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Where We Are 

•  Done with fundamental topics 
–  Data models 

–  DBMS architecture 
–  DBMS key algorithms and techniques 

•  Starting advanced topics 

•  Theme this year: big data processing 
–  Parallel data storage and processing 
–  Databases as a service 

–  Data warehousing 

–  Stream processing 



Parallel DBMSs 

•  Goal 
–  Improve performance by executing multiple operations in parallel 

•  Key benefit 
–  Cheaper to scale than relying on a single increasingly more 

powerful processor 

•  Key challenge 
–  Ensure overhead and contention do not kill performance 
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Performance Metrics  
for Parallel DBMSs 

•  Speedup 
–  More processors  higher speed 

•  Scalup 
–  More processors  can process more data 

–  Transaction scaleup vs batch scaleup 

•  Challenges to speedup and scalup 
–  Startup cost: cost of starting an operation on many processors 
–  Interference: contention for resources between processors 

–  Skew: slowest step becomes the bottleneck 
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Linear v.s. Non-linear Speedup 
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Linear v.s. Non-linear Scaleup 
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Architectures for Parallel Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Memory 

9 

Interconnection Network 

P P P 

Global Shared Memory 

D D D 



Shared Disk 
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Shared Nothing 
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Shared Nothing 

•  Most scalable architecture 
–  Minimizes interference by minimizing resource sharing 

–  Can use commodity hardware 

•  Also most difficult to program and manage 

•  Processor = server = node 

•  P = number of nodes 
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We will focus on shared nothing 



Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Each query runs on one processor 

•  Inter-operator parallelism 
–  A query runs on multiple processors 

–  An operator runs on one processor 

•  Intra-operator parallelism 
–  An operator runs on multiple processors 
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We study only intra-operator parallelism: most scalable 



Horizontal Data Partitioning 

•  Relation R split into P chunks R0, …, RP-1, stored at the P 
nodes 

•  Round robin: tuple ti to chunk (i mod P) 

•  Hash based partitioning on attribute A: 
–  Tuple t to chunk h(t.A) mod P 

•  Range based partitioning on attribute A: 
–  Tuple t to chunk i if vi-1 < t.A < vi 
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Parallel Selection 

Compute σA=v(R), or σv1<A<v2(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database with P 
processors ? 
–  Round robin 

–  Hash partitioned 
–  Range partitioned 
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Parallel Selection 

•  Q: What is the cost on a parallel database with P 
processors ? 

•  A: B(R) / P in all cases 

•  However, different processors do the work: 
–  Round robin: all servers do the work 

–  Hash: one server for σA=v(R), all for σv1<A<v2(R) 
–  Range: one server only 
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Data Partitioning Revisited 

What are the pros and cons ? 

•  Round robin 
–  Good load balance but always needs to read all the data 

•  Hash based partitioning 
–  Good load balance but works only for equality predicates and full 

scans 

•  Range based partitioning 
–  Works well for range predicates but can suffer from data skew 
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Parallel Group By 

•  Compute γA, sum(B)(R) 

•  Step 1: server i partitions chunk Ri using a hash function 
h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   

•  Step 2: server i sends partition Rij to serve j 

•  Step 3:  server j computes γA, sum(B) on  
R0j, R1j, …, RP-1,j  
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Parallel Join 

•  Step 1 
–  For all servers in [0,k], server i partitions chunk Ri using a hash 

function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   

–  For all servers in [k+1,P], server j partitions chunk Sj using a hash 
function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1   

•  Step 2:  
–  Server i sends partition Riu to server u 
–  Server j sends partition Sju to server u 

•  Steps 3: Server u computes the join of Riu with Sju 
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Parallel Dataflow Implementation 

•  Use relational operators unchanged  

•  Add special split and merge operators 
–  Handle data routing, buffering, and flow control 

•  Example: exchange operator  
–  Inserted between consecutive operators in the query plan 

–  Can act as either a producer or consumer 

–  Producer pulls data from operator and sends to n consumers 
•  Producer acts as driver for operators below it in query plan 

–  Consumer buffers input data from n producers and makes it 
available to operator through getNext interface 
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Map Reduce 

•  Google: paper published 2004 

•  Open source variant: Hadoop 

•  Map-reduce = high-level programming model and 
implementation for large-scale parallel data processing 

•  Competing alternatives include:  
–  Dryad from Microsoft 

–  Clustera from Wisconsin 
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Data Model 

•  Files ! 

•  A file = a bag of (key, value) pairs 

•  A map-reduce program: 
–  Input: a bag of (input key, value) pairs 

–  Output: a bag of (output key, value) pairs 
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Step 1: the MAP Phase 

•  User provides the MAP-function: 
–  Input: one (input key, value) 

–  Ouput: a bag of (intermediate key, value) pairs 

•  System applies map function in parallel to all (input key, 
value) pairs in the input file 
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Step 2: the REDUCE Phase 

•  User provides the REDUCE function: 
–  Input: intermediate key, and bag of values 

–  Output: bag of output values 

•  System groups all pairs with the same intermediate key, 
and passes the bag of values to the REDUCE function 

24 



Example 

•  Counting the number of occurrences of each word in a 
large collection of documents 
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map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”): reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 
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(k1,v1) 

(k2,v2) 

(k3,v3) 

. . . . 

(i1, w1) 

(i2, w2) 

(i3, w3) 

. . . . 

MAP REDUCE 

MapReduce Execution 



Map = GROUP BY, 
Reduce = Aggregate 
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SELECT word, sum(1) 

FROM R 

GROUP BY word 

R(documentKey, word) 



Implementation 

•  There is one master node 

•  Master partitions input file into M splits, by key 

•  Master assigns workers (=servers) to the M map tasks, 
keeps track of their progress 

•  Workers write their output to local disk, partition into R 
regions 

•  Master assigns workers to the R reduce tasks 

•  Reduce workers read regions from the map workers’ local 
disks  
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Interesting Implementation Details 

•  Worker failure: 
–  Master pings workers periodically, 

–  If down then reassigns the task to another worker 

•  Choice of M and R: 
–  Larger is better for load balancing 

–  Limitation: master needs O(M×R) memory 
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Interesting Implementation Details 

•  Backup tasks: 
–  “Straggler” = a machine that takes unusually long time to 

complete one of the last tasks. Eg: 
•  Bad disk forces frequent correctable errors (30MB/s  1MB/s) 

•  The cluster scheduler has scheduled other tasks on that machine 

–  Stragglers are a main reason for slowdown 

–  Solution: pre-emptive backup execution of the last few remaining 
in-progress tasks 
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Map-Reduce Summary 

•  Hides scheduling and parallelization details 

•  However, very limited queries 
–  Difficult to write more complex tasks 

–  Need multiple map-reduce operations 

•  Solution: more general query languages: 
–  PIG Latin (Y!): its own language, freely available 
–  Scope (MS):  SQL !  But proprietary… 

–  DryadLINQ (MS): LINQ ! But also proprietary… 

–  Clustera (other UW) : SQL ! Not publicly available 
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MapReduce vs Parallel DBMS 

•  How does MapReduce and a parallel DBMS compare? 

•  What are the key contributions of MapReduce? 

•  What are the limitations of MapReduce? 
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