
Query Evaluation on Probabilistic Databases

Christopher Ŕe, Nilesh Dalvi and Dan Suciu
University of Washington

1 The Probabilistic Data

In this paper we consider the query evaluation problem: how can we evaluate SQL queries on probabilistic
databases? Our discussion is restricted to single-block SQL queries using standard syntax, with a modified
semantics: each tuple in the answer is associated with a probability representing our confidence in that tuple
belonging to the answer. We present here a short summary of the research done at the University of Washington
into this problem.

Consider the probabilistic database in Fig. 1.Product p contains three products; their names and their
prices are known, but we are unsure about their color and shape. Gizmo may be red and oval, or it may be blue
and square, with probabilitiesp1 = 0.25 andp2 = 0.75 respectively. Camera has three possible combinations of
color and shape, and IPod has two. Thus, the table defines for each product a probability distribution on its colors
and shapes. Since each color-shape combination excludes the others, we must havep1+p2 ≤ 1, p3+p4+p5 ≤ 1
andp6 + p7 ≤ 1, which indeed holds for our table. When the sum is strictly less than one then that product may
not occur in the table at all: for example Camera may be missing from the table with probability1-p3-p4-p5.
Each probabilistic table is stored in a standard relational database: for exampleProduct p becomes the table in
Fig. 2 (a). For any two tuples inProduct p, if they have the same values of the key attributesprod andprice
then they are exclusive (i.e. disjoint) probabilistic events, otherwise they are independent events.

The meaning of a probabilistic database is a probability distribution on possible worlds.Product p has
16 possible worlds, since there are two choices for the color and shape for Gizmo, four for Camera (including
removing Camera altogether) and two for IPod. Fig. 2 (b) illustrate two possible worlds and their probabilities.

Product p

prod price color shape p

Gizmo 20 red oval p1 = 0.25
blue square p2 = 0.75

Camera 80 green oval p3 = 0.3
red round p4 = 0.3
blue oval p5 = 0.2

IPod 300 white square p6 = 0.8
black square p7 = 0.2

Order
prod price cust

Gizmo 20 Sue
Gizmo 80 Fred
IPod 300 Fred

Customer p

cust city p

Sue New York q1 = 0.5
Boston q2 = 0.2
Seattle q3 = 0.3

Fred Boston q4 = 0.4
Seattle q5 = 0.3

Figure 1: Probabilistic database

Keys In this paper we impose the restriction that every deterministic attribute is part of a key. Formally,
each probabilistic tableR has a key,R.Key , and by definition this set of attributes must form a key in each

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

Partially supported by Suciu’s NSF Career Award IIS-00992955 and NSF Grants IIS-0428168, 61-2252, 61-2103, 0513877.

1



Product p

prod price color shape p

Gizmo 20 red oval p1

Gizmo 20 blue square p2

Camera 80 green oval p3

Camera 80 red round p4

Camera 80 blue oval p5

IPod 300 white square p6

IPod 300 black square p7

(a)

Product
prod price color shape

Gizmo 20 blue square
Camera 80 blue oval
IPod 300 white square

p2p5p6

prod price color shape

Gizmo 20 red oval
IPod 300 white square

p1(1-p3-p4-p5)p6

(b)

Figure 2: Representation of a probabilistic table (a) and two possible worlds (b)

possible world. Intuitively, the attributes inR.Key are deterministic while the others are probabilistic. For
example, inProduct(prod, price , shape, color) the keyProduct.Key is {prod, price },
and one can see that it is a key in each of the two possible worlds in Fig. 2 (b). When a probabilistic table has
only deterministic attributes, like inR(A,B ) , the meaning is that each tuple occurs in the database with some
probability≤ 1, and any two tuples are independent events.

