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������# Query languages for XML such as XPath or XQuery support Boo-
lean retrieval: a query result is a (possibly restructured) subset of XML ele-
ments or entire documents that satisfy the search conditions of the query. This 
search paradigm works for highly schematic XML data collections such as e-
lectronic catalogs. However, for searching information in open environments 
such as the Web or intranets of large corporations, ranked retrieval is more ap-
propriate: a query result is a rank list of XML elements in descending order of 
(estimated) relevance. Web search engines, which are based on the ranked ret-
rieval paradigm, do, however, not consider the additional information and rich 
annotations provided by the structure of XML documents and their element 
names. This paper presents the XXL search engine that supports relevance ran-
king on XML data. XXL is particularly geared for path queries with wildcards 
that can span multiple XML collections and contain both exact-match as well 
as semantic-similarity search conditions. In addition, ontological information 
and suitable index structures are used to improve the search efficiency and ef-
fectiveness. XXL is fully implemented as a suite of Java servlets. Experiments 
with a variety of structurally diverse XML data demonstrate the efficiency of 
the XXL search engine and underline its effectiveness for ranked retrieval.  
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XML is becoming the standard for integrating and exchanging data over the Internet 
and within intranets, covering the complete spectrum from largely unstructured, ad 
hoc documents to highly structured, schematic data [Kos99]. XML data collections 
can be viewed as a directed, labeled data graph with XML elements as nodes (and 
their names as node labels) and edges for subelement relationships as well as links 
both within and across documents [ABS00]. A number of XML query languages have 
been proposed, such as XPath, XML-QL, or the recently announced W3C standard 
XQuery. These languages combine SQL-style logical conditions over element names, 
content, and attributes with regular-expression pattern matching along entire paths of 
elements. The result of a query is a set of paths or subgraphs from a given data graph 
that represents an XML document collection; in information retrieval (IR) terminol-
ogy this is called Boolean Retrieval.  
This search paradigm makes sense for queries on largely schematic XML data such as 
electronic product catalogs or bibliographies. It is of very limited value, however, for 
searching highly heterogeneous XML document collections where either data comes 
from many different information sources with no global schema or most documents 
have an ad hoc schema or DTD with element names and substructures that occur only 
in a single or a few documents. The latter kind of environment is typical for document 



management in large intranets, scientific data repositories such as gene expression 
data collections and catalogs of protein structures, and, of course, also for the Web. 
For example, a bank has a huge number of truly semistructured documents, probably 
much larger in total size than the production data held in (object-) relational data-
bases; these include briefing material and the minutes of meetings, customer-related 
memos, reports from analysts, financial and business news articles, and so on. Here, 
the variance and resulting inaccuracies in the document structures, vocabulary, and 
document content dictate ranked retrieval as the only meaningful search paradigm. 
So the result of a query should be a list of potentially relevant XML documents, ele-
ments, or subgraphs from the XML data graph, in descending order of estimated rele-
vance. This is exactly the rationale of today’s Web search engines, which are also 
widely used for intranet search, but this technology does not at all consider the rich 
structure and semantic annotations provided by XML data. Rather state-of-the-art IR 
systems restrict themselves to term-frequency-based relevance estimation [BR99, 
Ra97] and/or link-based authority ranking [BP98,Kl99,KRR+00]; note that the latter 
has been fairly successful for improving the precision of very popular mass-user que-
ries but does not help with advanced expert queries where recall is the main problem.  
This paper presents a query language, coined XXL (for Flexible XML Search Lan-
guage), and the prototype implementation of the XXL search engine, as steps towards 
more powerful XML querying that reconciles the more schematic style of logical 
search conditions and pattern matching with IR-style relevance ranking.  
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Related approaches, which combine search over structural and textual information, 
have already been proposed in the context of hypertext data (see, e.g., [CSM97, 
BAN+97, FR98, MJK+98]). However, this work predates the introduction of XML 
and does not have the same expressiveness for querying semistructured data as more 
recent languages such as XML-QL [XMLQL] or XQuery [XQuery]. Extending such 
XML query languages with text search methods has been suggested by [CK01, 
FKM00, FG00, HTK00, NDM+00, TW00]. However, [NDM+00] and [FKM00] are 
limited to pure keyword search for Boolean retrieval and do not support relevance 
ranking. In contrast, the simultaneously developed languages XIRQL [FG00] and 
XXL [TW00] (the latter is our own approach) have been designed to support ranked 
retrieval. A restricted approach along these lines is [HTK00], which assumes advance 
knowledge of the document structure and provides similarity search only on element 
contents, not on element names. Extensions of conventional database query languages 
a la SQL in order to support similarity search have been addressed also in the WHIRL 
project [Coh98, Coh99], but with focus on structured data with uniform, fixed schema 
and not in the context of XML. Another text retrieval extension of XML-QL has re-
cently been proposed by [CK01]: XML data is mapped onto relational storage and 
similarity conditions are translated into subqueries that are evaluated using WHIRL. 
To our knowledge, none of the above approaches uses ontological information in their 
similarity metrics. 
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The contributions of this paper are twofold: 
1) At the conceptual level, we show how to reconcile pattern matching along paths of 
XML elements with similarity conditions and IR-style relevance ranking as well as 



