
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska

Fall 2009

Lecture 5 - Storage and Indexing

CSE 544 - Fall 2009

CSE 544 - Fall 2009

References

•  Generalized Search Trees for Database Systems.
J. M. Hellerstein, J. F. Naughton and A. Pfeffer. VLDB
1995.

•  Database management systems. Third Edition. R.
Ramakrishnan and J. Gehrke. Chapters 8 through 11

2

CSE 544 - Fall 2009

Storage Management

•  Can be done by the OS or by the DBMS

•  What are the trade-offs? See lecture 4

•  How does the DBMS manage storage?

3

CSE 544 - Fall 2009

Outline

•  Data storage
–  Disk and files: Sections 9.3 through 9.7

–  Operations on files

•  Indexes
–  Index structures: Section 8.3

–  Hash-based indexes: Section 8.3.1 and Chapter 11
–  B+ trees: Section 8.3.2 and Chapter 10

–  GiST: Hellerstein et. al.’s VLDB’95

4

CSE 544 - Fall 2009

Buffer Manager

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk is a collection
of blocks

Disk space manager

Buffer pool manager

Files and access methods

5

CSE 544 - Fall 2009

Data Storage

•  Basic abstraction
–  Collection of records or file

–  Typically, 1 relation = 1 file
–  A file consists of one or more pages

•  How to organize pages into files?

•  How to organize records inside a file?

•  Simplest approach: heap file (unordered)

6

CSE 544 - Fall 2009

Heap File Operations

•  Create or destroy a file

•  Insert a record

•  Delete a record with a given rid (rid)
–  rid: unique tuple identifier such that

–  can identify disk address of page containing record by using rid

•  Get a record with a given rid

•  Scan all records in the file

7

CSE 544 - Fall 2009

Heap File Implementation 1

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space

8

CSE 544 - Fall 2009

Heap File Implementation 2

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header page

Directory contains free-space count for each page.
Faster inserts for variable-length records

9

CSE 544 - Fall 2009

Page Formats

Issues to consider
•  1 page = 1 disk block = fixed size (e.g. 8KB)

•  Records:
–  Fixed length

–  Variable length

•  Record id = RID
–  Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?

See discussion about indexes later in the lecture

10

CSE 544 - Fall 2009

Page Format Approach 1

Fixed-length records: packed representation

Slot1 Slot2 SlotN

Free space N

Problems ? Number of records

How to handle variable-length records?
Need to move records for each deletion, changing RIDs

11

CSE 544 - Fall 2009

Page Format Approach 2

Free space

Can handle variable-length records
Can move tuples inside a page without changing RIDs

Slot directory
Each slot contains

<record offset, record length>

12

CSE 544 - Fall 2009

Record Formats

Fixed-length records → Each field has a fixed length
(i.e., it has the same length in all the records)

Field 1 Field 2 Field K

Information about field lengths and types is in the catalog

13

CSE 544 - Fall 2009

Record Formats

Variable length records

Remark: NULLS require no space at all (why ?)

14

Field 1 Field 2 Field K

Record header

CSE 544 - Fall 2009

Long Records Across Pages

•  When records are very large

•  Or even medium size: saves space in blocks

•  Commercial RDBMSs avoid this

page
header

page
header

R1 R2 R2 R3

15

CSE 544 - Fall 2009

LOB

•  Large objects
–  Binary large object: BLOB

–  Character large object: CLOB

•  Supported by modern database systems

•  E.g. images, sounds, texts, etc.

•  Storage: attempt to cluster blocks together

16

CSE 544 - Fall 2009

Types of Files

•  Heap file
–  Unordered

•  Sorted file (also called sequential file)

•  Clustered file

We discussed heap files

The others are similar

17

CSE 544 - Fall 2009

Outline

•  Data storage
–  Disk and files: Sections 9.3 through 9.7

–  Operations on files

•  Indexes
–  Index structures: Section 8.3

–  Hash-based indexes: Section 8.3.1
–  B+ trees: Chapter 10

–  GiST: Hellerstein et. al.’s VLDB’95

18

CSE 544 - Fall 2009

Modifications: Insertion

•  File is unsorted (= heap file)
–  add it wherever there is space (easy )

•  File is sorted
–  Is there space on the right page ?

