
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska

Winter 2009

Lecture 12 – Google Bigtable

CSE 544 - Winter 2009 2

References

•  Bigtable: A Distributed Storage System for
Structured Data. Fay Chang et. al. OSDI 2006.

Outline

•  Motivation
–  Brief overview of information retrieval

–  Key features of Bigtable

•  Bigtable API

•  Bigtable architecture

•  Bigtable performance and discussion
CSE 544 - Winter 2009 3

CSE 544 - Winter 2009 4

Different Types of Data

•  Structured data
–  All data conforms to a schema. Ex: business data

•  Semistructured data
–  Some structure in the data but implicit and irregular
–  Ex: resume, ads

•  Unstructured data
–  No structure in data. Ex: text, sound, video, images

CSE 544 - Winter 2009 5

Information Retrieval (IR)

•  Goal: search collection of text documents

•  Field exists since the 1950’s

•  Field evolved independently of databases

•  Renewed interest thanks to the Web

–  Traditional IR techniques geared toward relatively

small data collections and expert users

–  Web has millions of documents and non-expert users

CSE 544 - Winter 2009 6

Document Search

•  Two types of queries, called searches

•  Boolean query: recipe AND (beef OR stew)

–  Result: all docs with word “recipe” and word “beef” or

word “stew”

•  Ranked query: “recipe beef stew”

–  Result: list of docs ranked by relevance to query

•  Different from precise RDBMS queries

CSE 544 - Winter 2009 7

Success Criteria

•  Precision

–  Percentage of retrieved docs that are relevant to query

•  Recall

–  Percentage of relevant docs in the database that are

returned in response to a query

•  Goal: high precision and high recall

CSE 544 - Winter 2009 8

IR Framework

•  Need a way to represent documents

•  Need a way to compare documents

CSE 544 - Winter 2009 9

Vector Space Model

•  Term frequencies (TF) term j document i: tij

–  Number of occurrences of term j in document i

–  Intuition: frequent terms are more important

●  Document vector

doc_id word1 word2 ... wordn

1

2

3

Nb occurrences
of wordn in doc2

CSE 544 - Winter 2009 10

TF/IDF Weighting of Terms

•  Term frequencies (TF) term j document i: tij
–  But some terms are frequent in general (e.g., “the”)

–  Some terms frequent is some collections
•  Example: “object” and “class” in Java tutorial docs

•  Inverse doc. frequency (IDF): log(N/nj)
–  N = nb documents; nj = nb docs that contain word j

•  wij = TF * IDF

•  Length normalization: wij
* = wij / (√∑ wik

2)
–  Because some documents longer than others

CSE 544 - Winter 2009 11

•  Assume a t-dimensional space (t is nb terms)

•  Similarity
–  Dot product of document vectors

–  sim(Q, Di) = ∑terms qj* wij*

Document Similarity and Ranking

Term B

Term A Document vector for doc 1

Document vector for doc 2

Document vector for query
θ

CSE 544 - Winter 2009 12

Cosine Similarity

•  We defined
–  wij

* = wij / (√∑ wik
2)

–  sim(Q, Di) = ∑terms qj* wij*

•  Hence, similarity is equal to
–  sim(Q,Di) = (∑terms qj wij) / ((√∑ qik

2) (√∑ wik
2))

–  sim(Q,Di) = Q • Di / |Q| |Di|

–  cos(θ) = Q • Di / |Q| |Di|

•  This metric is called cosine similarity

CSE 544 - Winter 2009 13

Indexing Text Documents

•  Goal: efficient eval. of boolean and ranked queries

•  Before indexing documents
–  Eliminate stop words

–  Stem all the words
•  Goal: reduce related terms to a canonical form

•  Example: “run”, “running”, “runner” all stem to “run”

CSE 544 - Winter 2009 14

Inverted Index

Maps each word to list of docs (inverted list) that contain it

Enables fast retrieval of all docs that contain given term

Hash
value

Term # docs Postings
pointer

0001 Flower 2

0001 Foot 3

0011 Boat 1

doc_id: 1

doc_id: 3

doc_id: 5

doc_id: 8

doc_id: 3

doc_id: 2

Postings file (on disk) Lexicon (in memory)

Hash index (in this example)

CSE 544 - Winter 2009 15

Inverted Index

•  Can also add additional info with each document in the
inverted list

Type Position ... DocID

title 5 ... 8

header 10 ... 8

text 23 ... 3
Flower

CSE 544 - Winter 2009 16

Using Index to Answer Queries

•  Boolean query: intersect/merge doc lists

•  Ranked query:
–  Merge doc lists

–  For each document

–  Compute relevance with respect to query

–  Fetch and return docs in decreasing rank order

CSE 544 - Winter 2009 17

Web Search

•  Goal: high quality results

•  Challenges
–  Large number of documents

–  Large number of terms

–  Malicious content publishers

–  Users are only willing to look at a few results

•  Observations
–  Additional info in hyperlink graph

–  Associate anchor text with destination page

Outline

•  Motivation
–  Brief overview of information retrieval

–  Key features of Bigtable

•  Bigtable API

•  Bigtable architecture

•  Bigtable performance and discussion
CSE 544 - Winter 2009 18

What is Bigtable?

