CSE 544

Principles of Database
Management Systems

Magdalena Balazinska
Winter 2009
Lecture 11 — Parallel DBMSs

and Other Parallel Data Processing Systems

References

Parallel Database Systems: The Future of High Performance
Database Systems. Dave DeWitt and Jim Gray. Com. of the ACM.
1992. Also in Red Book 4th Ed. Sec. 1 and 2.

MapReduce: Simplified Data Processing on Large Clusters.
Jeffrey Dean and Sanjay Ghemawat. OSDI 2004. Sec. 1 - 4.

Pig Latin: A Not-So-Foreign Language for Data Processing. C.
Olston, B. Reed, U. Srivastava, R. Kumar and A. Tomkins. SIGMOD
2008. Introduction.

Database management systems. Ramakrishnan and Gehrke.
Third Ed. Chapter 22.

CSE 544 - Winter 2009 2

Where We Are

 Done with fundamental topics

— Data models
— DBMS architecture
— DBMS key algorithms and techniques

« Starting advanced topics

« Theme this year: big data processing
— Parallel data storage and processing
— Databases as a service
— Data warehousing

— Stream processing
CSE 544 - Winter 2009

Parallel DBMSs

« Goal
— Improve performance by executing multiple operations in parallel

« Key benefit

— Cheaper to scale than relying on a single increasingly more
powerful processor

« Key challenge
— Ensure overhead and contention do not kill performance

CSE 544 - Winter 2009 4

Performance Metrics
for Parallel DBMSs

« Speedup

— More processors = higher speed

e Scalup
— More processors =» can process more data
— Transaction scaleup vs batch scaleup

« Challenges to speedup and scalup
— Startup cost: cost of starting an operation on many processors
— Interference: contention for resources between processors
— Skew: slowest step becomes the bottleneck

Linear v.s. Non-linear Speedup

Speed
(e.g. TPS)

processors (=P)

6

v

Linear v.s. Non-linear Scaleup

Speed
(e.g. TPS)

x 1 x5 x10 x15
| |

| S
Cd

| | | |
processors (=P) AND data size |

Architectures for Parallel Databases

« Shared memory

 Shared disk

* Shared nothing

Shared Memory

Shared Disk

10

Shared Nothing

11

Shared Nothing

Most scalable architecture
— Minimizes interference by minimizing resource sharing
— Can use commodity hardware

Also most difficult to program and manage

Processor = server = node
P = number of nodes

12

Taxonomy for

Parallel Query Evaluation

* Inter-query parallelism
— Each query runs on one processor

 Inter-operator parallelism
— A query runs on multiple processors
— An operator runs on one processor

 Intra-operator parallelism
— An operator runs on multiple processors

Horizontal Data Partitioning

Relation R split into P chunks R,,, ..., Rp_4, stored at the P
nodes

Round robin: tuple t; to chunk (i mod P)

Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P

Range based partitioning on attribute A:
— Tuple tto chunkiif v, <tA<v,

14

Parallel Selection

Compute GA=V(R)’ or C)—v1<A<v2(R)
« On a conventional database: cost = B(R)

 Q: What is the cost on a parallel database with P
processors ?
— Round robin
— Hash partitioned
— Range partitioned

15

Parallel Selection

 Q: What is the cost on a parallel database with P
processors ?

« A:B(R)/Pinall cases

 However, different processors do the work:
— Round robin: all servers do the work

— Hash: one server for g, (R), all for 0,1.a<,»(R)
— Range: one server only

16

Data Partitioning Revisited

What are the pros and cons ?