2 Easy Queries

Q1: SELECT DISTINCT prod, price
FROM Product
WHERE shape=’oval’

Q1(x, y) : − Product (x, y, ’oval’ , z)

Q2: SELECT DISTINCT city
FROM Customer

Q2(z) : − Customer (x, y, z)

Q3: SELECT DISTINCT *
FROM Product, Order, Customer
WHERE Product.prod = Order.prod
and Product.price = Order.price
and Order.cust = Customer.cust

Q3(∗) : − Product (x, y, z),
Order (x, y, u)
Customer (u, v)

Figure 3: Three simple queries, expressed in SQL and in datalog

We start by illustrating with three simple queries in Fig. 3. The left columns shows the queries in SQL
syntax, the right column shows the same queries in datalog notation. In datalog we will underline the variables
that occur in the key positions. The queries are standard, i.e. they are written assuming that the database
is deterministic, and ignore any probabilistic information. However, their semantics is modified: each tuple
returned has an associated probability representing our confidence in that answer. For example the first query,
Q1, asks for all the oval products in the database, and it returns:

prod price p
Gizmo 20 p1

Camera 80 p3 + p5

In general, given a queryQ and a tuplet, the probability thatt is an answer toQ is the sum of the probabilities
of all possible worlds whereQ returnst. ForQ1, the probability of Gizmo is thus the sum of the probabilities
of the 8 possible worlds forProduct (out of 16) where Gizmo appears as oval, and this turns out (after

2



simplifications) to bep1. In the case ofQ1 these probabilities can be computed without enumerating all possible
worlds, directly from the table in Fig. 2 (a) by the following process: (1) Select all rows withshape =’oval’ ,
(2) project onprod , price , andp (the probability), (3) eliminate duplicates, by replacing their probabilities
with the sum, because they are disjoint events. We call the operation consisting of the last two steps a disjoint
project:

Disjoint Project, πpD
Ā

If k tuples with probabilitiesp1, · · · , pk have the same value,ā, for their Ā attributes,
then the disjoint project will associated the tupleā with the probabilityp1 + · · ·+ pk. The disjoint project
is correctly applied if any two tuples that share the same values of theĀ attributes are disjoint events.

Q1 can therefore be computed by the following plan:Q1 = πpD
prod,price (σshape=’oval’ (Product p)). πpD

prod,price
is correct, because any two tuples inProduct p that have the sameprod andprice are disjoint events.

The second query asks for all cities in theCustomer table, and its answer is:

city p
New York q1

Boston 1-(1-q2)(1-q4)
Seattle 1-(1-q3)(1-q5)

This answer can also be obtained by a projection with a duplicate elimination, but now the probabilitiesp1, p2, p3, . . .
of duplicate values are replaced with1-(1-p1)(1-p2)(1-p3) . . ., since in this case all duplicate occurrences of the
same city are independent. We call this an independent project:

Independent Project,πpI
Ā

If k tuples with probabilitiesp1, · · · , pk have the same value,ā, for theirĀ attributes,
then the independent project will associated the tupleā with the probability1-(1-p1)(1-p2) · · · (1-pk). The
independent project is correctly applied if any two tuples that share the same values of theĀ attributes are
independent events.

Thus, the disjoint project and the independent project compute the same set of tuples, but with different prob-
abilities: the former assumes disjoint probabilistic events, whereP(t ∨ t′) = P(t) + P(t′), while the second
assumes independent probabilistic events, whereP(t∨ t′) = 1−(1−P(t))(1−P(t′). Continuing our example,
the following plan computesQ2: Q2 = πpI

city (Customer p). HereπpI
city is correct because any two tuples in

Customer p that have the samecity are independent events.

Finally, the third query illustrates the use of a join, and its answer is:

prod price color shape cust city p
Gizmo 20 red oval Sue New York p1q1

Gizmo 20 red oval Sue Boston p1q2

Gizmo 20 red oval Sue Seattle p1q3

Gizmo 20 blue square Sue New York p2q1

. . . . . .

