
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska
Fall 2007

Lecture 7 - Query execution

CSE 544 - Fall 2007

References

• Generalized Search Trees for Database Systems. J.
M. Hellerstein, J. F. Naughton and A. Pfeffer. VLDB
1995. [To finish talking about GiST]

• Query evaluation techniques for large databases.
G. Graefe. ACM Computing Survey 25(2). 1993. Sec 1.

• Database management systems.
Ramakrishnan and Gehrke.
Third Ed. Chapter 12.

CSE 544 - Fall 2007

Outline

• Finish talking about GiST

• Steps involved in processing a query
– Logical query plan
– Physical query plan
– Query execution overview

• Operator implementations (part 1)

CSE 544 - Fall 2007

Generalized Search Tree (GiST)

• Goal: facilitate database extensibility
– When adding a new data type
– Want to add indexes for the data type

• Overview
– GiST is an index structure
– Basically, this is a template for indexes
– Supports extensible set of queries and data types

CSE 544 - Fall 2007

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

CSE 544 - Fall 2007

R6 R7R4 R5R3

R-Tree Example

R3 R4 R5 R6 R7

Search key values are bounding boxes

R3
R1

R4
R5

R6

R1 R2

R7

R2

Q

Q Q

Q

Designed for spatial data

For insertion: at each level, choose child whose bounding box
needs least enlargement (in terms of area)

CSE 544 - Fall 2007

GiST Key Insights

Canonical database search tree
• Balanced tree with high fanout

• Leaf nodes contain pointers to actual data

• Leaf nodes stored as a linked list

• Internal nodes used as a directory
– Contain <key,pointers> pairs
– If key consistent with query, data may be found if we follow pointer
– Generalized search key: predicate that holds for each entry below key

• B+-tree key is pair of integers <a,b> and predicate is Contains([a,b),v)
• R-tree key is bounding box and predicate is also containment test

– Generalized search tree: hierarchy of partitions

CSE 544 - Fall 2007

GiST Key Methods: Consistent

• Consistent(E,q)
– Entry E = (p, ptr) and query predicate q
– Returns false if p ∧ q can be guaranteed unsatisfiable
– Returns true otherwise

• See Algo Search(R,q) [also FindMin(R,q) and Next(R,q,E)]

CSE 544 - Fall 2007

GiST Key Methods: Consistent

• In a B+-tree, query predicates q can be either
– Contains([x,y), v) returns true if x <= v < y and false otherwise
– Equal(x,v) returns true if x = v and false otherwise

• In a B+-tree, Consistent(E,q)
– p = Contains([xp,yp), v)
– (1) q = Contains([xq,yq), v) or (2) q = Equal(xq,v)
– For (1), return true if (xp < yq)∧ (yp > xq)
– For (2), return true if xp <= xq < yp

• In R-tree, Consistent returns true if bounding boxes overlap

CSE 544 - Fall 2007

GiST Key Methods

• Penalty
– Used during insert operations to pick subtree where to insert
– See algorithms Insert(R,E,I) and ChooseSubtree(R,E,l)
– B+-tree: returns zero when value to insert falls within subtree range
– R-tree: returns change in area

• PickSplit
– Used to split nodes during insert operations
– See algorithm Split(R,N,E)
– B+-tree: half the entries go into left group and half into right group
– R-tree: e.g., minimize total area of bounding boxes after split

CSE 544 - Fall 2007

GiST Key Methods

• Union
– Once a key is inserted, need to adjust predicates at parent nodes
– See algorithm AdjustKeys(R,N)
– B+-tree: computes interval that covers all given intervals
– R-tree: computes bigger bounding box

• Compress/Decompress: for storage performance

CSE 544 - Fall 2007

Outline

• Finish talking about GiST

• Steps involved in processing a query
– Logical query plan
– Physical query plan
– Query execution overview

• Operator implementations (part 1)

CSE 544 - Fall 2007

Query Evaluation Steps

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

CSE 544 - Fall 2007

Example Database Schema

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)

View: Suppliers in Seattle
CREATE VIEW NearbySupp AS

SELECT sno, sname

FROM Supplier

WHERE scity='Seattle' AND sstate='WA'

CSE 544 - Fall 2007

Example Query

• Find the names of all suppliers in Seattle who supply part
number 2

SELECT sname FROM NearbySupp

WHERE sno IN (SELECT sno

 FROM Supplies

 WHERE pno = 2)

CSE 544 - Fall 2007

Steps in Query Evaluation

• Step 0: admission control
– User connects to the db with username, password
– User sends query in text format

• Step 1: Query parsing
– Parses query into an internal format
– Performs various checks using catalog

• Step 2: Query rewrite
– View rewriting, flattening, etc.