•  Yes: we are lucky, store it there

–  Is there space in a neighboring page ?
•  Look 1-2 pages to the left/right, shift records

–  If anything else fails, create overflow page

19

CSE 544 - Fall 2009

Overflow Pages

•  After a while the file starts being dominated by overflow
pages: time to reorganize

Pagen-1 Pagen Pagen+1

Overflow

20

CSE 544 - Fall 2009

Modifications: Deletions

•  Free space in page, shift records
–  Be careful with slots

–  RIDs for remaining tuples must NOT change

•  May be able to eliminate an overflow page

21

CSE 544 - Fall 2009

Modifications: Updates

•  If new record is shorter than previous, easy 

•  If it is longer, need to shift records
–  May have to create overflow pages

22

CSE 544 - Fall 2009

Searching in a Heap File

30 18 …

70 21

20 20

40 19

80 19

60 18

10 21

50 22

File is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page

23

CSE 544 - Fall 2009

Heap File Search Example

•  10,000 students

•  10 student records per page

•  Total number of pages: 1,000 pages

•  Find student whose sid is 80
–  Must read on average 500 pages

•  Find all students older than 20
–  Must read all 1,000 pages

•  Can we do better?

24

CSE 544 - Fall 2009

Sequential File

10 21 …

20 20

30 18

40 19

50 22

60 18

70 21

80 19

File sorted on an attribute, usually on primary key
Student(sid: int, age: int, …)

25

CSE 544 - Fall 2009

Sequential File Example

•  Total number of pages: 1,000 pages

•  Find student whose sid is 80
–  Could do binary search, read log2(1,000) ≈ 10 pages

•  Find all students older than 20
–  Must still read all 1,000 pages

•  Can we do even better?

26

CSE 544 - Fall 2009

Outline

•  Data storage
–  Disk and files: Sections 9.3 through 9.7

–  Operations on files

•  Indexes
–  Index structures: Section 8.3

–  Hash-based indexes: Section 8.3.1
–  B+ trees: Chapter 10

–  GiST: Hellerstein et. al.’s VLDB’95

27

CSE 544 - Fall 2009

Indexes

•  Index: data structure that organizes data records on disk to
optimize selections on the search key fields for the index

•  An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given search key value k

28

CSE 544 - Fall 2009

Indexes

•  Search key = can be any set of fields
–  not the same as the primary key, nor a key

•  Index = collection of data entries

•  Data entry for key k can be:
–  The actual record with key k

•  In this case, the index is also a special file organization

•  This type of index is also called the primary index of a file

–  (k, RID)

–  (k, list-of-RIDs)

29

CSE 544 - Fall 2009

Primary Index

•  Index determines the location of indexed records

•  Dense index: sequence of (key,pointer) pairs

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

1 data entry

1 page

Index File Data File

30

CSE 544 - Fall 2009

Primary Index

•  Sparse index

10

30

50

70

90

110

130

150

10

20

30

40

50

60

70

80

31

CSE 544 - Fall 2009

Primary Index
with Duplicate Keys

•  Sparse index: pointer to lowest search key on each page:

•  Search for 20
10

10

20

30

10

10

10

20

20

20

30

40

20 is
here...

...but
need to
search

here too

32

CSE 544 - Fall 2009

•  Better: pointer to lowest new search key on each page:

•  Search for 20

•  Search for 15 ? 35 ?

Primary Index
with Duplicate Keys

10

20

30

40

50

60

70

80

10

10

10

20

30

30

40

50

20 is
here...

...ok to
search

from here

30

30

33

CSE 544 - Fall 2009

Primary Index
with Duplicate Keys

•  Dense index:

10

20

30

40

50

60

70

80

10

10

10

20

20

20

30

40

34

CSE 544 - Fall 2009

Primary Index Example

•  Let’s assume all pages of index fit in memory

•  Find student whose sid is 80
–  Index (dense or sparse) points directly to the page

–  Only need to read 1 page from disk.

•  Find all students older than 20
–  Must still read all 1,000 pages.

•  How can we make both queries fast?

