CSE 544

Principles of Database
Management Systems

Magdalena Balazinska
Fall 2007
Lecture 2 - Early data models

Announcements

Remember to email us your team information today
You do not need to pick a project today
But you need to pick a project this week

Schedule an appointment with magda to discuss your
project (end of this week or early next week)

Project proposals due on October 10th

CSE 544 - Fall 2007

References

« M. Stonebraker and J. Hellerstein. What Goes Around
Comes Around. In "Readings in Database Systems" (aka
the Red Book). 4th ed. Sections 1 through 4.

« R&G Book. Chapter 3: “The relational model”

CSE 544 - Fall 2007

Outline

« Different types of data

- Early data models
— IMS
— CODASYL

« Relational model (introduction)

CSE 544 - Fall 2007

Different Types of Data

Structured data
— All data conforms to a schema. Ex: business data

Semistructured data
— Some structure in the data but implicit and irregular
— EXx: resume, ads

Unstructured data
— No structure in data. Ex: text, sound, video, images

Our focus: structured data & relational DBMSs
Other types of data toward end of quarter

CSE 544 - Fall 2007

Outline

« Different types of data

- Early data models
— IMS
— CODASYL

« Relational model (introduction)

CSE 544 - Fall 2007

Early Proposal 1: IMS

 Hierarchical data model

e Record

— Type: collection of named fields with data types
— Instance: must match type definition

— Each instance must have a key

— Record types must be arranged in a tree

« IMS database is collection of instances of record types
organized in a tree

CSE 544 - Fall 2007

IMS Example

« See Figure 2 in paper “What goes around comes around”

CSE 544 - Fall 2007

Data Manipulation Language: DL/1

« Each record has a hierarchical sequence key (HSK)
— Records are totally ordered: depth-first and left-to-right

« HSK defines semantics of commands:
— get _next
— get_next_within_parent

DL/ is a record-at-a-time language
— Programmer constructs an algorithm for solving the query
— Programmer must worry about query optimization

CSE 544 - Fall 2007

Data storage

 Root records

— Stored sequentially (sorted on key)
— Indexed in a B-tree using the key of the record
— Hashed using the key of the record

« Dependent records
— Physically sequential
— Various forms of pointers

« Selected organizations restrict DL/1 commands
— No updates allowed with sequential organization
— No “get-next” for hashed organization

CSE 544 - Fall 2007

Data Independence

Physical data independence: Applications are insulated
from changes in physical storage details

Logical data independence: Applications are insulated
from changes to logical structure of the data

Why are these properties important?
— Reduce program maintenance as
— Logical database design changes over time
— Physical database design tuned for performance

CSE 544 - Fall 2007

IMS Limitations

Tree-structured data model
— Redundant data, existence depends on parent, artificial structure

Record-at-a-time user interface
— User must specifies algorithm to access data

Very limited physical independence
— Phys. organization limits possible operations
— Application programs break if organization changes

Provides some logical independence
— DL/1 program runs on logical database

CSE 544 - Fall 2007

Early Proposal 2: CODASYL

e Networked data model

* Primitives are also record types with keys

 Record types are organized into network
— A record can have multiple parents
— Arcs between records are named
— At least one entry point to the network

* Network model is more flexible than hierarchy
— EX: no existence dependence

 Record-at-a-time data manipulation language

CSE 544 - Fall 2007

CODASYL Example

« See Figure 5 in paper “What goes around comes around”

CSE 544 - Fall 2007

CODASYL Limitations

No physical data independence
— Application programs break if organization changes

No logical data independence
— Application programs break if organization changes

Very complex
Programs must “navigate the hyperspace”
Load and recover as one gigantic object

CSE 544 - Fall 2007

Outline

« Different types of data

- Early data models
— IMS
— CODASYL

« Relational model (introduction)

CSE 544 - Fall 2007

Relational Model Overview

* Proposed by Ted Codd in 1970

* Motivation: better logical and physical data independence

* Overview
— Store data in a simple data structure (table)
— Access data through set-at-a-time language
— No need for physical storage proposal

