
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska
Fall 2007

Lecture 11 - Transactions: recovery



CSE 544 - Fall 2007 2

References

• Concurrency control and recovery.
Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

• Database management systems.
Ramakrishnan and Gehrke.
Third Ed. Chapters 16 and 18.



CSE 544 - Fall 2007 3

Outline

• Review of ACID properties
– Today we will cover techniques for ensuring atomicity and

durability in face of failures

• Review of buffer manager and its policies

• Write-ahead log

• ARIES method for failure recovery



CSE 544 - Fall 2007 4

ACID Properties

• Atomicity: Either all changes performed by transaction
occur or none occurs

• Consistency: A transaction as a whole does not violate
integrity constraints

• Isolation: Transactions appear to execute one after the
other in sequence

• Durability: If a transaction commits, its changes will
survive failures



CSE 544 - Fall 2007 5

What Could Go Wrong?

• Concurrent operations
– That’s what we discussed last time (isolation property)

• Failures can occur at any time
– Today (atomicity and durability properties)



CSE 544 - Fall 2007 6

Problem Illustration

Client 1:
START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

COMMIT

What do we do now?

Crash !



CSE 544 - Fall 2007 7

Handling Failures

• Types of failures
– Transaction failure
– System failure
– Media failure -> we will not talk about this now

• Required capability: undo and redo

• Challenge: buffer manager
– Changes performed in memory
– Changes written to disk only from time to time



CSE 544 - Fall 2007 8

Impact of Buffer Manager

Disk

Main
memory

Page request from higher-level code

Buffer pool
Disk page

Free frame

1 page corresponds
to 1 disk block



CSE 544 - Fall 2007 9

Primitive Operations

• READ(X,t)
– copy value of data item X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to data item X

• INPUT(X)
– read page containing data item X to memory buffer

• OUTPUT(X)
– write page containing data item X to disk



CSE 544 - Fall 2007 10

INPUT(B)

88INPUT(A)

OUTPUT(B)

OUTPUT(A)

WRITE(B,t)

t:=t*2

READ(B,t)

Disk B

WRITE(A,t)

t:=t*2

READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 11

INPUT(B)

888INPUT(A)

OUTPUT(B)

OUTPUT(A)

WRITE(B,t)

t:=t*2

READ(B,t)

Disk B

WRITE(A,t)

t:=t*2

READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 12

INPUT(B)

888INPUT(A)

OUTPUT(B)

OUTPUT(A)

WRITE(B,t)

t:=t*2

READ(B,t)

8

8

Disk B

WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 13

INPUT(B)

888INPUT(A)

OUTPUT(B)

OUTPUT(A)

WRITE(B,t)

t:=t*2

READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 14

8881616INPUT(B)

888INPUT(A)

OUTPUT(B)

OUTPUT(A)

WRITE(B,t)

t:=t*2

READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 15

8881616INPUT(B)

888INPUT(A)

OUTPUT(B)

OUTPUT(A)

WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 16

8881616INPUT(B)

888INPUT(A)

OUTPUT(B)

OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 17

8881616INPUT(B)

888INPUT(A)

OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 18

8881616INPUT(B)

888INPUT(A)

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t);



CSE 544 - Fall 2007 19

Buffer Manager Policies

• STEAL or NO-STEAL
– Can an update made by an uncommitted transaction overwrite the most

recent committed value of a data item on disk?

• FORCE or NO-FORCE
– Should all updates of a transaction be forced to disk before the

transaction commits?

• Easiest for recovery: NO-STEAL/FORCE

• Highest performance: STEAL/NO-FORCE



CSE 544 - Fall 2007 20

Outline

• Review of ACID properties
– Today we will cover techniques for ensuring atomicity and

durability in face of failures

• Review of buffer manager and its policies

• Write-ahead log

• ARIES method for failure recovery



CSE 544 - Fall 2007 21

Solution: Use a Log

• Log: append-only file containing log records
• Enables the use of STEAL and NO-FORCE
• For every update, commit, or abort operation

– Write physical, logical, or physiological log record
– Note: multiple transactions run concurrently, log records are

interleaved

• After a system crash, use log to:
– Redo some transaction that did commit
– Undo other transactions that didn’t commit



CSE 544 - Fall 2007 22

Write-Ahead Log

• All log records pertaining to a page are written to disk
before the page is overwritten on disk

• All log records for transaction are written to disk before
the transaction is considered committed
– Why is this faster than FORCE policy?

• Committed transaction: transactions whose commit log
record has been written to disk



CSE 544 - Fall 2007 23

ARIES Method

• Write-Ahead Log

• Three pass algorithm
– Analysis pass

• Figure out what was going on at time of crash
• List of dirty pages and active transactions

– Redo pass (repeating history principle)
• Redo all operations, even for transactions that will not commit
• Get back to state at the moment of the crash

– Undo pass
• Remove effects of all uncommitted transactions
• Log changes during undo in case of another crash during undo



CSE 544 - Fall 2007 24

ARIES Method Illustration

[Figure 3 from Franklin97]



CSE 544 - Fall 2007 25

ARIES Method Elements

• Each page contains a pageLSN
– Log Sequence Number of log record for latest update to that page
– Will serve to determine if an update needs to be redone

• Physiological logging
– page-oriented REDO

• Possible because will always redo all operations in order
– logical UNDO

• Needed because will only undo some operations



CSE 544 - Fall 2007 26

ARIES Method Data Structures

• Transaction table
– Lists all running transactions (active transactions)
– With lastLSN, most recent update by transaction

• Dirty page table
– Lists all dirty pages
– With recoveryLSN, LSN that caused page to be dirty

• Write ahead log contains log records
– LSN, prevLSN: previous LSN for same transaction
– other attributes



CSE 544 - Fall 2007 27

ARIES Method Details

• Let’s walk through example on board
– Please take notes

• Steps under normal operations
– Add log record
– Update transactions table
– Update dirty page table
– Update pageLSN



CSE 544 - Fall 2007 28

Checkpoints

• Write into the log
– Contents of transactions table
– Contents of dirty page table

• Enables REDO phase to restart from earliest
recoveryLSN in dirty page table
– Shortens REDO phase



CSE 544 - Fall 2007 29

Analysis Phase

• Goal
– Determine point in log where to start REDO
– Determine set of dirty pages when crashed

• Conservative estimate of dirty pages
– Identify active transactions when crashed

• Approach
– Rebuild transactions table and dirty pages table
– Reprocess the log from the beginning (or checkpoint)

• Only update the two data structures
– Find oldest recoveryLSN (firstLSN) in dirty pages tables



CSE 544 - Fall 2007 30

Redo Phase

• Goal: redo all updates since firstLSN

• For each log record
– If affected page is not in Dirty Page Table then do not update
– If affected page is in Dirty Page Table but recoveryLSN > LSN of

record, then no update
– Else if pageLSN > LSN, then no update

• Note: only condition that requires reading page from disk
– Otherwise perform update



CSE 544 - Fall 2007 31

Undo Phase

• Goal: undo effects of aborted transactions

• Identifies all loser transactions in trans. table

• Scan log backwards
– Undo all operations of loser transactions
– Undo each operation unconditionally
– All ops. logged with compensation log records (CLR)
– Never undo a CLR

• Look-up the UndoNextLSN and continue from there



CSE 544 - Fall 2007 32

Handling Crashes during Undo

[Figure 4 from Franklin97]



CSE 544 - Fall 2007 33

Summary

• Transactions are a useful abstraction

• They simplify application development

• DBMS must maintain ACID properties in face of
– Concurrency
– Failures


