc is idempotent and
  LLcom execution outside of E-proc is replayable

2/24/09 34

Middle Tier
Travel Site Session Client Pcom

Rental Car
Request

Reserve
Car

Continue

GIR:
Request Car

Exploratory Read:
Check Convertible
deals

LLcom:
Car Rental Method Car rental

deals DB

Non-idempotent
Read

Depending on if there are
good “convertible” deals,
car request varies

Execution
depends only on

GIR Result
2/24/09 35

First
execution

wins

Abort as “Exploratory Read”

2/24/09 36

2/24/09 37

2/24/09 38

2/24/09 39

LLcom needs replay to rebuild state

Tcom1

GIR1

E-Proc 1

E-Proc is Idempotent

READs

READs

Return

Client Logs

Path is Determined by
Logged First Reply

No LLcom
state change

Client Pcom: client is deterministic during replay
by using logged, not returned, result

Wrap-up Read Example

Client Pcom

Request rental rates

 Avis
Reserve Avis Car

Middle Tier
Session

Non-idempotent
Reads

A request is made to a car rental company, based on choosing the cheapest rates among
those we have read. Logging for this choice is done at the client.

 Hertz Check Rates

Choose lowest cost
rental

Log result

2/24/09 40

Execution
forced
back to

first
execution

Summary

2/24/09 41

Bibliography: Phoenix
web page:
http://www.research.microsoft.com/research/db/phoenix/

  Lomet, D. Persistent Middle Tier Components without Logging. IDEAS Montreal,
CA (July 2005)

  Lomet, D. Robust Web Services via Interaction Contracts. TES'04 Workshop
Toronto, CA (Sept. 2004)

  Barga, R.,Lomet, D., Shegalov, G., and Weikum, G. Recovery Guarantees for
Internet Applications. ACM Trans. on Internet Technology (August 2004)

  Barga, R., Chen, S. and Lomet, D. Improving Logging and Recovery
Performance in Phoenix/App. ICDE Conference, Boston, MA (March 2004)

  Barga, R., Lomet, D., Paparizos, S., Yu, H., and Chandresekaran, S. Persistent
Applications Via Automatic Recovery. IDEAS Conference, Hong Kong (July 2003)

  Barga, R., Lomet, D. Phoenix Project: Fault Tolerant Applications. SIGMOD
Record 31, 2 (June 2002)

  Barga, R., Lomet, D. and Weikum, G. Recovery Guarantees for Multi-tier
Applications. ICDE Conference, San Jose, CA (March 2002)

  Barga, R. and Lomet, D. Measuring and Optimizing a System for Persistent
Database Sessions. ICDE Conference, Heidelberg, Germany (April 2001)

  Barga, R., Lomet, D., Baby, T., and Agrawal, S. Persistent Client-Server
Database Sessions. EDBT Conference, Lake Constance, Germany (Mar. 2000)

  Barga,R. and Lomet, D. Phoenix: Making Applications Robust.(demo paper) ACM
SIGMOD Conference, Philadelphia, PA (June, 1999)

2/24/09 42