simple ontological reasoning. In contrast to the prior work on probabilistic query 
evaluation on structured data, most notably [Coh98, Coh99], our language XXL sup-
ports path expressions in the spirit of modern XML query languages. In contrast to IR 
research, XXL can exploit the structural information and the rich semantic annota-
tions that are immanent in XML documents. In comparison to our own prior work 
reported in [TW00] the current paper goes a significant step further and integrates 
ontological relationships as a basis for effective similarity search. 
2) At the implementation level, we present techniques for efficiently evaluating a 
simple but widely useful class of XXL queries using several index structures and a 
heuristic strategy for decomposing compound search conditions into subqueries. The 
index structures include an element path index similar to the data guides approach of 
[MAG+97, MWA+98], a term-occurrence index as commonly used in IR engines for 
element contents, and an ontological index for the occurrences of element names. 
None of these structures is fundamentally new, but their combination proves to be a 
powerful and, to our knowledge, novel backbone for XML query evaluation with 
relevance ranking. Our prototype implementation of XXL is fully operational as a 
suite of Java servlets and includes a Java-based GUI for graphically composing XXL 
queries. We report measurements that demonstrate the effectiveness and efficiency of 
the XXL search engine. 
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As an example, consider the following fragments of three XML documents about 
zoos of the world. The first document is a web portal to XML documents about zoos. 
The second and the third document contain descriptions of animals in particular zoos. 
85/����KWWS���ZZZ�P\]RRV�HGX�]RRV�[PO�

<zoos> Zoos of the World 
  <name href=”http://www.allzoos.edu/american_zoos.xml”> San Diego Wild Animal Park,CA,USA </name> 

<name href=”http://www.animals.edu/european_zoos.xml”> Tierpark Berlin, Germany </name> 
 ... 

</zoos>�

85/����KWWS���ZZZ�DOO]RRV�HGX�DPHULFDQB]RRV�[PO��� �85/����KWWS���ZZZ�DQLPDOV�HGX�HXURSHDQB]RRV�[PO�

<animal_park name=”San Diego Wild Animal Park” 
country=”USA”  city=”Escondido”> 

<animals> 
<animal name=”Teddy”> 

      <specimen> 
        <species>brown bear</species> 
        <range>Europe</range> 
        <location no=”411”/> 

<birthplace href=”  

http://www.animals.edu/european_zoos.xml# 
XPointer(id(‘Tierpark Berlin’))”/> ... 

