Using Model Management for Data Integration

Phil Bernstein Microsoft Research

Nov. 26, 2007

Most slides come from SIGMOD 07 Keynote & "Bridging Apps & DB", both with Sergey Melnik

Data Programmability

- Make it easier to write programs that access databases
- Traditionally, for large IT departments
- Much progress, but it's still ~40% of the work
- Core problem is developing and using complex mappings between schemas

Mapping Problems are Pervasive And it's a Growth Industry

- Data translation
- XML message mapping
- Data warehouse loading
- Query mediators
- Forms managers
- Report writers

- Query designers
- Object-relational wrappers
- Portal generation from DB
 - OLAP databases
 - Application integration
 - Composing web services

Object-Relational Wrappers

- Most packaged business apps need to access an OO view of relational data
- Requires an OR wrapper
- App developer specifies a high-level mapping
- A tool translates the mapping into executable code

An Example Mapping

- Person = HR $\cup \pi_{ID,Name}$ (Client)
- Employee = HR \bowtie Empl
- Customers = Client

Specified by app developer

Executable Code for Persons

SELECT VALUE

[Melnik, Adya, Bernstein, SIGMOD 07]

CASE WHEN (T5._from2 AND NOT(T5._from1)) THEN <u>Person(T5.Person_Id, T5.Person_Name</u>) WHEN (T5._from1 AND T5._from2) THEN Employee(T5.Person_Id, T5.Person_Name, T5.Employee_Dept) ELSE Customer (T5. Person Id, T5. Person Name, T5. Customer CreditScore, T5.Customer BillingAddr) **END** FROM ((SELECT T1.Person Id, T1.Person Name, T2.Employee Dept, **CAST(NULL** AS SqlServer.int) AS Customer_CreditScore, CAST(NULL AS SqlServer.nvarchar) AS Customer BillingAddr, False AS from0, (T2._from1 AND T2._from1 IS NOT NULL) AS _from1, T1._from2 FROM (SELECT T.Id AS Person Id, T.Name AS Person Name, True AS from 2 FROM HR AS T) AS T1 **LEFT OUTER JOIN (** SELECT T.Id AS Person_Id, T.Dept AS Employee_Dept, True AS _from1 FROM dbo.Empl AS T) AS T2 ON T1.Person Id = T2.Person Id) **UNION ALL** (SELECT T.Id AS Person Id, T.Name AS Person Name, CAST(NULL AS SqlServer.nvarchar) AS Employee Dept, T.Score AS Customer_CreditScore, T.Addr AS Customer_BillingAddr, True AS _from0, False AS _from1, False AS _from2 **FROM** Client AS T)) AS T5 Model Mgmt for CSE 544, Phil Bernstein

6

The Theme

- The main benefit
 - It's easier to design mappings than to write code
- The main problems
 Help the user develop mappings
 Translate mappings into code

Why is mapping hard?

- Heterogeneity
- Impedance mismatch
- Insufficient abstraction
- Potpourri of tools

[Haas, ICDT 07]

- And it's getting harder due to more
 - Programming languages
 - Types of tools

- Data models
- Schema sources

Outline

Motivation

- Model Management
- Operators & Scenarios

Model Management

[Bernstein, Halevy, Pottinger SIGMOD Record 00]

Manipulate *models & mappings* as bulk objects

Meta-model independent
relational, ER, OO, XML, RDF, OWL, SML, ...

Operations

- Match
 Diff/Extract
- · Compose · ModelGen
- Merge Inverse

Model Management Getting Started

Choose a schema definition language

Choose a mapping language

Model Mgmt Operators

 $map = Match(M_1, M_2)$

$\langle M_2, map \rangle =$ ModelGen($M_1, metamodel_2$) M_1 M_2

Fcn = TransGen(map)

Model Mgmt Operators (cont'd) M_1 M_2 M_2 M_3 M_3 Compose: $map_{13} = map_{12} \bullet map_{23}$ map $\langle M_3, map_{13}, map_{23} \rangle =$ M₁ map₁₂ Merge (M_1, M_2, map_{12}) Nap₁₃ map

 $\langle M_2, map_2 \rangle =$ Diff(M_1, map_1)

Plus a few more ...

