
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska
Fall 2007

Lecture 6 - Storage and Indexing

CSE 544 - Fall 2007

References

• Generalized Search Trees for Database Systems.
J. M. Hellerstein, J. F. Naughton and A. Pfeffer. VLDB
1995.

• Database management systems. Third Edition. R.
Ramakrishnan and J. Gehrke. Chapters 8 through 11

CSE 544 - Fall 2007

Storage Management

• Can be done by the OS or by the DBMS

• What are the trade-offs? See lecture 5

• How does the DBMS manage storage?

CSE 544 - Fall 2007

Outline

• Data storage
– Disk and files: Sections 9.3 through 9.7
– Operations on files

• Indexes
– Index structures: Section 8.3
– Hash-based indexes: Section 8.3.1 and Chapter 11
– B+ trees: Section 8.3.2 and Chapter 10
– GiST: Hellerstein et. al.’s VLDB’95 paper (will finish next lecture)

CSE 544 - Fall 2007

Buffer Manager

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk is a collection
of blocks

Disk space manager

Buffer pool manager
Files and access methods

CSE 544 - Fall 2007

Data Storage

• Basic abstraction
– Collection of records or file
– Typically, 1 relation = 1 file
– A file consists of one or more pages

• How to organize pages into files?
• How to organize records inside a file?

• Simplest approach: heap file (unordered)

CSE 544 - Fall 2007

Heap File Operations

• Create or destroy a file
• Insert a record
• Delete a record with a given rid (rid)

– rid: unique tuple identifier such that
– can identify disk address of page containing record by using rid

• Get a record with a given rid
• Scan all records in the file

CSE 544 - Fall 2007

Heap File Implementation 1

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space

CSE 544 - Fall 2007

Heap File Implementation 2

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header page

Directory contains free-space count for each page.
Faster inserts for variable-length records

CSE 544 - Fall 2007

Page Formats

Issues to consider
• 1 page = 1 disk block = fixed size (e.g. 8KB)
• Records:

– Fixed length
– Variable length

• Record id = RID
– Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?
See discussion about indexes later in the lecture

CSE 544 - Fall 2007

Page Format Approach 1

Fixed-length records: packed representation

Free space N

SlotNSlot2Slot1

Problems ? Number of records

How to handle variable-length records?
Need to move records for each deletion, changing RIDs

CSE 544 - Fall 2007

Page Format Approach 2

Free space

Can handle variable-length records
Can move tuples inside a page without changing RIDs

Slot directory
Each slot contains

<record offset, record length>

CSE 544 - Fall 2007

Record Formats

Fixed-length records → Each field has a fixed length
(i.e., it has the same length in all the records)

Field K.Field 2Field 1

Information about field lengths and types is in the catalog

CSE 544 - Fall 2007

Record Formats

Field K.Field 2Field 1

Variable length records

Record header

Remark: NULLS require no space at all (why ?)

CSE 544 - Fall 2007

Long Records Across Pages

• When records are very large
• Or even medium size: saves space in blocks
• Commercial RDBMSs avoid this

page
header

page
header

R1 R2 R2 R3

CSE 544 - Fall 2007

LOB

• Large objects
– Binary large object: BLOB
– Character large object: CLOB

• Supported by modern database systems
• E.g. images, sounds, texts, etc.

• Storage: attempt to cluster blocks together

CSE 544 - Fall 2007

Types of Files

• Heap file
– Unordered

• Sorted file (also called sequential file)
• Clustered file

We discussed heap files
The others are similar

CSE 544 - Fall 2007

Outline

• Data storage
– Disk and files: Sections 9.3 through 9.7
– Operations on files

• Indexes
– Index structures: Section 8.3
– Hash-based indexes: Section 8.3.1
– B+ trees: Chapter 10

CSE 544 - Fall 2007

Modifications: Insertion

• File is unsorted (= heap file)
– add it wherever there is space (easy )

• File is sorted
– Is there space on the right page ?

• Yes: we are lucky, store it there
– Is there space in a neighboring page ?