      … 
</animal_park> 

<zoo name=“Tierpark Berlin“ country=“Germany“  
city=“Berlin“> 

<animals> 
    <specimen name=”Bobby”> 
      <species>snow leopard</species> 
      <region>Central Asia</region> 
      <location no=”327”/> 
      <birthplace href=” 

http://www.parks.edu/asian_zoos.xml# 
                    XPointer(id(‘Zoo Tokyo’))”/>… 
    <enclosure no=“327“> 
    <size>16m2</size> … 
</zoo> 

As an example query consider the search for “zoos that have big cats such as lions 
which are born in a zoo of their natural geographic area”. This query is easily ex-
pressible in our language XXL, shown in Fig. 1a, with keywords in boldface. The 
XXL search engine also has a graphical user interface based on a Java that allows 



clients to compose queries in an interactive manner. Fig. 1b shows a screenshot with 
the graphical representation of query Q1. 

Q1:  
6HOHFW Z  
)URP�http://www.myzoos.edu/zoos.xml 
:KHUH   zoos.#.~zoo $V Z  
$QG�Z.animals.(animal)?.specimen $V A 
$QG�A.species ~ “lion”  
$QG�A.birthplace.#.country $V B 
$QG�A.~region ~ B.CONTENT 

 

 

 

 

 

 

 

-��#�$, Query Q1 in �/ textual form (left) and 
/ represented in the Visual XXL GUI (right) 

In this query uppercase characters denote element variables that are bound to a node 
(i.e., element) and its attributes of a qualifying path (i.e., A, B, Z in our example), # is 
a wildcard placeholder for arbitrary paths, ? indicates an optional element on a path, 
and dots stand for path concatenation. ~ is a similarity operator for semantic similar-
ity, which is used as a unary operator when applied to element names and as a binary 
operator when applied to element content. 

XML data can be viewed as a directed, labeled data graph where the vertices are 
XML elements marked with the element names. Each node consists of a unique object 
identifier (oid) and a label. A label can be an element name, an attribute name, the 
content of an element, or the  value of an attribute. The edges represent element-
attribute, element-subelement, or element-element links within XML documents, as 
well as element-element relations between elements of different XML documents 
based on XLink and XPointer. To simplify matters, we will focus on simple XLinks 
which can be recognized by href attributes as well as simple XPointers which consists 
of absolute references (root(), id()) and a sequence of relative references such as 
child() and descendant(). Fig. 2 shows (the relevant part of) the XML data graph for 
the sample data introduced above. In this graph we distinguish ������� for element 
names and attribute names and ������� for contents/values. 
Queries such as Q1 are evaluated by traversing the XML data graph, possibly using 
“shortcuts” obtained from index lookups, and comparing the various search condi-
tions against the nodes of the data graph. Exact-match conditions such as 
“Z.animals.(animal)?.specimen "� A” return true or false for a given subgraph, and 
the end node of a matching path is bound to an element variable, A in this case. Simi-
larity conditions such as “A.~region ~ B.CONTENT” assign a similarity score to a can-
didate element or path.  



-��#�%, XML data graph 

The similarity scores of different conditions are composed using simple probabilistic 
reasoning. Complete results, as determined by the element variables that appear in the 
Select clause, are returned in descending order of similarity to the query (i.e., rele-
vance). With the given sample data, both Bobby, the snow leopard, and Teddy, the 
brown bear, will be returned as search results, but Bobby will be ranked higher be-
cause snow leopards have a closer relationship to lions. Note that Teddy qualifies as 
an approximate match although he lives in an “animal park” rather than a “zoo” and 
the geographic distribution of his species is indicated by “range” rather than “region”; 
that is, element names with sufficient semantic similarity to the ones in the query are 
considered as relevant, too. 

%#%����������������.�������

The Select clause of an XXL query specifies the output, for example a list of URLs or 
all bindings of certain element variables. The From clause defines the search space, 
which can be a set of (seed) URLs or the index structure that is maintained by the 
XXL search engine. The Where clause of an XXL query specifies the search condi-
tions. We define the Where clause of a query as the logical conjunction of �	
����
���������, where a path expression is a regular expression over ������
	��������
���� 
and an elementary condition refers to the name or content of a single element or at-
tribute.  

