CSE 544 Principles of Database Management Systems

Magdalena Balazinska Fall 2007

Lecture 8 - Operator Algorithms

References

- Join processing in database systems with large main memories. Leonard Shapiro. ACM Transactions on Database Systems 11(3), 1986. Also in Red Book (3rd and 4th ed)
- Database management systems.

Ramakrishnan and Gehrke.

Third Ed. Chapters 13 and 14.

Outline

- Finish one-pass algorithms
- Two-pass algorithms
- Index-based algorithms

Significance

- Implemented in commercial DBMSs
- Good algorithms can greatly improve performance
- Different DBMSs implement different subsets of these algorithms

Join Algorithms

- Logical operator:
 - Product(pname, cname) ⋈ Company(cname, city)
- Propose three physical operators for the join, assuming the tables are in main memory:
 - Hash join
 - Nested loop join
 - Sort-merge join

Hash Join

Hash join: R ⋈ S

- Scan R, build buckets in main memory
- Then scan S and join
- Cost: B(R) + B(S)
- One pass algorithm when B(R) <= M

- Tuple-based nested loop R ⋈ S
- R is the outer relation, S is the inner relation

```
for each tuple r in R do
for each tuple s in S do
if r and s join then output (r,s)
```

- Cost: B(R) + T(R) B(S) when S is clustered
- Cost: B(R) + T(R) T(S) when S is unclustered

Page-at-a-time Refinement

```
for each page of tuples r in R do
for each page of tuples s in S do
for all pairs of tuples
if r and s join then output (r,s)
```

- Cost: B(R) + B(R)B(S) if S is clustered
- Cost: B(R) + B(R)T(S) if S is unclustered

- We can be much more clever
- How would you compute the join in the following cases?
 What is the cost?

$$- B(R) = 1000, B(S) = 2, M = 4$$

$$- B(R) = 1000, B(S) = 3, M = 4$$

$$- B(R) = 1000, B(S) = 6, M = 4$$

- Block Nested Loop Join
- Group of (M-2) pages of S is called a "block"

```
for each (M-2) pages ps of S do
  for each page pr of R do
  for each tuple s in ps
    for each tuple r in pr do
    if "r and s join" then output(r,s)
```


- Cost of block-based nested loop join
 - Read S once: cost B(S)
 - Outer loop runs B(S)/(M-2) times, and each time need to read R: costs B(S)B(R)/(M-2)
 - Total cost: B(S) + B(S)B(R)/(M-2)
- Notice: it is better to iterate over the smaller relation first

Sort-Merge Join

Sort-merge join: R ⋈ S

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S
- Cost: B(R) + B(S)
- One pass algorithm when B(S) + B(R) <= M
- Typically, this is NOT a one pass algorithm

One-pass Algorithms

Duplicate elimination $\delta(R)$

- Need to keep tuples in memory
- When new tuple arrives, need to compare it with previously seen tuples
- Balanced search tree or hash table
- Cost: B(R)
- Assumption: $B(\delta(R)) \leq M$

One-pass Algorithms

Grouping:

Product(name, department, quantity)

 $\gamma_{\text{department, sum(quantity)}}$ (Product) \rightarrow Answer(department, sum)

How can we compute this in main memory?

One-pass Algorithms

- Grouping:
 γ department, sum(quantity) (R)
- Need to store all departments in memory
- Also store the sum(quantity) for each department
- Balanced search tree or hash table
- Cost: B(R)
- Assumption: number of depts fits in memory

Outline

- Finish one-pass algorithms
- Two-pass algorithms
- Index-based algorithms

Two-Pass Algorithms

- What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
 - Hashing
 - Sorting

Two Pass Algorithms Based on Hashing

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

Does each bucket fit in main memory?

-Yes if B(R)/M <= M, i.e. B(R) <=
$$M^2$$

Hash Based Algorithms for δ

- Recall: $\delta(R)$ = duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket
- Cost: 3B(R)
- Assumption: B(R) <= M²

Hash Based Algorithms for γ

- Recall: $\gamma(R)$ = grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket
- Cost: 3B(R)
- Assumption: B(R) <= M²

Simple Hash Join

$R \bowtie S$

- Step 1:
 - P = min(M-3, B(S))
 - Choose hash function h and set of hash values s.t. P blocks of S tuples will hash into that set
 - Hash S and either insert tuple into hash table or write to disk
- Step 2
 - Hash R and either probe the hash table for S or write to disk
- Step 3
 - Repeat steps 1 and 2 until all tuples are processed

Simple Hash Join

- Build a hash-table for M-3 pages of S
- Write remaining pages of S back to disk

Simple Hash Join

- Hash R using the same hash function
- Probe hash table for S or write tuples of R back to disk

- Repeat these two steps until all tuples are processed
- Requires many passes

Partitioned (Grace) Hash Join

$R \bowtie S$

- Step 1:
 - Hash S into M-1 buckets
 - Send all buckets to disk
- Step 2
 - Hash R into M-1 buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

Partitioned Hash Join

- Partition both relations using hash fn h
- R tuples in partition i will only match S tuples in partition i.