* Round robin
— Good load balance but always needs to read all the data

* Hash based partitioning

— Good load balance but works only for equality predicates and full
scans

* Range based partitioning
— Works well for range predicates but can suffer from data skew

17

Parallel Group By

* Compute 74 sume)(R)

« Step 1: server i partitions chunk R, using a hash function
h(t.A) mod P: Ry, Riy, ..., Rip_;

+ Step 2: server i sends partition R; to serve j

» Step 3: server j computes 7, syme) ON
ROJ, R1J, "y RP‘1,J

18

Parallel Join

o Step 1
— For all servers in [0,k], server i partitions chunk R, using a hash
function h(t.A) mod P: Ry, Ry, ..., Rip.4
— For all servers in [k+1,P], server j partitions chunk S; using a hash
function h(t.A) mod P: Sy, Sy, ..., Rip4

¢ Step 2:
— Server i sends partition R, to server u
— Server j sends partition S, to server u

» Steps 3: Server u computes the join of R, with S;,

CSE 544 - Winter 2009 19

Parallel Dataflow Implementation

* Use relational operators unchanged

* Add special split and merge operators
— Handle data routing, buffering, and flow control

 Example: exchange operator
— Inserted between consecutive operators in the query plan
— Can act as either a producer or consumer

— Producer pulls data from operator and sends to n consumers
« Producer acts as driver for operators below it in query plan

— Consumer buffers input data from n producers and makes it

available to operator through getNext interface
CSE 544 - Winter 2009 20

Map Reduce

Google: paper published 2004
Open source variant: Hadoop

Map-reduce = high-level programming model and
implementation for large-scale parallel data processing

Competing alternatives include:
— Dryad from Microsoft
— Clustera from Wisconsin

21

Data Model

* Files'!
« Afile = a bag of (key, value) pairs

* A map-reduce program:
— Input: a bag of (input key, value) pairs
— Output: a bag of (output key, value) pairs

22

Step 1: the MAP Phase

« User provides the MAP-function:
— Input: one (input key, value)
— Ouput: a bag of (intermediate key, value) pairs

« System applies map function in parallel to all (input key,
value) pairs in the input file

23

Step 2: the REDUCE Phase

« User provides the REDUCE function:

— Input: intermediate key, and bag of values
— Output: bag of output values

« System groups all pairs with the same intermediate key,
and passes the bag of values to the REDUCE function

24

Example

« Counting the number of occurrences of each word in a
large collection of documents

map(String key, String value):
// key: document name
/[value: document contents
for each word w in value:

Emitintermediate(w, “1”): reduce(String key, lterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));

25

MapReduce Execution

MAP REDUCE

(k1,v1) 3G, wlh)| —
(k2,v2) M’ (12, w2)| —
(k3,v3) § (i3, w3)| —

Map = GROUP BY,
Reduce = Aggregate

R(documentKey, word)

SELECT word, sum(1)
FROM R
GROUP BY word

27

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M map tasks,
keeps track of their progress

Workers write their output to local disk, partition into R
regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map workers’ local
disks

28

Interesting Implementation Details

« Worker failure:
— Master pings workers periodically,
— If down then reassigns the task to another worker

« Choice of M and R:

— Larger is better for load balancing
— Limitation: master needs O(MxR) memory

29

Interesting Implementation Details

« Backup tasks:

— “Straggler” = a machine that takes unusually long time to
complete one of the last tasks. Eg:
« Bad disk forces frequent correctable errors (30MB/s - 1MB/s)
» The cluster scheduler has scheduled other tasks on that machine
— Stragglers are a main reason for slowdown

— Solution: pre-emptive backup execution of the last few remaining
in-progress tasks

30

Map-Reduce Summary

* Hides scheduling and parallelization details

 However, very limited queries

Difficult to write more complex tasks
Need multiple map-reduce operations

« Solution: more general query languages:

PIG Latin (Y!): its own language, freely available
Scope (MS): SQL ! But proprietary...
DryadLINQ (MS): LINQ ! But also proprietary...
Clustera (other UW) : SQL ! Not publicly available

31

MapReduce vs Parallel DBMS

 How does MapReduce and a parallel DBMS compare?

« What are the key contributions of MapReduce?

 What are the limitations of MapReduce?

CSE 544 - Winter 2009 32

