
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska

Winter 2009

Lecture 11 – Parallel DBMSs

and Other Parallel Data Processing Systems

CSE 544 - Winter 2009 2

References

•  Parallel Database Systems: The Future of High Performance
Database Systems. Dave DeWitt and Jim Gray. Com. of the ACM.
1992. Also in Red Book 4th Ed. Sec. 1 and 2.

•  MapReduce: Simplified Data Processing on Large Clusters.
Jeffrey Dean and Sanjay Ghemawat. OSDI 2004. Sec. 1 - 4.

•  Pig Latin: A Not-So-Foreign Language for Data Processing. C.
Olston, B. Reed, U. Srivastava, R. Kumar and A. Tomkins. SIGMOD
2008. Introduction.

•  Database management systems. Ramakrishnan and Gehrke.

 Third Ed. Chapter 22.

CSE 544 - Winter 2009 3

Where We Are

•  Done with fundamental topics
–  Data models

–  DBMS architecture
–  DBMS key algorithms and techniques

•  Starting advanced topics

•  Theme this year: big data processing
–  Parallel data storage and processing
–  Databases as a service

–  Data warehousing

–  Stream processing

Parallel DBMSs

•  Goal
–  Improve performance by executing multiple operations in parallel

•  Key benefit
–  Cheaper to scale than relying on a single increasingly more

powerful processor

•  Key challenge
–  Ensure overhead and contention do not kill performance

CSE 544 - Winter 2009 4

Performance Metrics
for Parallel DBMSs

•  Speedup
–  More processors higher speed

•  Scalup
–  More processors can process more data

–  Transaction scaleup vs batch scaleup

•  Challenges to speedup and scalup
–  Startup cost: cost of starting an operation on many processors
–  Interference: contention for resources between processors

–  Skew: slowest step becomes the bottleneck

5

Linear v.s. Non-linear Speedup

6
processors (=P)

Speed
(e.g. TPS)

Linear v.s. Non-linear Scaleup

7
processors (=P) AND data size

Speed
(e.g. TPS)

×1 ×5 ×10 ×15

Architectures for Parallel Databases

•  Shared memory

•  Shared disk

•  Shared nothing

8

Shared Memory

9

Interconnection Network

P P P

Global Shared Memory

D D D

Shared Disk

10

Interconnection Network

P P P

M M M

D D D

Shared Nothing

11

Interconnection Network

P P P

M M M

D D D

Shared Nothing

•  Most scalable architecture
–  Minimizes interference by minimizing resource sharing

–  Can use commodity hardware

•  Also most difficult to program and manage

•  Processor = server = node

•  P = number of nodes

12

We will focus on shared nothing

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
–  Each query runs on one processor

•  Inter-operator parallelism
–  A query runs on multiple processors

–  An operator runs on one processor

•  Intra-operator parallelism
–  An operator runs on multiple processors

13

We study only intra-operator parallelism: most scalable

Horizontal Data Partitioning

•  Relation R split into P chunks R0, …, RP-1, stored at the P
nodes

•  Round robin: tuple ti to chunk (i mod P)

•  Hash based partitioning on attribute A:
–  Tuple t to chunk h(t.A) mod P

•  Range based partitioning on attribute A:
–  Tuple t to chunk i if vi-1 < t.A < vi

14

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database with P
processors ?
–  Round robin

–  Hash partitioned
–  Range partitioned

15

Parallel Selection

•  Q: What is the cost on a parallel database with P
processors ?

•  A: B(R) / P in all cases

•  However, different processors do the work:
–  Round robin: all servers do the work

–  Hash: one server for σA=v(R), all for σv1<A<v2(R)
–  Range: one server only

16

Data Partitioning Revisited

What are the pros and cons ?

