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Outline

• Review of ACID properties
– Today we will cover techniques for ensuring atomicity and

durability in face of failures

• Review of buffer manager and its policies

• Write-ahead log

• ARIES method for failure recovery
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ACID Properties

• Atomicity: Either all changes performed by transaction
occur or none occurs

• Consistency: A transaction as a whole does not violate
integrity constraints

• Isolation: Transactions appear to execute one after the
other in sequence

• Durability: If a transaction commits, its changes will
survive failures
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What Could Go Wrong?

• Concurrent operations
– That’s what we discussed last time (isolation property)

• Failures can occur at any time
– Today (atomicity and durability properties)
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Problem Illustration

Client 1:
START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

COMMIT

What do we do now?

Crash !
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Handling Failures

• Types of failures
– Transaction failure
– System failure
– Media failure -> we will not talk about this now

• Required capability: undo and redo

• Challenge: buffer manager
– Changes performed in memory
– Changes written to disk only from time to time
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Impact of Buffer Manager

Disk

Main
memory

Page request from higher-level code

Buffer pool
Disk page

Free frame

1 page corresponds
to 1 disk block
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Primitive Operations

• READ(X,t)
– copy value of data item X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to data item X

• INPUT(X)
– read page containing data item X to memory buffer

• OUTPUT(X)
– write page containing data item X to disk
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Buffer Manager Policies

• STEAL or NO-STEAL
– Can an update made by an uncommitted transaction overwrite the most

recent committed value of a data item on disk?

• FORCE or NO-FORCE
– Should all updates of a transaction be forced to disk before the

transaction commits?

• Easiest for recovery: NO-STEAL/FORCE

• Highest performance: STEAL/NO-FORCE
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Outline
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Solution: Use a Log

• Log: append-only file containing log records
• Enables the use of STEAL and NO-FORCE
• For every update, commit, or abort operation

– Write physical, logical, or physiological log record
– Note: multiple transactions run concurrently, log records are

interleaved

• After a system crash, use log to:
– Redo some transaction that did commit
– Undo other transactions that didn’t commit
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Write-Ahead Log

• All log records pertaining to a page are written to disk
before the page is overwritten on disk

• All log records for transaction are written to disk before
the transaction is considered committed
– Why is this faster than FORCE policy?

• Committed transaction: transactions whose commit log
record has been written to disk
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ARIES Method

• Write-Ahead Log

• Three pass algorithm
– Analysis pass

• Figure out what was going on at time of crash
• List of dirty pages and active transactions

– Redo pass (repeating history principle)
• Redo all operations, even for transactions that will not commit
• Get back to state at the moment of the crash

– Undo pass
• Remove effects of all uncommitted transactions
• Log changes during undo in case of another crash during undo
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ARIES Method Illustration

[Figure 3 from Franklin97]
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ARIES Method Elements

• Each page contains a pageLSN
– Log Sequence Number of log record for latest update to that page
– Will serve to determine if an update needs to be redone

• Physiological logging
– page-oriented REDO

• Possible because will always redo all operations in order
– logical UNDO

• Needed because will only undo some operations
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ARIES Method Data Structures

• Transaction table
– Lists all running transactions (active transactions)
– With lastLSN, most recent update by transaction

• Dirty page table
– Lists all dirty pages
– With recoveryLSN, LSN that caused page to be dirty

• Write ahead log contains log records
– LSN, prevLSN: previous LSN for same transaction
– other attributes
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ARIES Method Details

• Let’s walk through example on board
– Please take notes

• Steps under normal operations
– Add log record
– Update transactions table
– Update dirty page table
– Update pageLSN
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Checkpoints

• Write into the log
– Contents of transactions table
– Contents of dirty page table

• Enables REDO phase to restart from earliest
recoveryLSN in dirty page table
– Shortens REDO phase
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Analysis Phase

• Goal
– Determine point in log where to start REDO
– Determine set of dirty pages when crashed

• Conservative estimate of dirty pages
– Identify active transactions when crashed

• Approach
– Rebuild transactions table and dirty pages table
– Reprocess the log from the beginning (or checkpoint)

• Only update the two data structures
– Find oldest recoveryLSN (firstLSN) in dirty pages tables
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Redo Phase

• Goal: redo all updates since firstLSN

• For each log record
– If affected page is not in Dirty Page Table then do not update
– If affected page is in Dirty Page Table but recoveryLSN > LSN of

record, then no update
– Else if pageLSN > LSN, then no update

• Note: only condition that requires reading page from disk
– Otherwise perform update
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Undo Phase

• Goal: undo effects of aborted transactions

• Identifies all loser transactions in trans. table

• Scan log backwards
– Undo all operations of loser transactions
– Undo each operation unconditionally
– All ops. logged with compensation log records (CLR)
– Never undo a CLR

• Look-up the UndoNextLSN and continue from there
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Handling Crashes during Undo

[Figure 4 from Franklin97]
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Summary

• Transactions are a useful abstraction

• They simplify application development

• DBMS must maintain ACID properties in face of
– Concurrency
– Failures