CSE 544 - Fall 2007

Partitioned Hash Join

- Read in partition of R, hash it using h2 (≠ h)
 - Build phase
- Scan matching partition of S, search for matches
 - Probe phase

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: min(B(R), B(S)) <= M²

Hybrid Hash Join Algorithm

- Assume we have extra memory available
- Partition S into k buckets
 t buckets S₁, ..., S_t stay in memory
 k-t buckets S_{t+1}, ..., S_k to disk
- Partition R into k buckets
 - First t buckets join immediately with S
 - Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:

$$(R_{t+1}, S_{t+1}), (R_{t+2}, S_{t+2}), ..., (R_k, S_k)$$

Hybrid Hash Join Algorithm

 $k \leq M$

How to choose k and t?

Choose k large but s.t.

– Choose t/k large but s.t. t/k * B(S) <= M</p>

- Moreover: $t/k * B(S) + k-t \le M$

Assuming t/k * B(S) >> k-t: t/k = M/B(S)

Hybrid Hash Join Algorithm

- How many I/Os ?
- Cost of partitioned hash join: 3B(R) + 3B(S)
- Hybrid join saves 2 I/Os for a t/k fraction of buckets
- Hybrid join saves 2t/k(B(R) + B(S)) I/Os
- Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

External Sorting

- Problem: Sort a file of size B with memory M
- Where we need this:
 - ORDER BY in SQL queries
 - Several physical operators
 - Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, for when B < M²

External Merge-Sort: Step 1

Phase one: load M pages in memory, sort

External Merge-Sort: Step 2

- Merge M 1 runs into a new run
- Result: runs of length M (M 1)≈ M²

If $B \le M^2$ then we are done

External Merge-Sort

- Cost:
 - Read+write+read = 3B(R)
 - Assumption: $B(R) \le M^2$
- Other considerations
 - In general, a lot of optimizations are possible

Two-Pass Algorithms Based on Sorting

Duplicate elimination $\delta(R)$

- Trivial idea: sort first, then eliminate duplicates
- Step 1: sort chunks of size M, write
 - cost 2B(R)
- Step 2: merge M-1 runs, but include each tuple only once
 - $\cos t B(R)$
- Total cost: 3B(R), Assumption: B(R) <= M²

Two-Pass Algorithms Based on Sorting

Grouping: $\gamma_{a, sum(b)}$ (R)

- Same as before: sort, then compute the sum(b) for each group of a's
- Total cost: 3B(R)
- Assumption: B(R) <= M²

Two-Pass Algorithms Based on Sorting

Join R ⋈ S

- Start by sorting both R and S on the join attribute:
 - Cost: 4B(R)+4B(S) (because need to write to disk)
- Read both relations in sorted order, match tuples
 - Cost: B(R)+B(S)
- Total cost: 5B(R)+5B(S)
- Assumption: $B(R) \le M^2$, $B(S) \le M^2$

Two-Pass Algorithms Based on Sorting

Join R ⋈ S

- If $B(R) + B(S) \le M^2$
- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)

Outline

- Finish one-pass algorithms
- Two-pass algorithms
- Index-based algorithms

Review: Access Methods

Heap file

Scan tuples one at the time

Hash-based index

- Efficient selection on equality predicates
- Can also scan data entries in index

Tree-based index

- Efficient selection on equality or range predicates
- Can also scan data entries in index

Index Based Selection

- Selection on equality: $\sigma_{a=v}(R)$
- V(R, a) = # of distinct values of attribute a
- Clustered index on a: cost B(R)/V(R,a)
- Unclustered index on a: cost T(R)/V(R,a)
- Note: we ignored the I/O cost for the index pages

Index Based Selection

Example:

$$B(R) = 2000$$

 $T(R) = 100,000$
 $V(R, a) = 20$

cost of
$$\sigma_{a=v}(R) = ?$$

- Table scan (assuming R is clustered)
 - B(R) = 2,000 I/Os
- Index based selection
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
 - If index is unclustered: T(R)/V(R,a) = 5,000 I/Os
- Lesson
 - Don't build unclustered indexes when V(R,a) is small!

Index Nested Loop Join

$R \bowtie S$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S

Cost:

- Assuming R is clustered
- If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
- If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

Summary of External Join Algorithms

- Block Nested Loop Join: B(R) + B(R)*B(S)/M
- Hybrid Hash Join: (3-2M/B(S))(B(R) + B(S))
 Assuming t/k * B(S) >> k-t
- Sort-Merge Join: 3B(R)+3B(S)
 Assuming B(R)+B(S) <= M²
- Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
 Assuming R is clustered and S has clustered index on a

Summary of Query Execution

- For each logical query plan
 - There exist many physical query plans
 - Each plan has a different cost
 - Cost depends on the data
- Additionally, for each query
 - There exist several logical plans
- Next lecture: query optimization
 - How to compute the cost of a complete plan?
 - How to pick a good query plan for a query?