•  Distributed storage system

•  Designed for structured data

•  Designed to scale to thousands of servers

•  Designed to store up to several hundred terabytes

•  To scale, Bigtable has a limited set of features

CSE 544 - Winter 2009 19

Bigtable Data Model

•  Sparse, multidimensional sorted map
•  (row:string, column:string, time:int64) string

•  Example from Fig 1:

CSE 544 - Winter 2009 20

•  How could we use Bigtable for forward/inverted indexes?

Columns are grouped into families

Key Features

•  Read/writes of data under single row key is atomic
–  Only single-row transactions!

•  Data is stored in lexicographical order
–  Improves data access locality

•  Column families are unit of access control

•  Data is versioned (old versions are garbage collected)
–  Example: most recent three crawls of each page, with times

CSE 544 - Winter 2009 21

Outline

•  Motivation
–  Brief overview of information retrieval

–  Key features of Bigtable

•  Bigtable API

•  Bigtable architecture

•  Bigtable performance and discussion
CSE 544 - Winter 2009 22

API

•  Data definition
–  Creating/deleting tables or column families

–  Changing access control rights

•  Data manipulation
–  Writing or deleting values
–  Looking up values from individual rows

–  Iterate over subset of data in the table

•  Bigtable can serve as input to or output from MapReduce

CSE 544 - Winter 2009 23

Outline

•  Motivation
–  Brief overview of information retrieval

–  Key features of Bigtable

•  Bigtable API

•  Bigtable architecture

•  Bigtable performance and discussion
CSE 544 - Winter 2009 24

Chubby Lock Service

•  In a distributed system, agreement is a problem
–  Different failure scenarios are possible

–  Nodes can have inconsistent views of who is up and who is down
–  Messages can arrive out-of-order at different nodes

•  But need agreement to make decisions

•  Chubby
–  Provides black-box agreement service through lock abstraction

–  Uses the well-known Paxos algorithm

CSE 544 - Winter 2009 25

Google File System

•  A file = A series of chunks
–  Size of a chunk ≥ 64MB
–  Append & read only

•  Fault-tolerance
–  Chunks are distributed

–  Chunks are replicated

•  Master node
–  Decides chunk placement
–  Decides replica placement

–  Tells clients where to find
data

26/22 

Master 

File 

Bigtable Building Block: SSTable

•  Persistent map from keys to values
–  Ordered

–  Immutable
–  Keys and values are strings

•  API
–  Look up value associated with a key

–  Iterate over all key/value pairs in given range

•  Implementation
–  Sequence of blocks + one block index to locate other blocks

CSE 544 - Winter 2009 27

A Table in Bigtable: Basics

•  A table consists of a set of tablets: Section 5.3

•  Each tablet comprises one or more SSTables

28

Table
(example with
two tablets)

Tablet 1

Tablet 2

SSTable

SSTable

SSTable

SSTable

SSTable

•  Tablets are stored
in GFS

•  Tablet servers load
data into memory

•  Reads are served
from memory

Tables are range partitioned

Writing to Tablets

•  Remember: SSTables are immutable

•  When a write operation arrives at a tablet server, the latter
–  Writes the mutation to a commit log stored in GFS

–  Waits until done

–  Inserts the mutation into an in-memory buffer, the memtable
•  The memtable is sorted lexicographically

•  To serve reads, the tablet server
–  Merges the SSTables and the memtable into a single view

CSE 544 - Winter 2009 29

Loading Tablets

•  To load a tablet, a tablet server does the following

•  Finds location of tablet through its METADATA (Fig. 4)

•  Read SSTables index blocks into memory
–  Recall an SSTable consists of a set of blocks + 1 index block

•  Read the commit log since redo point and reconstructs
the memtable (the METADATA includes the redo point)

CSE 544 - Winter 2009 30

Compaction

•  To keep memtables below a threshold

•  Minor compaction: convert memtable into an SSTable

•  Merging compaction:
–  Read a few SSTables and the memtable

–  Write out a new SSTable

•  Major compaction:
–  Replace all SSTables and memtable with a new SSTable

CSE 544 - Winter 2009 31

Assigning Tablets to Tablet Servers

•  Master
–  Assigns tablets to tablet servers

–  Manages tablet server churn and load imbalances
–  Processes schema changes

•  Tablet server
–  Handles read/write to tablets that it has loaded

–  Splits large tablets

•  Clients cache tablets locations

CSE 544 - Winter 2009 32

Optimizations

•  Vertical partitioning: locality groups

•  Compression

•  Caching

•  Additional indexing: bloom filters

•  Commit log optimizations

•  Tablet migration optimization

CSE 544 - Winter 2009 33

Outline

•  Motivation
–  Brief overview of information retrieval

–  Key features of Bigtable

•  Bigtable API

•  Bigtable architecture

•  Bigtable performance and discussion
CSE 544 - Winter 2009 34

Performance

CSE 544 - Winter 2009 35

Summary

•  Bigtable is a distributed system for storing structured data

•  Provides high performance and high availability

•  Scales incrementally

•  Restricted functionality

•  Widely used by many applications at Google

CSE 544 - Winter 2009 36