In addition to the standard set of operators on strings and other simple data types (“=”, 
“≤”, etc.), the elementary conditions supported by XML include a semantic similarity 
operator “~”, which is used as a unary operator on element names and as a binary 
operator on element content.  

Each path expression can be followed by the keyword "As" and a variable name that 
binds the end node of a qualifying path (i.e., the last element on the path and its at-
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tributes) to the variable. A variable can be used within path expressions, with the 
meaning that its bound value is substituted in the expression.  

The relevance-enabled semantics of a query then is to return a ranked list of approxi-
mately matching subgraphs called �����
���	��� each with a measure of its relevance 
(i.e., semantic similarity) to the query. Our relevance measure is defined inductively 
as follows. We interpret the similarity score for an elementary condition as a rele-
vance probability. Then we need to combine the relevance probabilities for elements 
with regard to elementary conditions into a relevance measure for a path or subgraph 
with regard to a composite query condition. In the absence of any better information, 
we simply postulate probabilistic independence between all elementary conditions, 
and derive the combined probabilities in the straightforward standard way (i.e., by 
simply multiplying probabilities for conjunctions and along the elements of a path, 
etc.) 

The result of an XXL query is a subgraph of the XML data graph, where the nodes 
are annotated with local relevance probabilities for the elementary search conditions 
given by the query. These relevance values are combined into a global �����	����
������for the entire result graph. Full details of the semantics of XXL and especially 
the probabilistic computation of similarity scores can be found in [TW00]. 
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The use of ~ as a binary operator, i.e., in the form “element ~ term”, requires a two-
step computation. The first step of the computation determines similar terms (with 
relevance score π1) to the given term based on the ontology. The second step com-
putes the tf*idf-based relevance (π2) of each term for a given element content (where 
tf*idf refers to the standard formula of IR-style relevance based on term frequencies 
(tf) and inverse document frequencies (idf), see, e.g., [BR99]). The element content 
under consideration then satisfies the search condition with relevance π1⋅π2. 

To define the basic probabilities π1 and π2 we now give details on the similarity met-
ric for terms or element names within an ontology. Consider the example shown in 
Fig. 3 as a part of an ontology about animals. In XXL an ontology is a directed 
acyclic labeled graph G=(V,E) where V is the set of nodes, the terms (in our case 
element names, attribute names, and terms in element/attribute contents), and E is the 
set of edges (see, e.g., [MWK00] for more general variants of ontological graphs). 
The outgoing edges of a node have integer weights, which are unique among siblings, 
as shown in Fig. 3, thus leading to a total order among siblings.  

-��#�', Part of an ontology 
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Edges describe relationships between hypernyms (broader terms) and hyponyms (nar-
rower terms), the weights and order of edges express the similarity among sibling 
nodes. For example, the local similarity of big cats is given as follows: 1 – lion, 2 – 
tiger, 3 – leopard, 4 – jaguar, and so on. This means that lions are more related to ti-
gers than to leopards. 
In order to use an ontology for similarity search we have to define the similarity of 
two graph nodes (terms) of the ontology. The general rationale for this similarity met-
ric is to use the number of edges on the shortest path between two graph nodes as 
their “semantic distance”, and then derive a normalized similarity metric from this 
consideration. The notion of distance is actually a bit more sophisticated because we 
consider also the “semantic distance” between all siblings of a node rather than treat-
ing all siblings as equally related to each other. Generally, when we refer to paths in 
G, we interpret the edges of the DAG as undirected edges.  
The similarity between two nodes of the ontology is defined as follows: 
a)   Let v1 and v2 be nodes with v1 being an ancestor of v2 or vice versa; then  
    dist(v1,v2) = length(v1,v2). 
    �	����������
��	��������	���	�����������	����������
�����	
������������	��� �
b)   A node p ∈ V on the shortest path between two nodes v1 and v2 is called the low- 
     est common ancestor (lca) of v1 and v2 if there are two paths p…v1 and p…v2 such  
     that length(p, v1) and length(p,v2) are both minimal. (If there are multiple shortest 
     paths, we choose one arbitrarily.) 
������	�����������	
������
�����	��!������	�����������	�"�
c)   Let v1 and v2 sibling nodes with parent node p; then the sibling distance of v1 and  
     v2 is defined as          siblingdist(v1,v2) = | weight(p,v1) – weight(p,v2) | 
                                                                              maxweight 
 where maxweight is the maximal weight of all outgoing edges of node p. 

