
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska
Fall 2007

Lecture 4 - Schema Normalization

CSE 544 - Fall 2007

References

• R&G Book. Chapter 19: “Schema refinement and
normal forms”

• Also relevant to this lecture. Chapter 2: “Introduction to
database design” and Chapter 3.5: “Logical database
design: ER to relational”

CSE 544 - Fall 2007

Outline

• Finish discussing SQL (from last lecture)

• Finish discussing views (from last lecture)

• Schema normalization
– Conceptual db design: entity-relationship model
– Problematic database designs
– Functional dependencies
– Normal forms

CSE 544 - Fall 2007

SQL Query

 SELECT <attributes>
 FROM <one or more relations>
 WHERE <conditions>

Basic form: (plus many many more bells and whistles)

CSE 544 - Fall 2007

Select-Project-Join Query

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’
 AND Price <= 200

Join
between Product

and Company

CSE 544 - Fall 2007

Nested Queries

• Nested query
– Query that has another query embedded within it
– The embedded query is called a subquery

• Why do we need them?
– Enables us to refer to a table that must itself be computed

• Subqueries can appear in
– WHERE clause (common)
– FROM clause (less common)
– HAVING clause (less common)

CSE 544 - Fall 2007

Subqueries Returning Relations

 SELECT Company.city
 FROM Company
 WHERE Company.name IN
 (SELECT Product.maker
 FROM Purchase , Product
 WHERE Product.pname=Purchase.product
 AND Purchase .buyer = ‘Joe Blow‘);

Return cities where one can find companies that manufacture
products bought by Joe Blow

Company(name, city)
Product(pname, maker)
Purchase(id, product, buyer)

CSE 544 - Fall 2007

Subqueries Returning Relations

 SELECT pname
 FROM Product
 WHERE price > ALL (SELECT price
 FROM Product
 WHERE maker=‘Gizmo-Works’)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

You can also use: s > ALL R
 s > ANY R
 EXISTS R

CSE 544 - Fall 2007

Correlated Queries

 SELECT DISTINCT title
 FROM Movie AS x
 WHERE year <> ANY
 (SELECT year
 FROM Movie
 WHERE title = x.title);

 Movie (title, year, director, length)
 Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

CSE 544 - Fall 2007

Complex Correlated Query

Product (pname, price, category, maker, year)
• Find products (and their manufacturers) that are more expensive than all

products made by the same manufacturer before 1972

Very powerful ! Also much harder to optimize.

SELECT DISTINCT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price
 FROM Product AS y
 WHERE x.maker = y.maker AND y.year < 1972);

CSE 544 - Fall 2007

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:

 sum, count, min, max, avg

CSE 544 - Fall 2007

Grouping and Aggregation

Conceptual evaluation steps:
1. Evaluate FROM-WHERE, apply condition C1
2. Group by the attributes a1,…,ak
3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result
Read more about it in the book...

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE 544 - Fall 2007

Outline

• Finish discussing SQL (from last lecture)

• Finish discussing views (from last lecture)

• Schema normalization
– Conceptual db design: entity-relationship model
– Problematic database designs
– Functional dependencies
– Normal forms

CSE 544 - Fall 2007

Physical Independence

• Definition: Applications are insulated from changes in
physical storage details

• Early models (IMS and CODASYL): No

• Relational model: Yes
– Yes through set-at-a-time language: algebra or calculus
– No specification of what storage looks like
– Administrator can optimize physical layout

CSE 544 - Fall 2007

Logical Independence

• Definition: Applications are insulated from changes to
logical structure of the data

• Early models
– IMS: some logical independence
– CODASYL: no logical independence

• Relational model
– Yes through views

CSE 544 - Fall 2007

Views

• View is a relation

• But rows not explicitly stored in the database

• Instead

• Computed as needed from a view definition

CSE 544 - Fall 2007

Example with SQL

Using relations from Lecture 2
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts

AS

SELECT * FROM Part WHERE psize > 10;

CSE 544 - Fall 2007

Example 2 with SQL

CREATE VIEW Supply_Part2 (name,no)

AS

SELECT R.sname, R.sno

FROM Supplier R, Supply S

WHERE R.sno = S.sno AND S.pno=2;

CSE 544 - Fall 2007

Queries Over Views

SELECT * from Big_Parts

WHERE pcolor='blue';

SELECT name

FROM Supply_Part2

WHERE no=1;

CSE 544 - Fall 2007

Updating Through Views

• Updatable views (SQL-92)
– Defined on single base relation
– No aggregation in definition
– Inserts have NULL values for missing fields
– Better if view definition includes primary key

