
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska
Fall 2007

Lecture 9 - Query optimization

CSE 544 - Fall 2007 2

References

• Access path selection in a relational database
management system.
Selinger. et. al. SIMOD 1979

• Database management systems.
Ramakrishnan and Gehrke.
Third Ed. Chapter 15.

CSE 544 - Fall 2007 3

Outline

• Basic query optimization algorithm

• Typical query optimizer (based on System R)
– Estimating the cost of a query plan
– Search space
– Algorithm for enumerating query plans

• Other types of optimizers

CSE 544 - Fall 2007 4

Query Optimization Algorithm

• For a query
– There exists many physical query plans
– Query optimizer needs to pick a good one

• Basic query optimization algorithm
– Enumerate alternative plans
– Compute estimated cost of each plan

• Compute number of I/Os
• Optionally take into account other resources

– Choose plan with lowest cost
– This is called cost-based optimization

CSE 544 - Fall 2007 5

Outline

• Basic query optimization algorithm

• Typical query optimizer (based on System R)
– Estimating the cost of a query plan
– Search space
– Algorithm for enumerating query plans

• Other types of optimizers

CSE 544 - Fall 2007 6

Estimating Cost of a Query Plan

• We already how to
– Compute the cost of different operations

• We still need to
– Compute cost of retrieving tuples from disk with different access

paths (for more sophisticated predicates than equality)
– Compute cost of a complete plan

CSE 544 - Fall 2007 7

Access Path

• Access path: a way to retrieve tuples from a table
– A file scan
– An index plus a matching selection condition

• Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition
– Example: Supplier(sid,sname,scity,sstate)
– B+-tree index on (scity,sstate)

• matches scity=‘Seattle’
• does not match sid=3, does not match sstate=‘WA’

CSE 544 - Fall 2007 8

Access Path Selection

• Supplier(sid,sname,scity,sstate)

• Selection condition: sid > 300 ∧ scity=‘Seattle’

• Indexes: B+-tree on sid and B+-tree on scity

• Which access path should we use?

• We should pick the most selective access path

CSE 544 - Fall 2007 9

Access Path Selectivity

• Access path selectivity is the number of pages
retrieved if we use this access path
– Most selective retrieves fewest pages

• As we saw earlier, for equality predicates
– Selection on equality: σa=v(R)
– V(R, a) = # of distinct values of attribute a
– 1/V(R,a) is thus the reduction factor
– Clustered index on a: cost B(R)/V(R,a)
– Unclustered index on a: cost T(R)/V(R,a)
– (we are ignoring I/O cost of index pages for simplicity)

CSE 544 - Fall 2007 10

Selectivity for Range Predicates

Selection on range: σa>v(R)

• How to compute the selectivity?
• Assume values are uniformly distributed
• Reduction factor X
• X = (Max(R,a) - v) / (Max(R,a) - Min(R,a))

• Clustered index on a: cost B(R)*X
• Unclustered index on a: cost T(R)*X

CSE 544 - Fall 2007 11

Back to Our Example

• Selection condition: sid > 300 ∧ scity=‘Seattle’
– Index I1: B+-tree on sid clustered
– Index I2: B+-tree on scity unclustered

• Let’s assume
– V(Supplier,scity) = 20
– Max(Supplier, sid) = 1000, Min(Supplier,sid)=1
– B(Supplier) = 100, T(Supplier) = 1000

• Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70
• Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50

CSE 544 - Fall 2007 12

Selectivity with
Multiple Conditions

What if we have an index on multiple attributes?
• Example selection σa=v1 ∧ b= v2(R) and index on <a,b>

How to compute the selectivity?
• Assume attributes are independent
• X = 1 / (V(R,a) * V(R,b))

• Clustered index on <a,b>: cost B(R)*X
• Unclustered index on <a,b>: cost T(R)*X

CSE 544 - Fall 2007 13

Back to Estimating
Cost of a Query Plan

• We already how to
– Compute the cost of different operations
– Compute cost of retrieving tuples from disk with different access

paths (for more sophisticated predicates than equality)