�	����������������
�����������	�������#$�%�&#��'�&����'&�
d)   Let v1 and v2 be arbitrary nodes of T, let p be the lca of v1 and v2, and let p1 and  
     p2 be children of p such that p p1 … v1 and p p2 … v2 are paths of T; then the  
     distance of v1 and v2 is defined as  
                                    dist(v1,v2) = length(p1,v1) + length(p2,v2) + siblingdist(p1,p2) 
������	���������
���������������	�����$�(�$�(��#$�%� #�' ��� ")�
e)   Now we can define the normalized similarity of two nodes v1 and v2 of an onto- 
     logy tree T as sim(v1,v2) = 1 / (1 + dist(v1,v2)) 
     �	����������������
��������$�'��$($'&�����*"+�
With each node of the ontology we can associate a set of synonyms. These are treated 
as a single semantic concept, with the same predecessors and successors in the graph. 
For example, the node “big cat” could have a fifth child with the three synonyms 
“cougar”, “puma”, “mountain lion”. 
  
'#���������++������������������

Similarly to Web search engines, the XXL engine builds on precomputed index struc-
tures for evaluating the various search conditions in a query. These indexes are con-
structed and maintained based on a crawler that periodically or incrementally trav-
erses documents that are reachable from specified roots within the intranet or Web 



fragment of interest. We use three index structures, element path index (EPI), element 
content index (ECI), and ontology index (OI), which are described in the subsequent 
subsections. 

'#$����.����*����������0�*�/�

The EPI contains the relevant information for evaluating simple path expressions that 
consist of the concatenation of one ore more element names and path wildcards #. 
Each element name that occurs at least once in the underlying data is stored exactly 
once in the index. Associated with each element name is a list of its occurrences in the 
data: the URL of the document and the oid of the element. Furthermore, short index-
internal pointers to the parent and the children of an element are stored with each 
element occurrence. In addition to this information on parent-child edges of the data 
graph, outgoing (XLink and XPointer) links such as href attributes can optionally be 
stored with each element occurrence in the index. Attributes are treated as if they 
were children of their corresponding elements, along with a flag to indicate the attrib-
ute status. 
The parent-child information of the EPI is illustrated in Fig. 4a, which refers to the 
example data graph shown in Fig. 2. For notation we treat the entire index as if it were 
a nested relation. The subentries of the form “↑...“ are short, index-internal pointers. 
The optionally maintained information on links is depicted in Fig. 4b, again referring 
to the example data of Fig. 2.  
�HOHPHQW�QDPH��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � _�� �HOHPHQW�QDPH��� � �

� �HOHPHQW�LQVWDQFH��SRLQWHU�WR�WKH�IDWKHU�HOHPHQW���� � _���� � �HOHPHQW�LQVWDQFH��SRLQWHU�WR�OLQNHG�HOHPHQW��

�� � � � � � � � �SRLQWHU�WR�D�FKLOG�HOHPHQW���_��

zoo                                                          |  birthplace 
   [URL1, 0]         ---                                     |      [URL2, 12]        ↑zoo (…) 
                            ↑name (URL1, 1)              |      [URL3, 13]        ↑zoo (URL2, 1) 
                            ↑name (URL1, 2)              |      … 
                            …                                |  location  