• Look 1-2 pages to the left/right, shift records
– If anything else fails, create overflow page

CSE 544 - Fall 2007

Overflow Pages

• After a while the file starts being dominated by overflow
pages: time to reorganize

Pagen-1 Pagen Pagen+1

Overflow

CSE 544 - Fall 2007

Modifications: Deletions

• Free space in page, shift records
– Be careful with slots
– RIDs for remaining tuples must NOT change

• May be able to eliminate an overflow page

CSE 544 - Fall 2007

Modifications: Updates

• If new record is shorter than previous, easy 
• If it is longer, need to shift records

– May have to create overflow pages

CSE 544 - Fall 2007

Searching in a Heap File

2170

18 …30

1940

2020

1860

1980

2250

2110

File is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page

CSE 544 - Fall 2007

Heap File Search Example

• 10,000 students
• 10 student records per page
• Total number of pages: 1,000 pages
• Find student whose sid is 80

– Must read on average 500 pages

• Find all students older than 20
– Must read all 1,000 pages

• Can we do better?

CSE 544 - Fall 2007

Sequential File

2020

21 …10

1940

1830

1860

2250

1980

2170

File sorted on an attribute, usually on primary key
Student(sid: int, age: int, …)

CSE 544 - Fall 2007

Sequential File Example

• Total number of pages: 1,000 pages
• Find student whose sid is 80

– Could do binary search, read log2(1,000) ≈ 10 pages

• Find all students older than 20
– Must still read all 1,000 pages

• Can we do even better?

CSE 544 - Fall 2007

Outline

• Data storage
– Disk and files: Sections 9.3 through 9.7
– Operations on files

• Indexes
– Index structures: Section 8.3
– Hash-based indexes: Section 8.3.1
– B+ trees: Chapter 10

CSE 544 - Fall 2007

Indexes

• Index: data structure that organizes data records on disk to
optimize selections on the search key fields for the index

• An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given search key value k

CSE 544 - Fall 2007

Indexes

• Search key = can be any set of fields
– not the same as the primary key, nor a key

• Index = collection of data entries

• Data entry for key k can be:
– The actual record with key k

• In this case, the index is also a special file organization
• This type of index is also called the primary index of a file

– (k, RID)
– (k, list-of-RIDs)

CSE 544 - Fall 2007

Primary Index
• Data file is sorted on the index attribute
• Dense index: sequence of (key,pointer) pairs

40

30

20

10

80

70

60

50

20

10

40

30

60

50

80

70

1 data entry

1 page

Index File Data File

CSE 544 - Fall 2007

Primary Index

• Sparse index

70

50

30

10

150

130

110

90

20

10

40

30

60

50

80

70

CSE 544 - Fall 2007

Primary Index
with Duplicate Keys

• Sparse index: pointer to lowest search key on each page:

• Search for 20

30

20

10

10

10

10

20

10

20

20

40

30

20 is
here...

...but
need to
search

here too

CSE 544 - Fall 2007

• Better: pointer to lowest new search key on each page:

• Search for 20

• Search for 15 ? 35 ?

Primary Index
with Duplicate Keys

40

30

20

10

80

70

60

50

10

10

20

10

30

30

50

40

20 is
here...

...ok to
search

from here

30

30

CSE 544 - Fall 2007

Primary Index
with Duplicate Keys

• Dense index:

40

30

20

10

80

70

60

50

10

10

20

10

20

20

40

30

CSE 544 - Fall 2007

Primary Index Example

• Let’s assume all pages of index fit in memory

• Find student whose sid is 80
– Index (dense or sparse) points directly to the page
– Only need to read 1 page from disk.

• Find all students older than 20
– Must still read all 1,000 pages.

• How can we make both queries fast?

CSE 544 - Fall 2007

Secondary Indexes

• To index other attributes than primary key
• Always dense (why ?)