• Updatable views (SQL-99)
– May be defined on multiple tables

• Messy issue in general

CSE 544 - Fall 2007

Levels of Abstraction

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

CSE 544 - Fall 2007

Query Translations

Relational Algebra Expression (query plan)

Declarative SQL Query

Physical Query Plan

User or application

Optimizer

CSE 544 - Fall 2007

Outline

• Finish discussing SQL (from last lecture)

• Finish discussing views (from last lecture)

• Schema normalization
– Conceptual db design: entity-relationship model
– Problematic database designs
– Functional dependencies
– Normal forms

CSE 544 - Fall 2007

Database Design Process

Data
Modeling Refinement SQL

Tables

ER diagrams Relations

Files

Physical Schema

Conceptual Schema

CSE 544 - Fall 2007

Conceptual Schema Design

Doctorpatien_ofPatient

name

zip name dno

Conceptual Model:

Relational Model:
plus FD’s

Normalization:
Eliminates anomalies

CSE 544 - Fall 2007

Entity-Relationship Diagrams

Entity sets Patient

name

patient_of

Attributes

Relationship sets

CSE 544 - Fall 2007

Example ER Diagram

patient_of DoctorPatient

name

zip name

pno

specialty

dno
since

CSE 544 - Fall 2007

Entity-Relationship Model

• Each entity has a key

• ER relationships can include multiplicity
– One-to-one, one-to-many, etc.
– Indicated with arrows

• Can model multi-way relationships

• Can model subclasses

• And more...

CSE 544 - Fall 2007

Example with Inheritance

Employee

Person name
id

dept Customer
credit_score

billing_addr

Example from Phil Bernstein’s SIGMOD’07 keynote talk

CSE 544 - Fall 2007

Converting into Relations

• One way to translate our ER diagram into relations
– HR (id, name)
– Empl (id, dept) and id is also a foreign key referencing HR
– Client (id, name, credit_score, billing_addr)

• Today, we only talk about using ER diagrams to help us design the
conceptual schema of a database

• In general, apps may need to operate on a view of the data closer to
ER model (e.g., OO view of data) while db contains relations
– Need to translate between objects and relations
– Can be hard → model management problem

CSE 544 - Fall 2007

Back to Our Simpler Example

patient_of DoctorPatient

name

zip name

pno

specialty

dno
since

CSE 544 - Fall 2007

Resulting Relations

• One way to translate diagram into relations

• PatientOf (pno, name, zip, dno, since)
• Doctor (dno, dname, specialty)

CSE 544 - Fall 2007

Problematic Designs

• Some db designs lead to redundancy
– Same information stored multiple times

• Problems
– Redundant storage
– Update anomalies
– Insertion anomalies
– Deletion anomalies

CSE 544 - Fall 2007

Problem Examples

1985198143p13

2002198112p22

2003398125p11

2000298125p11
sincednozipnamepno

PatientOf

If we update
to 98119, we
get inconsistency

Redundant

What if we want to insert a patient without a doctor?
What if we want to delete the last doctor for a patient?
Illegal as (pno,dno) is the primary key, cannot have nulls

CSE 544 - Fall 2007

Solution: Decomposition

98143p13

98112p22

98125p11
zipnamepno

Patient

198513

200212

200331

200021
sincednopno

PatientOf

Decomposition solves the problem,
but need to be careful…

CSE 544 - Fall 2007

Lossy Decomposition

98143p13

98112p22

98125p11
zipnamepno

Patient

19851p1

20021p2

20033p1

20002p1
sincednoname

PatientOf

Decomposition can cause us to lose information!

CSE 544 - Fall 2007

Schema Refinement Challenges

• How do we know that we should decompose a relation?
– Functional dependencies
– Normal forms

• How do we make sure decomposition does not lost info?
– Lossless-join decompositions
– Dependency-preserving decompositions

CSE 544 - Fall 2007

Functional Dependency

• A functional dependency (FD) is an integrity constraint
that generalizes the concept of a key

• An instance of relation R satisfies the FD: X → Y
– if for every pair of tuples t1 and t2
– if t1.X = t2.X then t1.Y = t2.Y
– where X, Y are two nonempty sets of attributes in R

• We say that X determines Y

• FDs come from domain knowledge

CSE 544 - Fall 2007

Closure of FDs

• Some FDs imply others
• For example: Employee(ssn,position,salary)

– FD1: ssn → position and FD2: position → salary
– Imply FD3: ssn → salary

• Can compute closure of a set of FDs
• Armstrong’s Axioms: sound and complete

– Reflexivity: if X ⊇ Y then X → Y
– Augmentation: if X → Y then XZ → YZ for any Z
– Transitivity: if X → Y and Y → Z then X → Z

CSE 544 - Fall 2007

Closure of a Set of Attributes

Given a set of attributes A1, …, An

The closure, {A1, …, An}+ , is the set of attributes B
s.t. A1, …, An  B

CSE 544 - Fall 2007

Closure Algo. (for Attributes)

Start with X={A1, …, An}.