It can be computed by modifying the join operator to multiply the probabilities of the input tables:

Join, 1p Whenever it joins two tuples with probabilitiesp1 andp2, it sets the probability of the resulting tuple
to bep1p2.

A plan forQ3 is: Q3 = Product 1p Order 1p Customer .

3



Schema: R(A ),S(A,B ),T(B )
H1: SELECT DISTINCT ’true’ AS A

FROM R, S, T
WHERE R.A=S.A and S.B=T.B

H1 : − R(x), S(x, y), T (y)

Schema: R(A ,B),S(B )
H2: SELECT DISTINCT ’true’ AS A

FROM R, S
WHERE R.B=S.B

H2 : − R(x, y), S(y)

Schema: R(A ,B),S(C ,B)
H3: SELECT DISTINCT ’true’ AS A

FROM R, S
WHERE R.B=S.B

H3 : − R(x, y), S(z, y)

Figure 4: Three queries that are #P-complete

3 Hard Queries

Unfortunately, not all queries can be computed as easily as the ones before. Consider the three queries in Fig. 4.
All are boolean queries, i.e. they return either ’true’ or nothing, but they still have a probabilistic semantics, and
we have to compute the probability of the answer ’true’. Their schemas are kept as simple as possible: e.g. in
H1 tableR has a single attributeA which forms a key (hence any two tuples are independent events). None of
these queries can be computed in the style described in the previous section: for example,πpI

∅ (R 1 S 1 T) is
an incorrect plan because two distinct rows inR 1 S 1 T may share the same tuple inR, hence they are not
necessarily independent events. In fact, we have:

Theorem 1: Each of the queriesH1,H2,H3 in Fig. 4 is #P-complete.

The complexity class #P is the counting version of NP, i.e. it denotes the class of problems that count the number
of solutions to an NP problem. If a problem is #P-hard, then there is no polynomial time algorithm for it unless
P = NP; in this case none ofH1,H2,H3 has a simple plan using the operators in Sec. 1. Both here and in the
following section we assume that all relations are probabilistic, but some results extend to a mix of probabilistic
and deterministic tables. For exampleH1 is #P-complete even if the tableS is deterministic.

4 The Boundary Between Hard and Easy Queries

We show now which queries are in PTIME and which are #P-complete. We consider a conjunctive queryq in
which no relation name occurs more than once (i.e. without self-joins). We use the following notations:Head(q)
is the set of head variables inq, FreeVar(q)is the set of free variables (i.e. non-head variables) inq, R.Key
is the set of free variables in the key position of the relationR, R.NonKey is the set of free variables in the
non-key positions of the relationR, R.Pred is the predicate thatq applies toR. Forx ∈ FreeVar(q), denoteqx

a new query whose body is identical withq and whereHead(qx) = Head(q) ∪ {x}.
Algorithm 3.1 takes a conjunctive queryq and produces a relational plan forq using the operators described

in Sec. 2. If it succeeds, then the query is in PTIME; if it fails then the query is #P-complete.

Theorem 2:

1. Algorithm 3.1 is sound, i.e. if it produces a relational plan for a queryq, then the plan correctly computes
the output tuple probabilities forq.

4



Algorithm 3.1 FIND-PLAN (q)
If q has a single relationRand no free variables, then returnσR.Pred (R).
Otherwise:

1. If there existsx ∈ FreeVar(q) s.t.x ∈ R.Key for every relationR in q, then return:

πpI

Head(q)(FIND-PLAN(qx))

2. If there existsx ∈ FreeVar(q) and there exists a relationRs.t.x ∈ R.NonKey andR.Key ∩FreeVar(q) =
∅, then return:

πpD

Head(q)(FIND-PLAN(qx))

3. If the relations inq can be partitioned intoq1 andq2 such that they do not share any free variables, then
return:

FIND-PLAN(q1) 1p FIND-PLAN(q2)

If none of the three conditions above holds, thenq is #P-complete.