35

CSE 544 - Fall 2009

Secondary Indexes

•  To index other attributes than primary key

•  Always dense (why ?)

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

36

CSE 544 - Fall 2009

Clustered vs.
Unclustered Index

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

Clustered = records close in index are close in data

37

CSE 544 - Fall 2009

Clustered/Unclustered

•  Primary index = clustered by definition

•  Secondary indexes = usually unclustered

38

CSE 544 - Fall 2009

Secondary Indexes

•  Applications
–  Index other attributes than primary key

–  Index unsorted files (heap files)
–  Index clustered data

39

CSE 544 - Fall 2009

Index Classification Summary

•  Primary/secondary
–  Primary = determines the location of indexed records
–  Secondary = cannot reorder data, does not determine data location

•  Dense/sparse
–  Dense = every key in the data appears in the index
–  Sparse = the index contains only some keys

•  Clustered/unclustered
–  Clustered = records close in index are close in data
–  Unclustered = records close in index may be far in data

•  B+ tree / Hash table / …

40

CSE 544 - Fall 2009

Large Indexes

•  What if index does not fit in memory?

•  Would like to index the index itself
–  Hash-based index

–  Tree-based index

41

CSE 544 - Fall 2009

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

H2 age

h2(age) = 00

h2(age) = 01

Another example of primary index
Another example
of secondary index

Good for point queries but not range queries

42

CSE 544 - Fall 2009

Tree-Based Index

•  How many index levels do we need?

•  Can we create them automatically? Yes!

•  Can do something even more powerful!

43

CSE 544 - Fall 2009

B+ Trees

•  Search trees

•  Idea in B Trees
–  Make 1 node = 1 page (= 1 block)

–  Keep tree balanced in height

•  Idea in B+ Trees
–  Make leaves into a linked list : facilitates range queries

44

CSE 544 - Fall 2009

B+ Trees

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries (primary index)

45

CSE 544 - Fall 2009

•  Parameter d = the degree

•  Each node has d <= m <= 2d keys (except root)

•  Each leaf has d <= m <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

Data records

Each node also
has m+1 pointers

46

CSE 544 - Fall 2009

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

47

CSE 544 - Fall 2009

Searching a B+ Tree

•  Exact key values:
–  Start at the root

–  Proceed down, to the leaf

•  Range queries:
–  Find lowest bound as above

–  Then sequential traversal

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
 and age <= 30

48

CSE 544 - Fall 2009

B+ Tree Design

•  How large d ?

•  Example:
–  Key size = 4 bytes

–  Pointer size = 8 bytes

–  Block size = 4096 bytes

•  2d x 4 + (2d+1) x 8 <= 4096

•  d = 170

49

CSE 544 - Fall 2009

B+ Trees in Practice

•  Typical order: 100. Typical fill-factor: 67%.
–  average fanout = 133

•  Typical capacities
–  Height 4: 1334 = 312,900,700 records

–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool
–  Level 1 = 1 page = 8 Kbytes

–  Level 2 = 133 pages = 1 Mbyte

–  Level 3 = 17,689 pages = 133 Mbytes

50

CSE 544 - Fall 2009

Insertion in a B+ Tree

Insert (K, P)

•  Find leaf where K belongs, insert

•  If no overflow (2d keys or less), halt
•  If overflow (2d+1 keys), split node, insert in parent:

•  If leaf, also keep K3 in right node

•  When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

51

CSE 544 - Fall 2009

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

52

CSE 544 - Fall 2009

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

After insertion

53

CSE 544 - Fall 2009

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

Now insert 25

54

CSE 544 - Fall 2009

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After insertion

50

55

CSE 544 - Fall 2009

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

But now have to split !

