CSE 544 Principles of Database Management Systems

Magdalena Balazinska (magda) Winter 2009

Lecture 1 - Class Introduction

Outline

- Introductions
- Class overview
- What is the point of a db management system (DBMS)?
- Main DBMS features and DBMS architecture overview

Course Staff

- Instructor: Magda (magda@cs.washington.edu)
 - Office hours by appointment
 - Location: CSE 550
- TA: Evan Welbourne (evan@cs.washington.edu)
 - Graduate student in the database & ubicomp groups
 - Office hours:
 - Monday 12pm-1pm
 - Wednesday 9:30am 10:30am
 - By appointment
 - Location: CSE 405

Who is Magda?

- Assistant Professor since January 2006
- PhD from MIT, February 2006
- Areas of interest: databases and systems
- Current research focus
 - Cloud computing
 - Scientific data management
 - RFID data management
 - Stream processing

Goals of the Class

Study principles of data management

- Data models, data independence, normalization
- Data integrity, availability, consistency, etc.

Study key DBMS design issues

- Storage, query execution and optimization, transactions
- Distribution, parallel processing, massive data processing
- Data warehousing, streaming data, etc.

Ensure that

- You are comfortable using a DBMS
- You can write applications that use a DBMS as a back-end
- You have an idea about how to build a DBMS
- You know a bit about current research topics in data management

Class Format

- Two lectures per week: MW @ 10:30am
- Mix of lecture and discussion
 - Mostly based on papers
 - Must read papers before lecture and submit paper review
 - Come prepared to discuss the papers assigned for the class
 - Class participation counts for a non-negligible part of your grade
- One guest lecture: David Lomet from Microsoft Research

Readings and Notes

- Readings are based on papers
 - Mix of old seminal papers and new papers
 - Papers available online on class website
 - Many come from the "red book" [optional]
 - Three types of readings
 - Mandatory, additional resources, and optional

Database Management

- Background readings from the following book
 - Database Management Systems. Third Ed. Ramakrishnan and

Gehrke. McGraw-Hill. [recommended]

- Lecture notes (the ppt slides)
 - Posted on class website after each lecture

CSE 544 - Winter 2009

Class Resources

Website: lectures, assignments, projects

http://www.cs.washington.edu/544

List of all the deadlines

Mailing list:

cse544@cs.washington.edu

Make sure you register!

Evaluation

- Class participation 10%
 - Paper readings and discussions
- Paper reviews 5%: Individual
 - Due before each lecture
 - Reading questions are posted on class website
- Assignments 25%: Groups of two
 - HW1: Using a DBMS (SQL, views, indexes, etc.) & writing apps
 - HW2 & HW3: Building a simple DBMS
- Project 35%: Groups of two to four
 - Small research or engineering. Start to think about it now!
- Final exam 25%: During finals week

Class Participation

An important part of your grade

Because

- We would like you to read and think about papers throughout the quarter
- Important to learn to discuss papers

Expectations

- Ask questions, raise issues, think critically
- Learn to express your opinion
- Respect other people's opinions

Paper reviews

- Between 1/2 page and 1 page in length
 - Summary of the main points of the paper
 - Critical discussion of the paper
- Reading questions
 - For some papers, we will **post reading questions** to help you figure out what to focus on when reading the paper
 - Please address these questions in your reviews
- Grading: credit/no-credit
 - You can skip one review without penalty
 - MUST submit review BEFORE lecture
 - Individual assignments (but feel free to discuss paper with others)

Assignments

Goals:

- Hands-on experience using a DBMS and writing apps for DBMS
- Hands-on experience building a simple DBMS
- HW1: Check website for instructions and due date
 - Setup a db from scratch
 - Practice writing SQL queries & browse the system catalog
 - Get experience with integrity constraints & triggers
 - Play with indexes and views
 - Writing an application that uses a db as a back-end
- HW2 & HW3: Build a simple DBMS
- We will accept late assignments with valid excuse

Project Overview

Topic

- Choose from a list of mini-research topics
- Or come up with your own
- Can be related to your ongoing research
- Can be related to a project in another course
- Must be related to databases
- Must involve either research or significant engineering
- Open ended

Final deliverables

- Short conference-style paper (8 pages)
- Conference-style presentation

Project Goals

- Apply database principles to a new problem
 - Understand and model the problem
 - Research and understand related work
 - Propose some new approach
 - Creativity will be evaluated
 - Implement some parts
 - Evaluate your solution
 - Write-up and present your results
- Amount of work may vary widely between groups

Project Milestones

- Jan 19th: teams formed
- Feb 2nd: project proposal
- Feb 20th: milestone report
- March 11th: project presentations
- March 13th: final project reports
- More details on the website, including ideas & examples
- We will meet with you regularly throughout the quarter

Let's get started

• What is a database?

Give examples of databases

Let's get started

- What is a database?
 - A collection of files storing related data
- Give examples of databases
 - Accounts database; payroll database; UW's students database;
 Amazon's products database; airline reservation database

Data Management

- Data is valuable but hard and costly to manage
- Example: Store database
 - Entities: employees, positions (ceo, manager, cashier), stores, products, sells, customers.
 - Relationships: employee positions, staff of each store, inventory of each store.
- What operations do we want to perform on this data?
- What functionality do we need to manage this data?

Required Functionality

- 1. Describe real-world entities in terms of stored data
- 2. Create & persistently store large datasets
- 3. Efficiently query & update
 - 1. Must handle complex questions about data
 - 2. Must handle sophisticated updates
 - 3. Performance matters
- 4. Change structure (e.g., add attributes)
- 5. Concurrency control: enable simultaneous updates
- 6. Crash recovery
- 7. Access control, security, integrity

Difficult and costly to implement all these features

Database Management System

- A DBMS is a software system designed to provide data management services
- Examples of DBMS
 - Oracle, DB2 (IBM), SQL Server (Microsoft),
 - PostgreSQL, MySQL,...

Market Shares

- In 2004 (from www.computerworld.com)
 - IBM, 35% market with \$2.5 billion in sales
 - Oracle, 33% market with \$2.3 billion in sales
 - Microsoft, 19% market with \$1.3 billion in sales

Typical System Architecture

"Two tier system" or "client-server"

Main DBMS Features

- Data independence
 - Data model
 - Data definition language
 - Data manipulation language
- Efficient data access
- Data integrity and security
- Data administration
- Concurrency control
- Crash recovery
- Reduced application development time

How to decide what features should go into the DBMS?

A Quick Look Inside a DBMS

Admission Control

Connection Mgr

Process Manager

Access Methods

Lock Manager

Storage Manager

Parser

Query Rewrite

Optimizer

Executor

Query Processor

Buffer Manager

Log Manager

anagei

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

Shared Utilities

[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.

Red Book. 4ed.]

24

CSE 544 - Winter 2009

When not to use a DBMS?

- DBMS is optimized for a certain workload
- Some applications may need
 - A completely different data model
 - Completely different operations
 - A few time-critical operations
- Examples
 - Text processing
 - Scientific analysis

Preview for Next Lecture

Levels of abstraction in a DBMS