Model Management Benefits

More research focus on primary operations
 More powerful operations
 Hence better tools

More leverage from tool investments

More uniform behavior across tools

Status Report

- Good News
 - Lots of progress on operations
 - Some practical applications
 - A lot has been learned

Bad News

 Still waiting for the first reasonably-complete practical implementation

Good news

A lot of research left to do

Semantic Mapping

• $I(S_1)$ are the instances of schema S_1

- Each d in I(S₁) is a database
 (e.g., a set of relations)
- $I(S_2)$ are the instances of schema S_2
- map₁₂ \subseteq $I(S_1) \times I(S_2)$
- Usually, we represent a mapping by an expression
 - \circ V = R \bowtie S
 - \circ R \bowtie S = T \bowtie U

Mappings

[Casanova, Vidal. PODS 83] [Biskup, Convent. SIGMOD 86]

[Catarci, Lenzerini. J. CoopIS 93] [Miller, Haas, Hernandez. VLDB 00]

Element <u>correspondences</u>

- First step in aligning schemas
- For lineage & impact analysis
- Weak or no formal semantics

Mapping constraints relate instances of schemas

E.g., equality of relational expressions
 SELECT Id, Name, Dept = SELECT Id, Name, Dept
 FROM Employee
 FROM HR JOIN Employed

Transformation is an executable mapping constraint

- Constructs target instances from source instances
- E.g., SQL query, XSLT, C# program

Mapping Expressiveness

- What we want: first-order logic with
 - negation
 - aggregation
 - set and bag semantics
 - regular expressions
 - nested collections and lists
 - rich type constructors (e.g., to construct XML fragments),
 - user-defined functions
 - deduplication and other heuristic functions
- What can we handle? ... Much less.

Outline

Motivation
 Model Management
 Operators & Scenarios

Scenarios

1. Create mappings

- ModelGen
- Match
- ConstraintGen
- TransGen

2. Evolve mappings
Compose
Diff
Merge
Inverse

ModelGen: Schema Translation

There are several credible prototypes
 Don't know of products, yet

Implementation Strategy [Atzeni & Torlone, EDBT '96]

EDBT '96]

Moving Data via ModelGen [Papotti, Torlone] [Atzeni, Cappellari]

- Data is transferred to super-metamodel DB
- Data is transformed within super-metamodel DB
- Data is transferred to output schema's database

Obtaining Mappings From ModelGen [Bernstein, Melnik, Mork VLDB'05, ER'07]

- Leverages Compose operator
- Each map_i roundtrips data

Code Generation Scenarios [Miller, Haas, & Hernandez, VLDB 00]

Schema Matching S1

- Produce candidate correspondences
- Exploit lexical analysis of element names, schema structure, data types, thesauri, value distributions, ontologies, instances, and previous matches
- Past Goal improved precision & recall
 - Big productivity gains are unlikely
- Better goals
 - Return top-k, not best overall match
 - Avoid the tedium. Manage work.
 - HCI handle large schemas.
 - User studies what would improve productivity?

Cast of Thousands

- AnHai Doan
- Alon Halevy
- Pedro Domingos
- Phil Bernstein
- Erhard Rahm
- Sergey Melnik
- Jayant Madhavan
- Jeffrey Naughton
- Jaewoo Kang
- Tova Milo
- Pavel Shvaiko
- Fausto Giunchiglia
- Sonia Bergamaschi
- Silvana Castano
- Bin He
- Kevin Chang
- Namyoun Choi
- II-Yeol Song

- Hyoil Han
- Domenico Ursino
- Luigi Palopoli
- Dominico Sacca
- Georgio Terracina
- David Embley
- David Jackman
- Li Xu
- Yihong Ding
- Jacob Berlin
- Amihai Motro
- Hong Hai Do
- Fabien Duchateau
- Zohra Bellahsene
- Ela Hunt
- Toralf Kirsten
- Andreas Thor
- Alexander Bilke

- Avigdor Gal
- Michalis Petropoulos
- Christoph Quix
- Chris Clifton
- Arnie Rosenthal
- Wen-Syan Li
- Hector Garcia-Molina
- Sagit Zohar
- Gio Wiederhold
- Anna Zhdanova
- Jerome Euzenat
- Prasenjit Mitra
- Natasha Noy
- Anuj Jaiswal
- Mikalai Yatskevich
- Nuno Silva
- Joao Rocha
- David Aumueller
- Sabine Massmann
- Felix Naumann