Repeat until X doesn’t change do:

 if B1, …, Bn → C is a FD and
 B1, …, Bn are all in X
 then add C to X.

Can use this algorithm to find keys
• Compute X+ for all sets X
• If X+ = all attributes, then X is a superkey
• Consider only the minimal superkeys

CSE 544 - Fall 2007

Closure Example (for Attributes)

name  color
category  department
color, category  price

Example:

Closures:
 name+ = {name, color}
 {name, category}+ = {name, category, color, department, price}
 color+ = {color}

CSE 544 - Fall 2007

Closure Algo. (for FDs)

A, B  C
A, D  B
B  D

Example:

Step 1: Compute X+, for every X:

A+ = A, B+ = BD, C+ = C, D+ = D
AB+ = ABCD, AC+ = AC, AD+ = ABCD
ABC+ = ABD+ = ACD+ = ABCD
BCD+ = BCD, ABCD+ = ABCD

Step 2: Enumerate all X, output X  X+ - X

AB  CD, ADBC, ABC  D, ABD  C, ACD  B

CSE 544 - Fall 2007

Decomposition Problems

• FDs will help us identify possible redundancy
– Identify redundancy and split relations to avoid it.

• Can we get the data back correctly ?
– Lossless-join decomposition

• Can we recover the FD’s on the ‘big’ table from the FD’s
on the small tables ?
– Dependency-preserving decomposition

CSE 544 - Fall 2007

Normal Forms

• Based on Functional Dependencies
– 2nd Normal Form (obsolete)
– 3rd Normal Form
– Boyce Codd Normal Form (BCNF)

• Based on Multivalued Dependencies
– 4th Normal Form

• Based on Join Dependencies
– 5th Normal Form

We only discuss
these two

CSE 544 - Fall 2007

BCNF

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

 If A1, ..., An → B is a non-trivial dependency in R ,

 then {A1, ..., An} is a superkey for R

BCNF ensures that no redundancy can be detected
using FD information alone

CSE 544 - Fall 2007

Our Example

1985198143p13

2002198112p22

2003398125p11

2000298125p11
sincednozipnamepno

PatientOf

pno,dno is a key, but pno → name zip
BCNF violation so we decompose

CSE 544 - Fall 2007

Decomposition in General

R1 = projection of R on A1, ..., An, B1, ..., Bm
R2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp)

Theorem If A1, ..., An  B1, ..., Bm
Then the decomposition is lossless

Note: don’t need necessarily A1, ..., An  C1, ..., Cp

CSE 544 - Fall 2007

BCNF Decomposition Algorithm

Repeat
 choose A1, …, Am → B1, …, Bn that violates BCNF condition
 split R into

R1(A1, …, Am, B1, …, Bn) and R2(A1, …, Am, [rest])

 continue with both R1 and R2
Until no more violations

Lossless-join decomposition: Attributes common to R1 and
R2 must contain a key for either R1 or R2

CSE 544 - Fall 2007

BCNF and Dependencies

FD’s: Unit → Company; Company, Product → Unit
So, there is a BCNF violation, and we decompose.

ProductCompanyUnit

CSE 544 - Fall 2007

BCNF and Dependencies

FD’s: Unit → Company; Company, Product → Unit
So, there is a BCNF violation, and we decompose.

Unit → Company

No FDs

In BCNF we lose the FD: Company, Product → Unit

ProductCompanyUnit

CompanyUnit

ProductUnit

CSE 544 - Fall 2007

3NF

A simple condition for removing anomalies from relations:

A relation R is in 3rd normal form if :

Whenever there is a nontrivial dep. A1, A2, ..., An → B for R,
then {A1, A2, ..., An } is a super-key for R,
or B is part of a key.

CSE 544 - Fall 2007

3NF Discussion

• 3NF decomposition v.s. BCNF decomposition:
– Use same decomposition steps, for a while
– 3NF may stop decomposing, while BCNF continues

• Tradeoffs
– BCNF = no anomalies, but may lose some FDs
– 3NF = keeps all FDs, but may have some anomalies

CSE 544 - Fall 2007

Summary

• Database design is not trivial
– Use ER models
– Translate ER models into relations
– Normalize to eliminate anomalies

• Normalization tradeoffs
– BCNF: no anomalies, but may lose some FDs
– 3NF: keeps all FDs, but may have anomalies
– Too many small tables affect performance