[URL2, 1]         ↑… (URL2, …)                     |      [URL2, 10]        ↑enclosure (URL2, 30) 
                            ↑name (URL2, 2)              |      [URL3, 11]        ↑enclosure (URL3, …) 
                            ↑country (URL2, 3)            |  … 
                            …                                | 
   …                                                         | 

-��#�1, �/ Schema for EPI on parent-child relationships (left side), and 
/ links (right side) 

The EPI very much resembles the notion of "data guides" introduced [GW97] and 
similar structures in other XML query engines (e.g., [FM00]). However, the EPI only 
stores paths of length 2 explicitly and reconstructs longer paths by combining multi-
ple index entries based on the index-internal pointers. This way the EPI can answer 
the following kinds of subqueries in a very efficient manner: 
-  retrieve all URLs and element IDs for a given element name, 
-  retrieve all children (and link successors) of a given element instance or a given  

element name, 
-  retrieve all descendants or ancestors of a given element, up to a specified depth, 
-  test whether there is a path from element x to element y. 
Elements retrieved from the EPI for a given subquery always have a relevance score 
of 1.  



The EPI is implemented as an in-memory red-black tree on element names; index-
internal pointers are virtual memory addresses. The entire index is loaded from disk 
when the XXL search engine starts. 

'#%����.����(�������������0�(�/�

The element content index (ECI) contains all terms, that is word stems, that occur in 
the contents of elements and attributes. For stemming we use the Porter algorithm 
[BR99]. Each term has associated with it its inverse document frequency (the idf 
value, which is the quotient of the total number of elements that are known to the in-
dex and the number of elements that contain the term), its occurrences, and for each 
occurrence the term frequency (the tf value). So the ECI largely corresponds to a 
standard text index as used by virtually all Web search engines [BP98, BR99]. The 
main difference is that our units of indexing and tf*idf computations are elements 
rather than entire documents. For query evaluation the ECI is used to answer subque-
ries of the form: find all element instances that contain a given term, along with the 
corresponding tf*idf values.  
Our implementation of the ECI uses the text retrieval engine of Oracle8i, known as 
interMedia [Ora8i]. We store element contents and attribute values in a database table 
of the form �	
	��,-.����������
��
�, similarly to [BR01, FK99], and create an inter-
Media index for the attribute „content“. Thus we are able to exploit Oracle’s special 
Contains predicate for ranked text retrieval using the tf*idf formula for relevance 
scores.  
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The quality of similarity search and result ranking on semistructured data can be im-
proved by exploiting ontological information. Motivated by the visionary but still 
somewhat vague idea of a “Semantic Web” [SemWeb], we consider element (and 
attribute) names as the semantically most expressive components of XML data. This 
assumes that many XML documents will be constructed according to standardized, 
domain-specific ontologies (see, e.g., www.ebxml.org for e-business data, 
www.fpml.org for financial instruments, or www.geneontology.org for bioinformatics 
data) with meaningful, carefully chosen element names. Note that this does by no 
means imply that all data is schematic: ontologies may include a large number of ter-
minological variants, and there is large diversity of ontologies for the same or over-
lapping application domains anyway.  
The ontology index (OI) contains all element names that occur in the indexed XML 
data, and organizes these names into an ontological graph as explained in Section 2.3. 
The XXL query processor exploits the OI for query expansion: a path expression of 
the form “~e” for an element name e is expanded into a disjunctive path expression of 
the form “e | term1 | ... | termk”, with k terms returned by the OI ( with relevance 
scores π1, ..., πk) as most similar to the given element name e. This broadened expres-
sion will then be evaluated by the EPI. We also use the OI to evaluate similarity con-
ditions on element contents, that is conditions of the form “e ~ t” with e being an ele-
ment name and t being a term. The XXL query processor first determines similar 
terms for the given query term t, and then the ECI retrieves relevant element instances 
for the broadened set of terms. The relevance score of a matching element is the 



