
CSE 544
Principles of Database
Management Systems

Magdalena Balazinska
Fall 2007

Lecture 10 - Transactions:
concurrency control



CSE 544 - Fall 2007 2

Where We Are

• The relational model
• Database design (real-world→ relational schema)

• DBMS architecture overview

• Storage and indexing

• Query execution

• Query optimization

• Next two lectures we will talk about transactions



CSE 544 - Fall 2007 3

References

• Concurrency control and recovery.
Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

• Database management systems.
Ramakrishnan and Gehrke.
Third Ed. Chapters 16 and 17.



CSE 544 - Fall 2007 4

Outline

• Transactions motivation, definition, properties

• Concurrency control and locking

• Optimistic concurrency control



CSE 544 - Fall 2007 5

Motivating Example

UPDATE Budget

SET money=money-100

WHERE pid = 1

UPDATE Budget

SET money=money+60

WHERE pid = 2

UPDATE Budget

SET money=money+40

WHERE pid = 3

SELECT sum(money)
FROM Budget

Would like to treat
each group of

instructions as a unit



CSE 544 - Fall 2007 6

Different Types of Problems
Client 1: INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

What could go wrong ? Inconsistent reads



CSE 544 - Fall 2007 7

Different Types of Problems

Client 1:
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Lost updateWhat could go wrong ?



CSE 544 - Fall 2007 8

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000000
WHERE Account.number = ‘my-account’

Client 2: SELECT Account.amount
FROM Account
WHERE Account.number = ‘my-account’

What could go wrong ? Dirty reads

Aborted by
system



CSE 544 - Fall 2007 9

Types of Problems: Summary

• Concurrent execution problems
– Write-read conflict: dirty read

• A transaction reads a value written by another transaction that has
not yet committed

– Read-write conflict: unrepeatable read
• A transaction reads the value of the same object twice. Another

transaction modifies that value in between the two reads
– Write-write conflict: lost update

• Two transactions update the value of the same object. The second
one to write the value overwrite the first change

• Failure problems
– DBMS can crash in the middle of a series of updates
– Can leave the database in an inconsistent state



CSE 544 - Fall 2007 10

Definition

• A transaction = one or more operations, single real-
world transition

• Examples
– Transfer money between accounts
– Purchase a group of products
– Register for a class (either waitlist or allocated)



CSE 544 - Fall 2007 11

Transactions

• Major component of database systems
• Critical for most applications; arguably more so than SQL

• Turing awards to database researchers:
– Charles Bachman 1973
– Edgar Codd 1981 for inventing relational dbs
– Jim Gray 1998 for inventing transactions

• Q: Benefits and drawbacks of providing transactions?



CSE 544 - Fall 2007 12

Transaction Example

START TRANSACTION

UPDATE Budget SET money = money - 100

WHERE pid = 1

UPDATE Budget SET money = money + 60

WHERE pid = 2

UPDATE Budget SET money = money + 40

WHERE pid = 3

COMMIT



CSE 544 - Fall 2007 13

ROLLBACK

• If the app gets to a place where it can’t complete the
transaction successfully, it can execute ROLLBACK

• This causes the system to “abort” the transaction
– Database returns to a state without any of the changes made by

the transaction



CSE 544 - Fall 2007 14

Reasons for Rollback

• User changes their mind (“ctl-C”/cancel)

• Explicit in program, when app program finds a problem
– e.g. when qty on hand < qty being sold

• System-initiated abort
– System crash
– Housekeeping

• e.g. due to timeouts



CSE 544 - Fall 2007 15

ACID Properties

• Atomicity: Either all changes performed by transaction
occur or none occurs

• Consistency: A transaction as a whole does not violate
integrity constraints

• Isolation: Transactions appear to execute one after the
other in sequence

• Durability: If a transaction commits, its changes will
survive failures



CSE 544 - Fall 2007 16

What Could Go Wrong?

• Why is it hard to provide ACID properties?

• Concurrent operations
– Isolation problems
– The problems we saw earlier

• Failures can occur at any time
– Atomicity and durability problems
– Next lecture

• Transaction may need to abort



CSE 544 - Fall 2007 17

Outline

• Transactions motivation, definition, properties

• Concurrency control and locking

• Optimistic concurrency control



CSE 544 - Fall 2007 18

Serializable Execution

• Serializability: interleaved execution has same effect as
some serial execution

• Schedule of two transactions (Figure 1)
r0[A] → w0[A] → r1[A] → r1[B] → c1→
→ r0[B] → w0[B] → c0

• Serializable schedule: equiv. to serial schedule
r0[A] → w0[A] → r1[A] → r0[B] →
→ w0[B] → c0 → r1[B] → c1



CSE 544 - Fall 2007 19

Implementation: Locking

• Can serve to enforce serializability

• Two types of locks: Shared and Exclusive
• Also need two-phase locking (2PL)

– Rule: once transaction releases lock, cannot acquire any
additional locks!