CSE 544 - Fall 2007

Relation Definition

« Database is collection of relations

* Relation R is subset of S, x S,x ... xS
— Where S, is the domain of attribute i
— n is number of attributes of the relation

n

« Relation is basically a table with rows & columns
— SQL uses word table to refer to relations

CSE 544 - Fall 2007

Properties of a Relation

Each row represents an n-tuple of R
Ordering of rows is immaterial
All rows are distinct

Ordering of columns is significant

— Because two columns can have same domain
— But columns are labeled so

— Applications need not worry about order

— They can simply use the names

Domain of each column is a primitive type

Relation consists of a relation schema and instance

CSE 544 - Fall 2007

More Definitions

- Relation schema: describes column heads
— Relation name
— Name of each field (or column, or attribute)
— Domain of each field

* Degree (or arity) of relation: nb attributes

« Database schema: set of all relation schemas

CSE 544 - Fall 2007

Even More Definitions

* Relation instance: concrete table content
— Set of tuples (also called records) matching the schema

« Cardinality of relation instance: nb tuples

« Database instance: set of all relation instances

CSE 544 - Fall 2007

Example

* Relation schema
Supplier(sno: integer, sname: string, scity: string, sstate: string)

 Relation instance

sno shame scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

CSE 544 - Fall 2007

Integrity Constraints

* Integrity constraint
— condition specified on a database schema
— restricts data that can be stored in db instance

« DBMS enforces integrity constraints
— Ensures only legal database instances exist

« Simplest form of constraint is domain constraint
— Attribute values must come from attribute domain

CSE 544 - Fall 2007

Key Constraints

Key constraint: “certain minimal subset of fields is a
unique identifier for a tuple”

Candidate key
— Minimal set of fields
— That uniquely identify each tuple in a relation

Primary key

— One candidate key can be selected as primary key

CSE 544 - Fall 2007

Foreign Key Constraints

* A relation can refer to a tuple in another relation

* Foreign key
— Field that refers to tuples in another relation
— Typically, this field refers to the primary key of other relation
— Can pick another field as well

CSE 544 - Fall 2007

Key Constraint SQL Examples

CREATE TABLE Part (
pno integer,
pname varchar (20),
psize 1nteger,
pcolor wvarchar (20),
PRIMARY KEY (pno)

CSE 544 - Fall 2007

Key Constraint SQL Examples

CREATE TABLE Supply (
sno 1integer,
pno integer,
gty integer,
price integer

) ;

CSE 544 - Fall 2007

Key Constraint SQL Examples

CREATE TABLE Supply (
sno 1integer,
pno 1nteger,
gty integer,
price integer,
PRIMARY KEY (sno,pno)

CSE 544 - Fall 2007

Key Constraint SQL Examples

CREATE TABLE Supply (
sno integer,
pno integer,
gty integer,
price integer,
PRIMARY KEY (sno,pno),
FOREIGN KEY (sno) REFERENCES Supplier
FOREIGN KEY (pno) REFERENCES Part

CSE 544 - Fall 2007

Key Constraint SQL Examples

CREATE TABLE Supply (
sno integer,
pno integer,
gty integer,
price integer,
PRIMARY KEY (sno,pno),
FOREIGN KEY (sno) REFERENCES Supplier
ON DELETE NO ACTION,
FOREIGN KEY (pno) REFERENCES Part
ON DELETE CASCADE

CSE 544 - Fall 2007

General Constraints

« Table constraints serve to express complex constraints
over a single table

CREATE TABLE Part (
pno integer,
pname varchar (20),
psize 1nteger,
pcolor varchar (20),
PRIMARY KEY (pno),
CHECK (psize > 0)

) ;

« ltis also possible to create constraints over many tables

CSE 544 - Fall 2007

Summary

« Data independence is desirable
— Both physical and logical
— Early data models provided very limited data independence

— Relational model facilitates data independence
« Set-at-a-time languages facilitate phys. indep. [more next lecture]
« Simple data models facilitate logical indep. [more next lecture]

* Flat models are also simpler, more flexible

« User should specify what they want
— Not how to get it
— Query optimizer does better job than human

CSE 544 - Fall 2007