• We still need to
– Compute cost of a complete plan

CSE 544 - Fall 2007 14

Computing the Cost of a Plan

• Collect statistical summaries of stored data

• Compute cost in a bottom-up fashion

• For each operator compute
– Estimate cost of executing the operation
– Estimate statistical summary of the output data

CSE 544 - Fall 2007 15

Statistics on Base Data

• Collected information for each relation
– Number of tuples (cardinality)
– Indexes, number of keys in the index
– Number of physical pages, clustering info
– Statistical information on attributes

• Min value, max value, number distinct values
• Histograms

– Correlations between columns (hard)

• Collection approach: periodic, using sampling

CSE 544 - Fall 2007 16

Computing Cost of an Operator

• The cost of executing an operator depends
– On the operator implementation
– On the input data

• We learned how to compute this cost last two lectures

CSE 544 - Fall 2007 17

Statistics on the Output Data

• Most important piece of information
– Size of operator result
– I.e., the number of output tuples

• Projection: output size same as input size
• Selection: multiply input size by reduction factor

– Similar to what we did for estimating access path selectivity
– Assume independence between conditions in the predicate
– (use product of the reduction factors for the terms)

CSE 544 - Fall 2007 18

Estimating Result Sizes

• For joins R ⋈ S

– Take product of cardinalities of relations R and S
– Apply reduction factors for each term in join condition
– Terms are of the form: column1 = column2
– Reduction: 1/ (MAX(V(R,column1), V(S,column2))
– Assumes each value in smaller set has a matching value in

the larger set

CSE 544 - Fall 2007 19

Our Example

• Suppliers(sid,sname,scity,sstate)
• Supplies(pno,sid,quantity)
• Some statistics

– T(Supplier) = 1000 records
– B(Supplier) = 100 pages
– T(Supplies) = 10,000 records
– B(Supplies) = 100 pages
– V(Supplier,scity) = 20, V(Supplier,state) = 10
– V(Supplies,pno) = 3,000
– Both relations are clustered

CSE 544 - Fall 2007 20

Physical Query Plan 1

Suppliers Supplies

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supplies)
= 100 + 100 * 100
= 10,100 I/Os

CSE 544 - Fall 2007 21

Suppliers Supplies

sno = sno

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2

Total cost
= 100 + 100 * 1/20 * 1/10 (1)
+ 100 + 100 * 1/3000 (2)
+ 2 (3)
+ 0 (4)
Total cost ≈ 204 I/Os

(3)

(4)

CSE 544 - Fall 2007 22

Suppliers Supplies

sno = sno

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)(2) σ pno=2

(Scan
 write to T1)

Plan 2 with Different Numbers

Total cost
= 10000 + 50 (1)
+ 10000 + 4 (2)
+ 4*50 + 2*4 + 4 + 50 (3)
+ 0 (4)
Total cost ≈ 20,316 I/Os

What if we had:
10K pages of Suppliers
10K pages of Supplies

Assuming naive
two-pass sort
algorithm

(3)

(4)

CSE 544 - Fall 2007 23

Supplies Suppliers

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Hash index on sno)
Clustering does not matter

(On the fly)

(1) σ pno=2

(Hash index on pno)
Assume: clustered

Physical Query Plan 3

Total cost
= 1 (1)
+ 4 (2)
+ 0 (3)
+ 0 (3)
Total cost ≈ 5 I/Os

(Use hash index)

(2)

(3)

(4)

(On the fly)

4 tuples

CSE 544 - Fall 2007 24

Simplifications

• In the previous examples, we assumed that all index
pages were in memory

• When this is not the case, we need to add the cost of
fetching index pages from disk (see lecture 6)

CSE 544 - Fall 2007 25

Summary

• What we know
– Different types of physical query plans
– How to compute the cost of a query plan
– Although it is hard to compute the cost accurately

• We can now compare query plans

• Let’s now consider how the query optimizer searches
through the space of possible plans