CSE 544 - Fall 2007

Rewritten Version of Our Query

Original query:
SELECT sname

FROM NearbySupp

WHERE sno IN (SELECT sno

 FROM Supplies

 WHERE pno = 2)

Rewritten query:
SELECT S.sname

FROM Supplier S, Supplies U

WHERE S.scity='Seattle' AND S.sstate='WA’

AND S.sno = U.sno

AND U.pno = 2;

CSE 544 - Fall 2007

Continue with Query Evaluation

• Step 3: Query optimization
– Find an efficient query plan for executing the query
– We will spend a whole lecture on this topic

• A query plan is
– Logical query plan: an extended relational algebra tree
– Physical query plan: with additional annotations at each node

• Access method to use for each relation
• Implementation to use for each relational operator

CSE 544 - Fall 2007

Extended Algebra Operators

• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Join
• Duplicate elimination δ
• Grouping and aggregation γ
• Sorting τ
• Rename ρ

CSE 544 - Fall 2007

Logical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

CSE 544 - Fall 2007

Query Block

• Most optimizers operate on individual query blocks

• A query block is an SQL query with no nesting
– Exactly one

• SELECT clause
• FROM clause

– At most one
• WHERE clause
• GROUP BY clause
• HAVING clause

CSE 544 - Fall 2007

Typical Plan for Block (1/2)

R S

join condition

σ selection condition

π fields

join condition

…

SELECT-PROJECT-JOIN
Query

...

CSE 544 - Fall 2007

Typical Plan For Block (2/2)

π fields

γ fields, sum/count/min/max(fields)

havingcondition

σ selection condition

join condition

… …

CSE 544 - Fall 2007

How about Subqueries?

SELECT Q.name
FROM Person Q
WHERE Q.age > 25
 and not exists
 SELECT *
 FROM Purchase P
 WHERE P.buyer = Q.name
 and P.price > 100

CSE 544 - Fall 2007

How about Subqueries?

SELECT Q.name
FROM Person Q
WHERE Q.age > 25
 and not exists
 SELECT *
 FROM Purchase P
 WHERE P.buyer = Q.name
 and P.price > 100

Purchase Person

buyer=name
 age>25

name

σ

Person

Price > 100
σ

name

-

CSE 544 - Fall 2007

Physical Query Plan

• Logical query plan with extra annotations

• Access path selection for each relation
– Use a file scan or use an index

• Implementation choice for each operator

• Scheduling decisions for operators

CSE 544 - Fall 2007

Physical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

CSE 544 - Fall 2007

Final Step in Query Processing

• Step 4: Query execution
– How to synchronize operators?
– How to pass data between operators?

• What techniques are possible (paper Sec. 1)?
– One thread per process
– Iterator interface
– Pipelined execution
– Intermediate result materialization

CSE 544 - Fall 2007

Iterator Interface

• Each operator implements this interface
• Interface has only three methods
• open()

– Initializes operator state
– Sets parameters such as selection condition

• get_next()
– Operator invokes get_next recursively on its inputs
– Performs processing and produces an output tuple

• close(): clean-up state
• Examples: Table 1 in the paper

CSE 544 - Fall 2007

Pipelined Execution

• Applies parent operator to tuples directly as they are
produced by child operators

• Benefits
– No operator synchronization issues
– Saves cost of writing intermediate data to disk
– Saves cost of reading intermediate data from disk
– Good resource utilizations on single processor

• This approach is used whenever possible

CSE 544 - Fall 2007

Pipelined Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

CSE 544 - Fall 2007

Intermediate Tuple Materialization

• Writes the results of an operator to an intermediate table
on disk

• No direct benefit but
• Necessary for some operator implementations
• When operator needs to examine the same tuples

multiple times

CSE 544 - Fall 2007

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

CSE 544 - Fall 2007

Outline

• Finish talking about GiST

• Steps involved in processing a query
– Logical query plan
– Physical query plan
– Query execution overview

• Operator implementations (part 1)

CSE 544 - Fall 2007

Cost Parameters

• In database systems the data is on disk
• Cost = total number of I/Os

• Parameters:
– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

CSE 544 - Fall 2007

Cost

• Cost of an operation = number of disk I/Os to
– read the operands
– compute the result