50

56

CSE 544 - Fall 2009

Insertion in a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After the split

50

30 40 50

57

CSE 544 - Fall 2009

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

Delete 30

50

30 40 50

58

CSE 544 - Fall 2009

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

After deleting 30

50

40 50

May change to
40, or not

59

CSE 544 - Fall 2009

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

Now delete 25

50

40 50

60

CSE 544 - Fall 2009

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

After deleting 25
Need to rebalance
Rotate

50

40 50

61

CSE 544 - Fall 2009

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

Now delete 40

50

40 50

62

CSE 544 - Fall 2009

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

After deleting 40
Rotation not possible
Need to merge nodes

50

50

63

CSE 544 - Fall 2009

Deletion from a B+ Tree

80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

Final tree

50

64

CSE 544 - Fall 2009

Summary on B+ Trees

•  Default index structure on most DBMSs

•  Very effective at answering ‘point’ queries:
 productName = ‘gizmo’

•  Effective for range queries:
 50 < price AND price < 100

•  Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

65

CSE 544 - Fall 2009

Outline

•  Data storage
–  Disk and files: Sections 9.3 through 9.7

–  Operations on files

•  Indexes
–  Index structures: Section 8.3

–  Hash-based indexes: Section 8.3.1
–  B+ trees: Chapter 10

–  GiST: Hellerstein et. al.’s VLDB’95

66

Motivation

•  To better appreciate GiST, let’s take a look at another
type of index, the R tree

•  R trees serve to index spatial data

CSE 544 - Fall 2009 67

CSE 544 - Fall 2009

R6 R7 R4 R5 R3

R-Tree Example

R3 R4 R5 R6 R7

Search key values are bounding boxes

R3
R1

R4
R5

R6

R1 R2

R7

R2

Q

Q Q

Q

Designed for spatial data

For insertion: at each level, choose child whose bounding box
needs least enlargement (in terms of area)

68

CSE 544 - Fall 2009

Generalized Search Tree (GiST)

•  Goal: facilitate database extensibility
–  When adding a new data type

–  Want to add indexes for the data type

•  Overview
–  GiST is an index structure
–  Basically, this is a template for indexes

–  Supports extensible set of queries and data types

69

CSE 544 - Fall 2009

GiST Key Insights

Canonical database search tree

•  Balanced tree with high fanout

•  Leaf nodes contain pointers to actual data

•  Leaf nodes stored as a linked list

•  Internal nodes used as a directory

–  Contain <key,pointers> pairs

–  If key consistent with query, data may be found if we follow pointer

–  Generalized search key: predicate that holds for each entry below key

•  B+-tree key is pair of integers <a,b> and predicate is Contains([a,b),v)

•  R-tree key is bounding box and predicate is also containment test

–  Generalized search tree: hierarchy of partitions

70

CSE 544 - Fall 2009

GiST Key Methods: Consistent

•  Consistent(E,q)
–  Entry E = (p, ptr) and query predicate q

–  Returns false if p ∧ q can be guaranteed unsatisfiable
–  Returns true otherwise

•  See Algo Search(R,q) [also FindMin(R,q) and Next(R,q,E)]

71

CSE 544 - Fall 2009

GiST Key Methods: Consistent

•  In a B+-tree, query predicates q can be either
–  Contains([x,y), v) returns true if x <= v < y and false otherwise

–  Equal(x,v) returns true if x = v and false otherwise

•  In a B+-tree, Consistent(E,q)
–  p = Contains([xp,yp), v)

–  (1) q = Contains([xq,yq), v) or (2) q = Equal(xq,v)
–  For (1), return true if (xp < yq)∧ (yp > xq)

–  For (2), return true if xp <= xq < yp

•  In R-tree, Consistent returns true if bounding boxes overlap

72

CSE 544 - Fall 2009

GiST Key Methods

•  Penalty
–  Used during insert operations to pick subtree where to insert

–  See algorithms Insert(R,E,I) and ChooseSubtree(R,E,l)
–  B+-tree: returns zero when value to insert falls within subtree range

–  R-tree: returns change in area

•  PickSplit
–  Used to split nodes during insert operations

–  See algorithm Split(R,N,E)

–  B+-tree: half the entries go into left group and half into right group

–  R-tree: e.g., minimize total area of bounding boxes after split

73

CSE 544 - Fall 2009

GiST Key Methods

•  Union
–  Once a key is inserted, need to adjust predicates at parent nodes
–  See algorithm AdjustKeys(R,N)
–  B+-tree: computes interval that covers all given intervals
–  R-tree: computes bigger bounding box

•  Compress/Decompress: for storage performance

74