CSE 544 - Fall 2007 26

Outline

• Basic query optimization algorithm

• Typical query optimizer (based on System R)
– Estimating the cost of a query plan
– Search space
– Algorithm for enumerating query plans

• Other types of optimizers

CSE 544 - Fall 2007 27

Relational Algebra Equivalences

• Selections
– Commutative: σc1(σc2(R)) same as σc2(σc1(R))
– Cascading: σc1∧c2(R) same as σc2(σc1(R))

• Projections
– Cascading

• Joins
– Commutative : R ⋈ S same as S ⋈ R
– Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

CSE 544 - Fall 2007 28

Left-Deep Plans and
Bushy Plans

R3 R1 R2 R4R3 R1

R4

R2

Left-deep plan Bushy plan

CSE 544 - Fall 2007 29

Relational Algebra Equivalences

• Selects, projects, and joins
– We can commute and combine all three types of operators
– We just have to be careful that the fields we need are available

when we apply the operator
– Relatively straightforward. See book 15.3.

• If you like this topic, more info in optional paper (by
Chaudhuri), Section 4.

CSE 544 - Fall 2007 30

Search Space Challenges

• Search space is huge!
– Many possible equivalent trees
– Many implementations for each operator
– Many access paths for each relation

• Cannot consider ALL plans
• Want a search space that includes low-cost plans

CSE 544 - Fall 2007 31

System R Search Space

• Only left-deep plans
– Enable dynamic programming for enumeration
– Facilitate tuple pipelining from outer relation

• Consider plans with all “interesting orders”
• Perform cross-products after all other joins (heuristic)
• Only consider nested loop & sort-merge joins
• Consider both file scan and indexes
• Try to evaluate predicates early

CSE 544 - Fall 2007 32

Plan Enumeration Algorithm

• Idea: use dynamic programming
• For each subset of {R1, …, Rn}, compute the best plan

for that subset
• In increasing order of set cardinality:

– Step 1: for {R1}, {R2}, …, {Rn}
– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
– …
– Step n: for {R1, …, Rn}

• It is a bottom-up strategy
• A subset of {R1, …, Rn} is also called a subquery

CSE 544 - Fall 2007 33

Dynamic Programming Algo.

• For each subquery Q ⊆{R1, …, Rn} compute the
following:
– Size(Q)
– A best plan for Q: Plan(Q)
– The cost of that plan: Cost(Q)

CSE 544 - Fall 2007 34

Dynamic Programming Algo.

• Step 1: Enumerate all single-relation plans

– Consider selections on attributes of relation
– Consider all possible access paths
– Consider attributes that are not needed

– Compute cost for each plan

– Keep cheapest plan per “interesting” output order

CSE 544 - Fall 2007 35

Dynamic Programming Algo.

• Step 2: Generate all two-relation plans

– For each each single-relation plan from step 1
– Consider that plan as outer relation
– Consider every other relation as inner relation

– Compute cost for each plan

– Keep cheapest plan per “interesting” output order

CSE 544 - Fall 2007 36

Dynamic Programming Algo.

• Step 3: Generate all three-relation plans

– For each each two-relation plan from step 2
– Consider that plan as outer relation
– Consider every other relation as inner relation
– Compute cost for each plan
– Keep cheapest plan per “interesting” output order

• Steps 4 through n: repeat until plan contains all the
relations in the query

CSE 544 - Fall 2007 37

Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

• Inspired by System R
– Left-deep plans and dynamic programming
– Cost-based optimization (CPU and IO)

• Go beyond System R style of optimization
– Also consider right-deep and bushy plans (e.g., Oracle and DB2)
– Variety of additional strategies for generating plans (e.g., DB2

and SQL Server)

CSE 544 - Fall 2007 38

Other Query Optimizers

• Randomized plan generation
– Genetic algorithm
– PostgreSQL uses it for queries with many joins

• Rule-based
– Extensible collection of rules
– Rule = Algebraic law with a direction
– Algorithm for firing these rules

• Generate many alternative plans, in some order
• Prune by cost

– Startburst (later DB2) and Volcano (later SQL Server)

