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Where We Are

 Done with fundamental topics

— Data models
— DBMS architecture
— DBMS key algorithms and techniques

« Starting advanced topics

« Theme this year: big data processing
— Parallel data storage and processing
— Databases as a service
— Data warehousing

— Stream processing
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Parallel DBMSs

« Goal
— Improve performance by executing multiple operations in parallel

« Key benefit

— Cheaper to scale than relying on a single increasingly more
powerful processor

« Key challenge
— Ensure overhead and contention do not kill performance
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Performance Metrics
for Parallel DBMSs

« Speedup

— More processors = higher speed

e Scalup
— More processors =» can process more data
— Transaction scaleup vs batch scaleup

« Challenges to speedup and scalup
— Startup cost: cost of starting an operation on many processors
— Interference: contention for resources between processors
— Skew: slowest step becomes the bottleneck
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Linear v.s. Non-linear Scaleup
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Architectures for Parallel Databases

« Shared memory

 Shared disk

* Shared nothing



Shared Memory




Shared Disk
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Shared Nothing
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Shared Nothing

Most scalable architecture
— Minimizes interference by minimizing resource sharing
— Can use commodity hardware

Also most difficult to program and manage

Processor = server = node
P = number of nodes
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Taxonomy for

Parallel Query Evaluation

* Inter-query parallelism
— Each query runs on one processor

 Inter-operator parallelism
— A query runs on multiple processors
— An operator runs on one processor

 Intra-operator parallelism
— An operator runs on multiple processors




Horizontal Data Partitioning

Relation R split into P chunks R,,, ..., Rp_4, stored at the P
nodes

Round robin: tuple t; to chunk (i mod P)

Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P

Range based partitioning on attribute A:
— Tuple tto chunkiif v, <tA<v,
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Parallel Selection

Compute GA=V(R)’ or C)—v1<A<v2(R)
« On a conventional database: cost = B(R)

 Q: What is the cost on a parallel database with P
processors ?
— Round robin
— Hash partitioned
— Range partitioned
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Parallel Selection

 Q: What is the cost on a parallel database with P
processors ?

« A:B(R)/Pinall cases

 However, different processors do the work:
— Round robin: all servers do the work

— Hash: one server for g, (R), all for 0,1.a<,»(R)
— Range: one server only

16



Data Partitioning Revisited

What are the pros and cons ?

* Round robin
— Good load balance but always needs to read all the data

* Hash based partitioning

— Good load balance but works only for equality predicates and full
scans

* Range based partitioning
— Works well for range predicates but can suffer from data skew
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Parallel Group By

* Compute 74 sume)(R)

« Step 1: server i partitions chunk R, using a hash function
h(t.A) mod P: Ry, Riy, ..., Rip_;

+ Step 2: server i sends partition R; to serve j

» Step 3: server j computes 7, syme) ON
ROJ, R1J, "y RP‘1,J
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Parallel Join

o Step 1
— For all servers in [0,k], server i partitions chunk R, using a hash
function h(t.A) mod P: Ry, Ry, ..., Rip.4
— For all servers in [k+1,P], server j partitions chunk S; using a hash
function h(t.A) mod P: Sy, Sy, ..., Rip4

¢ Step 2:
— Server i sends partition R, to server u
— Server j sends partition S, to server u

» Steps 3: Server u computes the join of R, with S;,

CSE 544 - Winter 2009 19



Parallel Dataflow Implementation

* Use relational operators unchanged

* Add special split and merge operators
— Handle data routing, buffering, and flow control

 Example: exchange operator
— Inserted between consecutive operators in the query plan
— Can act as either a producer or consumer

— Producer pulls data from operator and sends to n consumers
« Producer acts as driver for operators below it in query plan

— Consumer buffers input data from n producers and makes it

available to operator through getNext interface
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Map Reduce

Google: paper published 2004
Open source variant: Hadoop

Map-reduce = high-level programming model and
implementation for large-scale parallel data processing

Competing alternatives include:
— Dryad from Microsoft
— Clustera from Wisconsin
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Data Model

* Files'!
« Afile = a bag of (key, value) pairs

* A map-reduce program:
— Input: a bag of (input key, value) pairs
— Output: a bag of (output key, value) pairs
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Step 1: the MAP Phase

« User provides the MAP-function:
— Input: one (input key, value)
— Ouput: a bag of (intermediate key, value) pairs

« System applies map function in parallel to all (input key,
value) pairs in the input file
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Step 2: the REDUCE Phase

« User provides the REDUCE function:

— Input: intermediate key, and bag of values
— Output: bag of output values

« System groups all pairs with the same intermediate key,
and passes the bag of values to the REDUCE function
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Example

« Counting the number of occurrences of each word in a
large collection of documents

map(String key, String value):
// key: document name
/[ value: document contents
for each word w in value:

Emitintermediate(w, “1”): reduce(String key, lterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));
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MapReduce Execution

MAP REDUCE

(k1,v1) 3G, wlh)| —
(k2,v2) M’ (12, w2)| —
(k3,v3) § (i3, w3)| —




Map = GROUP BY,
Reduce = Aggregate

R(documentKey, word)

SELECT word, sum(1)
FROM R
GROUP BY word
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Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M map tasks,
keeps track of their progress

Workers write their output to local disk, partition into R
regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map workers’ local
disks
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Interesting Implementation Details

« Worker failure:
— Master pings workers periodically,
— If down then reassigns the task to another worker

« Choice of M and R:

— Larger is better for load balancing
— Limitation: master needs O(MxR) memory
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Interesting Implementation Details

« Backup tasks:

— “Straggler” = a machine that takes unusually long time to
complete one of the last tasks. Eg:
« Bad disk forces frequent correctable errors (30MB/s - 1MB/s)
» The cluster scheduler has scheduled other tasks on that machine
— Stragglers are a main reason for slowdown

— Solution: pre-emptive backup execution of the last few remaining
in-progress tasks
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Map-Reduce Summary

* Hides scheduling and parallelization details

 However, very limited queries

Difficult to write more complex tasks
Need multiple map-reduce operations

« Solution: more general query languages:

PIG Latin (Y!): its own language, freely available
Scope (MS): SQL ! But proprietary...
DryadLINQ (MS): LINQ ! But also proprietary...
Clustera (other UW) : SQL ! Not publicly available
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MapReduce vs Parallel DBMS

 How does MapReduce and a parallel DBMS compare?

« What are the key contributions of MapReduce?

 What are the limitations of MapReduce?
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