CSE 544

Principles of Database
Management Systems

Magdalena Balazinska
Fall 2007
Lecture 10 - Transactions:
concurrency control

Where We Are

The relational model

Database design (real-world— relational schema)
DBMS architecture overview

Storage and indexing

Query execution

Query optimization

Next two lectures we will talk about transactions

CSE 544 - Fall 2007

References

« Concurrency control and recovery.

Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

 Database management systems.

Ramakrishnan and Gehrke.
Third Ed. Chapters 16 and 17.

CSE 544 - Fall 2007 3

Outline

* Transactions motivation, definition, properties

« Concurrency control and locking

« Optimistic concurrency control

CSE 544 - Fall 2007

Motivating Example

UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

SELE

CT sum (money)

FROM Budget

Would like to treat
each group of

instructions as a unit

~

CSE 544 - Fall 2007

Different Types of Problems

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

What could go wrong ? Inconsistent reads
CSE 544 - Fall 2007

Different Types of Problems

Client 1:
UPDATE Product
SET Price = Price — 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

What could go wrong ? Lost update

CSE 544 - Fall 2007

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000000
WHERE Account.number = ‘my-account’

Aborted by
system
Client 2: SELECT Account.amount
FROM Account

WHERE Account.number = ‘my-account’

What could go wrong ? Dirty reads

CSE 544 - Fall 2007 8

Types of Problems: Summary

« Concurrent execution problems

— Write-read conflict: dirty read

« A transaction reads a value written by another transaction that has
not yet committed

— Read-write conflict: unrepeatable read

A transaction reads the value of the same object twice. Another
transaction modifies that value in between the two reads

— Write-write conflict: lost update

« Two transactions update the value of the same object. The second
one to write the value overwrite the first change

* Failure problems
— DBMS can crash in the middle of a series of updates
— Can leave the database in an inconsistent state

CSE 544 - Fall 2007 9

Definition

* A transaction = one or more operations, single real-
world transition

« Examples
— Transfer money between accounts
— Purchase a group of products
— Register for a class (either waitlist or allocated)

CSE 544 - Fall 2007

10

Transactions

* Major component of database systems
 Critical for most applications; arguably more so than SQL

« Turing awards to database researchers:

— Charles Bachman 1973
— Edgar Codd 1981 for inventing relational dbs
— Jim Gray 1998 for inventing transactions

* Q: Benefits and drawbacks of providing transactions?

CSE 544 - Fall 2007 11

Transaction Example

START TRANSACTION

UPDATE Budget SET money money - 100

WHERE pid = 1

UPDATE Budget SET money money + 60

WHERE pid = 2

UPDATE Budget SET money money + 40
WHERE pid = 3

COMMIT

CSE 544 - Fall 2007

12

ROLLBACK

 If the app gets to a place where it can’t complete the
transaction successfully, it can execute ROLLBACK

« This causes the system to “abort” the transaction

— Database returns to a state without any of the changes made by
the transaction

CSE 544 - Fall 2007 13

Reasons for Rollback

« User changes their mind (“ctl-C”/cancel)

« Explicit in program, when app program finds a problem
— e.g. when gty on hand < gty being sold

« System-initiated abort
— System crash

— Housekeeping
* e.g. due to timeouts

CSE 544 - Fall 2007 14

ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
iIntegrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will
survive failures

CSE 544 - Fall 2007 15

What Could Go Wrong?

 Why is it hard to provide ACID properties?

« Concurrent operations
— Isolation problems
— The problems we saw earlier

» Failures can occur at any time

— Atomicity and durability problems
— Next lecture

« Transaction may need to abort

CSE 544 - Fall 2007

16

Outline

* Transactions motivation, definition, properties
« Concurrency control and locking

« Optimistic concurrency control

CSE 544 - Fall 2007

17

Serializable Execution

- Serializability: interleaved execution has

« Schedule of two transactions (Figure 1)
r,[A] = w,[A] =1 [A] =¥, [B] —=C—
—r,[B] = w,[B] —=cC,

« Serializable schedule: equiv. to
r,[A] = w,[A] =1, [A] =T, ,[B] =
— w,[B] = ¢, =>r,[B] —=cC;

CSE 544 - Fall 2007

18

Implementation: Locking

« Can serve to enforce serializability
« Two types of locks: Shared and Exclusive

* Also need two-phase locking (2PL)

— Rule: once transaction releases lock, cannot acquire any
additional locks!