19

19

18

18

22

21

21

20

2020

2110

1940

1830

1860

2250

1980

2170

CSE 544 - Fall 2007

Clustered vs.
Unclustered Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED
Clustered = records close in index are close in data

CSE 544 - Fall 2007

Clustered/Unclustered

• Primary index = clustered by definition
• Secondary indexes = usually unclustered

CSE 544 - Fall 2007

Secondary Indexes

• Applications
– Index other attributes than primary key
– Index unsorted files (heap files)
– Index clustered data

CSE 544 - Fall 2007

Index Classification Summary
• Primary/secondary

– Primary = determines the location of indexed records (i.e., data order)
– Secondary = cannot reorder data, does not determine data location

• Dense/sparse
– Dense = every key in the data appears in the index
– Sparse = the index contains only some keys

• Clustered/unclustered
– Clustered = records close in index are close in data
– Unclustered = records close in index may be far in data

• B+ tree / Hash table / …

CSE 544 - Fall 2007

Large Indexes

• What if index does not fit in memory?

• Would like to index the index itself
– Hash-based index
– Tree-based index

CSE 544 - Fall 2007

Hash-Based Index

22

20

18

18

19

21

21

19

2020

2110

1940

1830

1860

2250

1980

2170

H1

h1(sid) = 00

h1(sid) = 11

sid

H2age

h2(age) = 00

h2(age) = 01

Another example of primary index
Another example
of secondary index

Good for point queries but not range queries

CSE 544 - Fall 2007

Tree-Based Index

• How many index levels do we need?
• Can we create them automatically? Yes!
• Can do something even more powerful!

CSE 544 - Fall 2007

B+ Trees

• Search trees

• Idea in B Trees
– Make 1 node = 1 page (= 1 block)
– Keep tree balanced in height

• Idea in B+ Trees
– Make leaves into a linked list : facilitates range queries

CSE 544 - Fall 2007

B+ Trees

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries (primary index)

CSE 544 - Fall 2007

• Parameter d = the degree
• Each node has d <= m <= 2d keys (except root)

• Each leaf has d <= m <= 2d keys:

B+ Trees Basics

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

605040

40 50 60

Next leaf

Data records

Each node also
has m+1 pointers

CSE 544 - Fall 2007

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

CSE 544 - Fall 2007

Searching a B+ Tree

• Exact key values:
– Start at the root
– Proceed down, to the leaf

• Range queries:
– Find lowest bound as above
– Then sequential traversal

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
 and age <= 30

CSE 544 - Fall 2007

B+ Tree Design

• How large d ?
• Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• 2d x 4 + (2d+1) x 8 <= 4096
• d = 170

CSE 544 - Fall 2007

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes

CSE 544 - Fall 2007

Insertion in a B+ Tree

Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

p5

K5

P4P3P2P1

K4K2 K3

P0

K1

P2P1

K2

P0

K1

p5P4

K5

P3

K4

parent
 K3

parent

CSE 544 - Fall 2007

Insertion in a B+ Tree

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

CSE 544 - Fall 2007

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

CSE 544 - Fall 2007

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

CSE 544 - Fall 2007

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

CSE 544 - Fall 2007

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

CSE 544 - Fall 2007

Insertion in a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

40 5030

CSE 544 - Fall 2007

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

40 5030

CSE 544 - Fall 2007

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

5040

May change to
40, or not

CSE 544 - Fall 2007

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

5040

CSE 544 - Fall 2007

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 20 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

5040

CSE 544 - Fall 2007

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

5040

CSE 544 - Fall 2007

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50

CSE 544 - Fall 2007

Deletion from a B+ Tree

80

6019 120 140100

15 1810 20 5019 6560 85 9080

10 15 18 20 60 65 80 85 9019

Final tree

50

CSE 544 - Fall 2007

Summary on B+ Trees

• Default index structure on most DBMSs

• Very effective at answering ‘point’ queries:
 productName = ‘gizmo’

• Effective for range queries:
 50 < price AND price < 100

• Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

CSE 544 - Fall 2007

Generalized Search Tree (GiST)

• Goal: facilitate database extensibility
– When adding a new data type
– Want to add indexes for the data type

• Overview
– GiST is an index structure
– Basically, this is a template for indexes
– Supports extensible set of queries and data types

• We will finish talking about GiST next lecture

