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Where We Are

The relational model

Database design (real-world— relational schema)
DBMS architecture overview

Storage and indexing

Query execution

Query optimization

Next two lectures we will talk about transactions
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Outline

* Transactions motivation, definition, properties

« Concurrency control and locking

« Optimistic concurrency control
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Motivating Example

UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

SELE

CT sum (money)

FROM Budget

Would like to treat
each group of

instructions as a unit

~
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Different Types of Problems

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

What could go wrong ? Inconsistent reads
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Different Types of Problems

Client 1:
UPDATE Product
SET Price = Price — 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

What could go wrong ? Lost update
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Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000000
WHERE Account.number = ‘my-account’

Aborted by
system
Client 2: SELECT Account.amount
FROM Account

WHERE Account.number = ‘my-account’

What could go wrong ? Dirty reads
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Types of Problems: Summary

« Concurrent execution problems

— Write-read conflict: dirty read

« A transaction reads a value written by another transaction that has
not yet committed

— Read-write conflict: unrepeatable read

A transaction reads the value of the same object twice. Another
transaction modifies that value in between the two reads

— Write-write conflict: lost update

« Two transactions update the value of the same object. The second
one to write the value overwrite the first change

* Failure problems
— DBMS can crash in the middle of a series of updates
— Can leave the database in an inconsistent state
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Definition

* A transaction = one or more operations, single real-
world transition

« Examples
— Transfer money between accounts
— Purchase a group of products
— Register for a class (either waitlist or allocated)
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Transactions

* Major component of database systems
 Critical for most applications; arguably more so than SQL

« Turing awards to database researchers:

— Charles Bachman 1973
— Edgar Codd 1981 for inventing relational dbs
— Jim Gray 1998 for inventing transactions

* Q: Benefits and drawbacks of providing transactions?
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Transaction Example

START TRANSACTION

UPDATE Budget SET money money - 100

WHERE pid = 1

UPDATE Budget SET money money + 60

WHERE pid = 2

UPDATE Budget SET money money + 40
WHERE pid = 3

COMMIT
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ROLLBACK

 If the app gets to a place where it can’t complete the
transaction successfully, it can execute ROLLBACK

« This causes the system to “abort” the transaction

— Database returns to a state without any of the changes made by
the transaction
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Reasons for Rollback

« User changes their mind (“ctl-C”/cancel)

« Explicit in program, when app program finds a problem
— e.g. when gty on hand < gty being sold

« System-initiated abort
— System crash

— Housekeeping
* e.g. due to timeouts
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ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
iIntegrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will
survive failures
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What Could Go Wrong?

 Why is it hard to provide ACID properties?

« Concurrent operations
— Isolation problems
— The problems we saw earlier

» Failures can occur at any time

— Atomicity and durability problems
— Next lecture

« Transaction may need to abort
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Outline

* Transactions motivation, definition, properties
« Concurrency control and locking

« Optimistic concurrency control
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Serializable Execution

- Serializability: interleaved execution has

« Schedule of two transactions (Figure 1)
r,[A] = w,[A] =1 [A] =¥, [B] —=C—
—r,[B] = w,[B] —=cC,

« Serializable schedule: equiv. to
r,[A] = w,[A] =1, [A] =T, ,[B] =
— w,[B] = ¢, =>r,[B] —=cC;
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Implementation: Locking

« Can serve to enforce serializability
« Two types of locks: Shared and Exclusive

* Also need two-phase locking (2PL)

— Rule: once transaction releases lock, cannot acquire any
additional locks!

— So two phases: growing then shrinking

« Actually, need strict 2PL

— Release all locks when transaction commits or aborts
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Deadlocks

Two or more transactions are waiting for each other to
complete

Deadlock avoidance

— Acquire locks in pre-defined order
— Acquire all locks at once before starting

Deadlock detection
— Timeouts
— Wait-for graph
« This is what commercial systems use (they check graph periodically)
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Phantom Problem

« A “phantom” is a tuple that is invisible during part of a
transaction execution but not all of it.