— So two phases: growing then shrinking

« Actually, need strict 2PL

— Release all locks when transaction commits or aborts

CSE 544 - Fall 2007 19

Deadlocks

Two or more transactions are waiting for each other to
complete

Deadlock avoidance

— Acquire locks in pre-defined order
— Acquire all locks at once before starting

Deadlock detection
— Timeouts
— Wait-for graph
« This is what commercial systems use (they check graph periodically)

CSE 544 - Fall 2007 20

Phantom Problem

« A “phantom” is a tuple that is invisible during part of a
transaction execution but not all of it.

« Example:
— TO: reads list of books in catalog
— T1: inserts a new book into the catalog

— T2: reads list of books in catalog
» New book will appear!

« Can this occur?
« Depends on locking details (eg, granularity of locks)
« To avoid phantoms needs predicate locking

CSE 544 - Fall 2007

21

Degrees of Isolation

 Isolation level “serializable” (i.e. ACID)
— Golden standard
— Requires strict 2PL and predicate locking
— But often too inefficient

— Imagine there are only a few update operations and many long
read operations

« Weaker isolation levels
— Sacrifice correctness for efficiency
— Often used in practice (often default)
— Sometimes are hard to understand

CSE 544 - Fall 2007 22

Degrees of Isolation

* Four levels of isolation

All levels use long-duration exclusive locks
READ UNCOMMITTED: no read locks
READ COMMITTED: short duration read locks
REPEATABLE READ:

* Long duration read locks on individual items
SERIALIZABLE:

 All locks long duration and lock predicates

« Trade-off: consistency vs concurrency
« Commercial systems give choice of level

CSE 544 - Fall 2007

23

Lock Granularity

* Fine granularity locking (e.g., tuples)
— High concurrency
— High overhead in managing locks

« Coarse grain locking (e.g., tables)
— Many false conflicts
— Less overhead in managing locks

« Alternative techniques
— Hierarchical locking (and intentional locks) [commercial DBMSSs]
— Lock escalation

CSE 544 - Fall 2007 24

The Tree Protocol

« An alternative to 2PL, for tree structures
« E.g. B+ trees (the indexes of choice in databases)

 Because
— Indexes are hot spots!
— 2PL would lead to great lock contention

— Also, unlike data, the index is not directly visible to transactions
— So only need to guarantee that index returns correct values

CSE 544 - Fall 2007 25

The Tree Protocol

Rules:

The first lock may be any node of the tree

Subsequently, a lock on a node A may only be acquired if the
transaction holds a lock on its parent B

Nodes can be unlocked in any order (no 2PL necessary)

“Crabbing”
— First lock parent then lock child
— Keep parent locked only if may need to update it
— Release lock on parent if child is not full

The tree protocol is NOT 2PL, yet ensures conflict-serializability !

CSE 544 - Fall 2007

26

Outline

* Transactions motivation, definition, properties
« Concurrency control and locking

« Optimistic concurrency control

CSE 544 - Fall 2007

27

Optimistic Concurrency Control

Validation-based technique

 Phase 1: Read
— Transaction reads from database and writes to a private workspace

« Phase 2: Validate

— At commit time, system performs validation

— Validation checks if transaction could have conflicted with others
« Each transaction gets a timestamp
» Check if timestamp order is equivalent to a serial order

— If there is a potential conflict: abort

 Phase 3: Write
— If no conflict, transaction changes are copied into database

CSE 544 - Fall 2007

28

Optimistic Concurrency Control

Timestamp-based technique

« Each object, O, has read and write timestamps: RTS(O) and WTS(O)
« [Each transaction, T, has a timestamp TS(T)

* Transaction wants to read object O
— If TS(T) < WTS(O) abort
— Else read and update RTS(O) to larger of TS(T) or RTS(O)

* Transaction wants to write object O
— If TS(T) < RTS(O) abort
— If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule)
— Otherwise, write O and update WTS(O) to TS(T)

CSE 544 - Fall 2007 29

Optimistic Concurrency Control

Multiversion-based technique
* Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T)

« Transaction can read most recent version that precedes TS(T)
— When reading object, update RTS(O) to larger of TS(T) or RTS(O)

* Transaction wants to write object O
— If TS(T) < RTS(O) abort
— Otherwise, create a new version of O with WTS(O) = TS(T)

« Common variant (used in commercial systems)
— To write object O only check for conflicting writes not reads
— Use locks for writes to avoid aborting in case conflicting transaction aborts

CSE 544 - Fall 2007 30

Commercial Systems

- DB2: Strict 2PL

« SQL Server:

— Strict 2PL for standard 4 levels of isolation
— Multiversion concurrency control for snapshot isolation

« PostgreSQL.:

— Multiversion concurrency control

* Oracle
— Multiversion concurrency control

CSE 544 - Fall 2007

31