• Cost of writing the result to disk is not included
– Need to count it separately when applicable

CSE 544 - Fall 2007

Notions of Clustering

• Clustered-file organization (aka co-clustering)
– Tuples of one relation R are placed with a tuple of another

relation S with a common value

• Clustered relation
– Tuples of relation are stored on blocks predominantly devoted to

storing that relation
– Sometimes also called “clustered file organization”

• Clustered index (aka clustering index)
– When ordering of data records is close to the ordering of data

entries in the index

CSE 544 - Fall 2007

Cost Parameters

• Clustered relation R:
– Blocks consists mostly of records from this table
– B(R) ≈ T(R) / blockSize

• Unclustered relation R:
– Its records are placed on blocks with other tables
– When R is unclustered: B(R) ≈ T(R)

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a)

CSE 544 - Fall 2007

Cost of Scanning a Table

• Clustered relation:
– Result may be unsorted: B(R)
– Result needs to be sorted: 3B(R)

• Unclustered relation
– Unsorted: T(R)
– Sorted: T(R) + 2B(R)

CSE 544 - Fall 2007

One-pass Algorithms

Selection σ(R), projection Π(R)
• Both are tuple-at-a-time algorithms
• Cost: B(R), the cost of scanning the relation

Input buffer Output bufferUnary
operator

CSE 544 - Fall 2007

Join Algorithms

• Logical operator:
– Product(pname, cname) ⋈ Company(cname, city)

• Propose three physical operators for the join, assuming
the tables are in main memory:
– Hash join
– Nested loop join
– Sort-merge join

CSE 544 - Fall 2007

Hash Join

Hash join: R ⋈ S
• Scan R, build buckets in main memory
• Then scan S and join

• Cost: B(R) + B(S)

• One pass algorithm when B(R) <= M

CSE 544 - Fall 2007

Nested Loop Joins

• Tuple-based nested loop R ⋈ S
• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S) when S is clustered
• Cost: B(R) + T(R) T(S) when S is unclustered

for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

CSE 544 - Fall 2007

Page-at-a-time Refinement

• Cost: B(R) + B(R)B(S) if S is clustered
• Cost: B(R) + B(R)T(S) if S is unclustered

for each page of tuples r in R do
 for each page of tuples s in S do

for all pairs of tuples
if r and s join then output (r,s)

CSE 544 - Fall 2007

Nested Loop Joins

• We can be much more clever

• How would you compute the join in the following cases ?
What is the cost ?

– B(R) = 1000, B(S) = 2, M = 4

– B(R) = 1000, B(S) = 3, M = 4

– B(R) = 1000, B(S) = 6, M = 4

CSE 544 - Fall 2007

for each (M-2) pages ps of S do
 for each page pr of R do
 for each tuple s in ps
 for each tuple r in pr do
 if “r and s join” then output(r,s)

Nested Loop Joins

• Block Nested Loop Join
• Group of (M-2) pages of S is called a “block”

CSE 544 - Fall 2007

Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

CSE 544 - Fall 2007

Nested Loop Joins

• Cost of block-based nested loop join
– Read S once: cost B(S)
– Outer loop runs B(S)/(M-2) times, and each time need to read R:

costs B(S)B(R)/(M-2)
– Total cost: B(S) + B(S)B(R)/(M-2)

• Notice: it is better to iterate over the smaller relation first

CSE 544 - Fall 2007

Sort-Merge Join

Sort-merge join: R ⋈ S
• Scan R and sort in main memory
• Scan S and sort in main memory
• Merge R and S

• Cost: B(R) + B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically, this is NOT a one pass algorithm

CSE 544 - Fall 2007

One-pass Algorithms

Duplicate elimination δ(R)

• Need to keep tuples in memory
• When new tuple arrives, need to compare it with

previously seen tuples
• Balanced search tree or hash table
• Cost: B(R)
• Assumption: B(δ(R)) <= M

CSE 544 - Fall 2007

One-pass Algorithms

Grouping:
Product(name, department, quantity)
γdepartment, sum(quantity) (Product) Answer(department, sum)

How can we compute this in main memory ?

CSE 544 - Fall 2007

One-pass Algorithms

• Grouping: γ department, sum(quantity) (R)

• Need to store all departments in memory
• Also store the sum(quantity) for each department
• Balanced search tree or hash table
• Cost: B(R)
• Assumption: number of depts fits in memory