« Example:
— TO: reads list of books in catalog
— T1: inserts a new book into the catalog

— T2: reads list of books in catalog
» New book will appear!

« Can this occur?
« Depends on locking details (eg, granularity of locks)
« To avoid phantoms needs predicate locking
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Degrees of Isolation

 Isolation level “serializable” (i.e. ACID)
— Golden standard
— Requires strict 2PL and predicate locking
— But often too inefficient

— Imagine there are only a few update operations and many long
read operations

« Weaker isolation levels
— Sacrifice correctness for efficiency
— Often used in practice (often default)
— Sometimes are hard to understand

CSE 544 - Fall 2007 22



Degrees of Isolation

* Four levels of isolation

All levels use long-duration exclusive locks
READ UNCOMMITTED: no read locks
READ COMMITTED: short duration read locks
REPEATABLE READ:

* Long duration read locks on individual items
SERIALIZABLE:

 All locks long duration and lock predicates

« Trade-off: consistency vs concurrency
« Commercial systems give choice of level
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Lock Granularity

* Fine granularity locking (e.g., tuples)
— High concurrency
— High overhead in managing locks

« Coarse grain locking (e.g., tables)
— Many false conflicts
— Less overhead in managing locks

« Alternative techniques
— Hierarchical locking (and intentional locks) [commercial DBMSSs]
— Lock escalation
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The Tree Protocol

« An alternative to 2PL, for tree structures
« E.g. B+ trees (the indexes of choice in databases)

 Because
— Indexes are hot spots!
— 2PL would lead to great lock contention

— Also, unlike data, the index is not directly visible to transactions
— So only need to guarantee that index returns correct values
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The Tree Protocol

Rules:

The first lock may be any node of the tree

Subsequently, a lock on a node A may only be acquired if the
transaction holds a lock on its parent B

Nodes can be unlocked in any order (no 2PL necessary)

“Crabbing”
— First lock parent then lock child
— Keep parent locked only if may need to update it
— Release lock on parent if child is not full

The tree protocol is NOT 2PL, yet ensures conflict-serializability !
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Outline

* Transactions motivation, definition, properties
« Concurrency control and locking

« Optimistic concurrency control
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Optimistic Concurrency Control

Validation-based technique

 Phase 1: Read
— Transaction reads from database and writes to a private workspace

« Phase 2: Validate

— At commit time, system performs validation

— Validation checks if transaction could have conflicted with others
« Each transaction gets a timestamp
» Check if timestamp order is equivalent to a serial order

— If there is a potential conflict: abort

 Phase 3: Write
— If no conflict, transaction changes are copied into database
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Optimistic Concurrency Control

Timestamp-based technique

« Each object, O, has read and write timestamps: RTS(O) and WTS(O)
« [Each transaction, T, has a timestamp TS(T)

* Transaction wants to read object O
— If TS(T) < WTS(O) abort
— Else read and update RTS(O) to larger of TS(T) or RTS(O)

* Transaction wants to write object O
— If TS(T) < RTS(O) abort
— If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule)
— Otherwise, write O and update WTS(O) to TS(T)
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Optimistic Concurrency Control

Multiversion-based technique
* Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T)

« Transaction can read most recent version that precedes TS(T)
— When reading object, update RTS(O) to larger of TS(T) or RTS(O)

* Transaction wants to write object O
— If TS(T) < RTS(O) abort
— Otherwise, create a new version of O with WTS(O) = TS(T)

«  Common variant (used in commercial systems)
— To write object O only check for conflicting writes not reads
— Use locks for writes to avoid aborting in case conflicting transaction aborts
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Commercial Systems

- DB2: Strict 2PL

« SQL Server:

— Strict 2PL for standard 4 levels of isolation
— Multiversion concurrency control for snapshot isolation

« PostgreSQL.:

— Multiversion concurrency control

* Oracle
— Multiversion concurrency control
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