2. Algorithm 3.1 is complete, i.e. it does not produce a relational plan for a query only if the query is #P-hard.

As a consequence, every query that has a PTIME data complexity can in fact be evaluated using a relational
plan. Any relational database engine can be used to support these queries, since the probabilistic projections and
joins can be expressed in SQL using aggregate operations and multiplications.

Example 1: In the remainder of this section we illustrate with the following schema, obtained as an extension
of our running example in Sec. 1.

Product(prod, price , color, shape)
Order(prod, price, cust )
CustomerFemale(cust , city, profession)
CustomerMale(cust , city, profession)
CitySalesRep(city , salesRep, phone)

All tables are now probabilistic: for example each entry inOrder has some probability≤ 1. The customers
are partitioned into female and male customers, and we have a new table with sales representatives in each city.
The following query returns all cities of male customers who have ordered a product with price 300:

Q(c) : − Order (x, 300, y), CustomerMale (y, c, z)

HereHead(Q) = {c}, FreeVar(Q) = {x, y, z}. Condition (1) of the algorithm is satisfied by the variabley,
sincey ∈ Order.Key andy ∈ CustomerMale.Key , hence we generate the plan:Q = πpI

c (Qy) where the
new queryQy is:

Qy(c, y) : − Order (x, 300, y), CustomerMale (y, c, z)

The independence assumption needed forπpI
c (Qy) to be correct indeed holds, since any two distinct rows

in Qy(c, y) that have the same value ofc must have distinct values ofy, hence they consists of two in-
dependent tuples inOrder and two independent tuples inCustomerMale . Now Head(Qy) = {c, y},
FreeVar(Qy) = {x, z} andQy satisfies condition (2) of the algorithm (withz ∈ CustomerMale.NonKey

5



andCustomerMale.Key = {y} ⊆ Head(Qy)), hence we generate the plan:Q = πpI
c (πpD

c,y (Qy,z)) where
the new queryQy,z is:

Qy,z(c, y, z) : − Order (x, 300, y), CustomerMale (y, c, z)

The disjointness assumption needed forπpD
c,y (Qy,z) to be correct also holds, since any two distinct rows in

Qy,z(c, y, z) that have the same values forc andy must have distinct values forz, hence they represent disjoint
events inCustomerMale . Qy,z satisfies condition (3) and we compute it as a join betweenOrder and
CustomerMale . The predicateOrder.Pred is price =′ 300′, hence we obtain the following complete
plan forQ:

Q = πpI
c (πpD

c,y (σprice =′300′(Order ) 1p CustomerMale ))

Recall the three #P-complete queriesH1,H2,H3 in Fig. 4. It turns out that, in some sense, these are the only
#P-complete queries: every other query that is #P-complete has one of these three as a subpattern. Formally:

Theorem 3: Let q be any conjunctive query on which none of the three cases in Algorithm 3.1 applies (hence
Q is #P-complete). Then one of the following holds:

1. There are three relationsR, S, T and two free variablesx, y ∈ FreeVar(q) such thatR.Key containsx but
noty, S.Key contains bothx, y, andT.Key containsy but notx. In notation:

R(x, . . .), S(x, y, . . .), T(y, . . .)

2. There are two relationsRandS and two free variablesx, y ∈ FreeVar(q) s.t. such thatx occurs inR.Key
but not inS, andy occurs inRand inS.Key but not inR.Key . In notation:

R(x, y, . . .), S(y, . . .)

3. There are two relationsR andS and three free variablesx, y, z ∈ FreeVar(q) s.t. x occurs inR.Key
but not inS, x occurs inS.Key but not inR, andy occurs in bothR andS but neither inR.Key nor in
S.Key . In notation:

R(x, y, . . .), S(z, y, . . .)

Obviously,H1 satisfies condition (1),H2 satisfies condition (2), andH3 satisfies condition (3). The theorem
says that if a query is hard, then it must have one ofH1,H2,H3 as a subpattern.