– So two phases: growing then shrinking

• Actually, need strict 2PL
– Release all locks when transaction commits or aborts



CSE 544 - Fall 2007 20

Deadlocks

• Two or more transactions are waiting for each other to
complete

• Deadlock avoidance
– Acquire locks in pre-defined order
– Acquire all locks at once before starting

• Deadlock detection
– Timeouts
– Wait-for graph

• This is what commercial systems use (they check graph periodically)



CSE 544 - Fall 2007 21

Phantom Problem

• A “phantom” is a tuple that is invisible during part of a
transaction execution but not all of it.

• Example:
– T0: reads list of books in catalog
– T1: inserts a new book into the catalog
– T2: reads list of books in catalog

• New book will appear!

• Can this occur?
• Depends on locking details (eg, granularity of locks)
• To avoid phantoms needs predicate locking



CSE 544 - Fall 2007 22

Degrees of Isolation

• Isolation level “serializable” (i.e. ACID)
– Golden standard
– Requires strict 2PL and predicate locking
– But often too inefficient
– Imagine there are only a few update operations and many long

read operations

• Weaker isolation levels
– Sacrifice correctness for efficiency
– Often used in practice (often default)
– Sometimes are hard to understand



CSE 544 - Fall 2007 23

Degrees of Isolation

• Four levels of isolation
– All levels use long-duration exclusive locks
– READ UNCOMMITTED: no read locks
– READ COMMITTED: short duration read locks
– REPEATABLE READ:

• Long duration read locks on individual items
– SERIALIZABLE:

• All locks long duration and lock predicates

• Trade-off: consistency vs concurrency
• Commercial systems give choice of level



CSE 544 - Fall 2007 24

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks

• Coarse grain locking (e.g., tables)
– Many false conflicts
– Less overhead in managing locks

• Alternative techniques
– Hierarchical locking (and intentional locks) [commercial DBMSs]
– Lock escalation



CSE 544 - Fall 2007 25

The Tree Protocol

• An alternative to 2PL, for tree structures
• E.g. B+ trees (the indexes of choice in databases)

• Because
– Indexes are hot spots!
– 2PL would lead to great lock contention

– Also, unlike data, the index is not directly visible to transactions
– So only need to guarantee that index returns correct values



CSE 544 - Fall 2007 26

The Tree Protocol

Rules:
• The first lock may be any node of the tree
• Subsequently, a lock on a node A may only be acquired if the

transaction holds a lock on its parent B
• Nodes can be unlocked in any order (no 2PL necessary)
• “Crabbing”

– First lock parent then lock child
– Keep parent locked only if may need to update it
– Release lock on parent if child is not full

• The tree protocol is NOT 2PL, yet ensures conflict-serializability !



CSE 544 - Fall 2007 27

Outline

• Transactions motivation, definition, properties

• Concurrency control and locking

• Optimistic concurrency control



CSE 544 - Fall 2007 28

Optimistic Concurrency Control

Validation-based technique

• Phase 1: Read
– Transaction reads from database and writes to a private workspace

• Phase 2: Validate
– At commit time, system performs validation
– Validation checks if transaction could have conflicted with others

• Each transaction gets a timestamp
• Check if timestamp order is equivalent to a serial order

– If there is a potential conflict: abort

• Phase 3: Write
– If no conflict, transaction changes are copied into database



CSE 544 - Fall 2007 29

Optimistic Concurrency Control

Timestamp-based technique

• Each object, O, has read and write timestamps: RTS(O) and WTS(O)
• Each transaction, T, has a timestamp TS(T)

• Transaction wants to read object O
– If TS(T) < WTS(O)  abort
– Else read and update RTS(O) to larger of TS(T) or RTS(O)

• Transaction wants to write object O
– If TS(T) < RTS(O) abort
– If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule)
– Otherwise, write O and update WTS(O) to TS(T)



CSE 544 - Fall 2007 30

Optimistic Concurrency Control

Multiversion-based technique

• Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T)

• Transaction can read most recent version that precedes TS(T)
– When reading object, update RTS(O) to larger of TS(T) or RTS(O)

• Transaction wants to write object O
– If TS(T) < RTS(O) abort
– Otherwise, create a new version of O with WTS(O) = TS(T)

• Common variant (used in commercial systems)
– To write object O only check for conflicting writes not reads
– Use locks for writes to avoid aborting in case conflicting transaction aborts



CSE 544 - Fall 2007 31

Commercial Systems

• DB2: Strict 2PL

• SQL Server:
– Strict 2PL for standard 4 levels of isolation
– Multiversion concurrency control for snapshot isolation

• PostgreSQL:
– Multiversion concurrency control

• Oracle
– Multiversion concurrency control