•  Round robin
–  Good load balance but always needs to read all the data

•  Hash based partitioning
–  Good load balance but works only for equality predicates and full

scans

•  Range based partitioning
–  Works well for range predicates but can suffer from data skew

17

Parallel Group By

•  Compute γA, sum(B)(R)

•  Step 1: server i partitions chunk Ri using a hash function
h(t.A) mod P: Ri0, Ri1, …, Ri,P-1

•  Step 2: server i sends partition Rij to serve j

•  Step 3: server j computes γA, sum(B) on
R0j, R1j, …, RP-1,j

18

Parallel Join

•  Step 1
–  For all servers in [0,k], server i partitions chunk Ri using a hash

function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1

–  For all servers in [k+1,P], server j partitions chunk Sj using a hash
function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1

•  Step 2:
–  Server i sends partition Riu to server u
–  Server j sends partition Sju to server u

•  Steps 3: Server u computes the join of Riu with Sju

CSE 544 - Winter 2009 19

Parallel Dataflow Implementation

•  Use relational operators unchanged

•  Add special split and merge operators
–  Handle data routing, buffering, and flow control

•  Example: exchange operator
–  Inserted between consecutive operators in the query plan

–  Can act as either a producer or consumer

–  Producer pulls data from operator and sends to n consumers
•  Producer acts as driver for operators below it in query plan

–  Consumer buffers input data from n producers and makes it
available to operator through getNext interface

CSE 544 - Winter 2009 20

Map Reduce

•  Google: paper published 2004

•  Open source variant: Hadoop

•  Map-reduce = high-level programming model and
implementation for large-scale parallel data processing

•  Competing alternatives include:
–  Dryad from Microsoft

–  Clustera from Wisconsin

21

Data Model

•  Files !

•  A file = a bag of (key, value) pairs

•  A map-reduce program:
–  Input: a bag of (input key, value) pairs

–  Output: a bag of (output key, value) pairs

22

Step 1: the MAP Phase

•  User provides the MAP-function:
–  Input: one (input key, value)

–  Ouput: a bag of (intermediate key, value) pairs

•  System applies map function in parallel to all (input key,
value) pairs in the input file

23

Step 2: the REDUCE Phase

•  User provides the REDUCE function:
–  Input: intermediate key, and bag of values

–  Output: bag of output values

•  System groups all pairs with the same intermediate key,
and passes the bag of values to the REDUCE function

24

Example

•  Counting the number of occurrences of each word in a
large collection of documents

25

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”): reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result));

26

(k1,v1)

(k2,v2)

(k3,v3)

. . . .

(i1, w1)

(i2, w2)

(i3, w3)

. . . .

MAP REDUCE

MapReduce Execution

Map = GROUP BY,
Reduce = Aggregate

27

SELECT word, sum(1)

FROM R

GROUP BY word

R(documentKey, word)

Implementation

•  There is one master node

•  Master partitions input file into M splits, by key

•  Master assigns workers (=servers) to the M map tasks,
keeps track of their progress

•  Workers write their output to local disk, partition into R
regions

•  Master assigns workers to the R reduce tasks

•  Reduce workers read regions from the map workers’ local
disks

28

Interesting Implementation Details

•  Worker failure:
–  Master pings workers periodically,

–  If down then reassigns the task to another worker

•  Choice of M and R:
–  Larger is better for load balancing

–  Limitation: master needs O(M×R) memory

29

Interesting Implementation Details

•  Backup tasks:
–  “Straggler” = a machine that takes unusually long time to

complete one of the last tasks. Eg:
•  Bad disk forces frequent correctable errors (30MB/s 1MB/s)

•  The cluster scheduler has scheduled other tasks on that machine

–  Stragglers are a main reason for slowdown

–  Solution: pre-emptive backup execution of the last few remaining
in-progress tasks

30

Map-Reduce Summary

•  Hides scheduling and parallelization details

•  However, very limited queries
–  Difficult to write more complex tasks

–  Need multiple map-reduce operations

•  Solution: more general query languages:
–  PIG Latin (Y!): its own language, freely available
–  Scope (MS): SQL ! But proprietary…

–  DryadLINQ (MS): LINQ ! But also proprietary…

–  Clustera (other UW) : SQL ! Not publicly available

31

MapReduce vs Parallel DBMS

•  How does MapReduce and a parallel DBMS compare?

•  What are the key contributions of MapReduce?

•  What are the limitations of MapReduce?

CSE 544 - Winter 2009 32