Code Generation Scenarios [Miller, Haas, & Hernandez, VLDB 00]

Correspondences \rightarrow Transformations

[Popa, Velegrakis, Miller, Hernandez, Fagin. VLDB 02] [Velegrakis. PhD thesis 2005]

For a given target element

- Find all source elements linked by correspondences
- Find all ways that source elements are related
- Choose one of them and generate the transformation

Correspondences \rightarrow Constraints

[Melnik, Bernstein, Halevy, & Rahm, SIGMOD 05]

31

- Directly interpret correspondences as mapping constraints
- If it's a tree schema and keys correspond

Code Generation Scenarios

Constraints \rightarrow Transformations

[Melnik, Adya, Bernstein, SIGMOD 07]

Constraints \rightarrow Transformations (2)

Difficulty depends on

- Whether the constraints are functions
- The transformation language (e.g., SQL, XSLT)
- Expressiveness of constraints
- Optimization required

Compiling Constraints [Melnik, Adya, Bernstein SIGMOD 07] • Mapping: $\{Q_{C1} = Q_{S1}, ..., Q_{Cn} = Q_{Sn}\}$ E.g., f: <u>SELECT</u> p.Id, p.Name FROM **Persons** p = g: <u>SELECT Id, Name</u> FROM ClientInfo • f: $V_1 = Q_{C1} \cup$ • g: $V_1 = Q_{S1} \cup$ $V_2 = Q_{S2} \cup$ $V_2 = Q_{C2} \cup$ $V_n = Q_{Cn}$ $V_n = Q_{Sn}$ query view Client Store

Model Mgmt for CSE544, Phil Bernstein

Composition

$$\begin{split} I(S_{I}) & \text{ are the instances of schema } S_{I} \\ map_{12} \subseteq I(S_{I}) \times I(S_{2}) & map_{13} \subseteq I(S_{2}) \times I(S_{3}) \\ map_{13} = \{ < d_{1} \in I(S_{I}), d_{3} \in I(S_{3}) > | \\ & \exists d_{2} \in I(S_{2}) (< d_{1}, d_{2} > \in map_{12}) \\ & \land (< d_{2}, d_{3} > \in map_{23}) \} \end{split}$$

Well known examples

- View unfolding $S_1 \xrightarrow{v} S_2 \xrightarrow{q} S_3$
- Answering queries using views

Answering Queries Using Views

• Goal: Rewrite q to access S_1 only

There are many solutions.

 A.Y. Halevy: Answering Queries Using Views: A Survey. VLDB J. 10(4): 270-294 (2001).

38

This is mapping composition.

Client f g Store

Model Mgmt for CSE544, Phil Bernstein

Scenarios

1. Create mappings

- ✓ Match
- ConstraintGen
- TransGen
- ✓ ModelGen

2. Evolve mappings
Compose
Diff
Merge
Inverse

Schema Evolution [Rahm, Bernstein. SIGMOD Rec. Dec 06]

Data Migration

Create mapping: *schema ⇔ evolved schema* Generate a transformation

View Migration

Compose Map_{SV} and Map_{ES} to connect view to evolved schema Model Magnet for CSE544, Phil Bernstein

[Fagin, Kolaitis, Popa, Tan. TODS 05][Nash, Bernstein, Melnik. TODS 07][Yu, Popa. VLDB 05][Bernstein, Green, Melnik, Nash. VLDB 06]

- Some natural 1st-order mapping languages are not closed under composition
 - Sometimes, it's undecidable whether the composition is expressible in the input language
 - Can settle for a partial solution over 1st-order mappings
- Or you can use a 2nd-order mapping language that's closed under composition
 - There's a composition algorithm to compute it
- Some prototype implementations reported
 Practical applications needed

Augment View with S_E's new data

Summary

- There's a big market looking for solutions
- There's progress on many operators
 - But it's incomplete
 - For mappings with limited expressiveness
- Schema evolution is a particularly important scenario where the operators could have a major impact.

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.