Example 2: Continuing Example 1, consider the following three queries:

HQ1(c) : − Product (x, v,−, ’red’ ), Orders (x, v, y), CustomerFemale (y, c,−)
HQ2(sr) : − CustomerMale (x, y, ’lawyer’ ), CitySalesReps (y, sr, z)
HQ3(c) : − CustomerMale (x, c, y), CustomerFemale (z, c, y)

None of the three cases of the algorithm applies to these queries, hence all three are #P-complete. The first query
asks for all cities where some female customer purchased some red product; it matches pattern (1). The second
query asks for all sale representatives in cities that have lawyer customers: it matches pattern (2). The third
query looks for all cities that have a male and a female customer with the same profession; it matches pattern
(3).

6



Finally, note that the three patterns are a necessary condition for the query to be #P-complete, but they are
sufficient conditions only after one has applied Algorithm 3.1 until it got stuck. In other words, there are queries
that have one or more of the three patterns, but are still in PTIME since the algorithm eliminates free variables
in a way in which it makes the patterns disappear. For example:

Q(v) : − R(x), S(x, y), T (y), U(u, y), V (v, u)

The query contains the subpattern (1) (the first three relations are identical toH1), yet it is in PTIME. This is
because it is possible to remove variables in orderu, y, x and obtain the following plan:

Q = πpD
v (V 1p πpD

v,u(U 1p T 1p πpI
y (R 1p S)))

Theorem 3 has interesting connections to several existing probabilistic systems. In Cavallo and Pittarelli’s
system [2], all the tuples in a tableR represent disjoint events, which corresponds in our model toR.Key = ∅.
None of the three patterns of Theorem 3 can occur, because each pattern asks for at least one variable to occur
in a key position, and therefore all the queries in Cavallo and Pittarelli’s model have PTIME data complexity.
Barbara et al. [1] and then Dey et al. [4] consider a system that allows arbitrary tables, i.e.R.Key can be any
subset of the attributes ofR, but they consider restricted SQL queries: all key attributes must be included in the
SELECTclause. In datalog terminology,R.Key ⊆ Head(q) for every tableR, hence none of the three patterns
in Theorem 3 can occur since each looks for at least one variable in a key position that doesnot occur in the
query head. Thus, all queries discussed by Barbara et al. are in PTIME. Theorem 3 indicates that a much larger
class of queries can be efficiently supported by their system. Finally, in our previous work [3], we consider a
system whereR.Key is the set of all attributes. In this case only case (1) of Theorem 3 applies, and one can
check that now the pattern is a sufficient condition for #P-completeness: this is precisely Theorem 5.2 of [3].

5 Future Work

We identify three future research problems. (1) Self joins: we currently do not know the boundary between
PTIME and #P-complete queries when some relation name occurs two ore more times in the query (i.e. queries
with self-joins). (2) Query optimization: the relational operatorsπpD, πpI , 1p andσp do not follow the same
rules as the standard relational algebra. A combination of cost-based optimization and safe-plan generation is
needed. (3) Queries that are #P-hard require simulation based techniques [5], which are expensive. However,
often there are subqueries that admit safe-plans: this calls for investigations of mixed techniques, combining
safe plans with simulations.

References

[1] Daniel Barbaŕa, Hector Garcia-Molina, and Daryl Porter. The management of probabilistic data.IEEE
Trans. Knowl. Data Eng., 4(5):487–502, 1992.

[2] Roger Cavallo and Michael Pittarelli. The theory of probabilistic databases. InVLDB, pages 71–81, 1987.

[3] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. InVLDB, 2004.

[4] Debabrata Dey and Sumit Sarkar. A probabilistic relational model and algebra.ACM Trans. Database Syst.,
21(3):339–369, 1996.

[5] Richard Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability problems. In
STOC, 1983.

7