product of the relevance score provided by the OI and the relevance score provided by 
the ECI. 
As an example, consider a query with the search condition ~region ~ “India”. The 
element name “region” will be expanded into “region | country | continent” and the 
ECI lookups for “India” will consider also related terms such as “Asia”, “Bangla-
desh”, “Tamil Nadu”, etc., provided the similarity scores returned by the OI are above 
some threshold. 
The OI is constructed and maintained as follows. When the crawler passes an XML 
document to the indexer, all element names that are not yet in the OI are added to the 
index. Their positions in the ontology graph are determined by calling WordNet 
[WordNet], which is a comprehensive thesaurus (or linguistically oriented ontology) 
put together by cognitive scientiests. Specifically, we retrieve the concept description 
(i.e., the “word sense” in WordNet terminology), all synonyms, and all hypernyms 
and hyponyms for the given word from WordNet. In our current prototype the OI 
itself is implemented using the user-defined thesaurus functionality of Oracle8i in-
terMedia [Ora8i]. The information obtained from WordNet is directly mapped onto 
terms and synonym, hypernym, and hyponym relationships between terms. All this 
information is dynamically inserted into the thesaurus using the 
ctx_thes.create_phrase function of interMedia. For query expansion the information is 
retrieved using the Contains predicate of Oracle’s SQL extensions. 
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The evaluation of the search conditions in the Where clause consists of four main 
steps: 
1. The XXL query is decomposed into subqueries, and each subquery is internally 

represented in the form of a query graph, which is essentially a finite state 
automaton. 

2. The order in which the various subqueries are evaluated is chosen (global evalua-
tion order). 

3. For each subquery, the order in which the components of the corresponding path 
expression are tested is chosen (local evaluation order). 

4. For each subquery, subgraphs of the data graph that match the query graph are 
computed, exploiting the various indexes to the best possible extent. 

1#$�����������.+��������

The Where clause of an XXL query is of the form “Where P1 AS V1 And ... And Pn 
As Vn” where each Pi is a regular path expression over elementary conditions and the 
Vi are element variables to which the end node of a matching path is bound. As in 
other XML query languages, variables can occur in the place of an element within a 
path expression in multiple subqueries; we assume, however, that there is no cyclic 
use of variables (i.e., there is no cycle in the variable dependency graph with Vi de-
pending on all variables that occur in the path expression of Pi.  
The regular path expression of a subquery can be described by an equivalent non-
deterministic finite state automaton (NFSA). For subquery Qi = Pi AS Vi, NFSA(Qi) 
is constructed and represented as a /�������	�� QGi = QG(NFSA(Qi)). Fig. 5 shows 



the query graphs of the subqueries of our example query Q1 from Section 2.1. Nodes 
with dashed ovals are final states of a regular path. 
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The global evaluation order specifies the order of executing the query graphs QG1, …, 
QGn. Ideally, this would take into account selectivity estimates for the various sub-
queries, but note that the order is constrained by the possible use of element variables 
in the path expressions. So before evaluating a query graph that uses certain variables 
in the place of element names, all subqueries whose results are bound to these vari-
ables must be evaluated. For simplicity, our current prototype simply evaluates sub-
queries in the order in which they appear in the original query; we assume that vari-
ables are first bound by an As clause before they are used in the path expressions of 
subsequent subqueries. 
The local evaluation order for a subquery specifies the order in which it is attempted 
to match the query graph’s nodes with elements in the data graph. The XXL prototype 
supports two alternative strategies: in top-down order the matching begins with the 
start node of the query graph and then proceeds towards the final state(s); in bottom-
up order the matching begins with the final state(s) and then proceeds towards the 
start node. These options are similar to the left-to-right and right-to-left strategies for 
evaluating path expressions in the object-oriented database query language OQL.  

1#'������	
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A �����
��	
� is a path of the XML data graph that satisfies the path expression p of a 
subquery. The nodes of this path are annotated with local relevance values as de-
scribed in 2.2. This result for a single subquery (query graph) determines a local vari-
able binding, which is part of a global variable binding. Taking one result path from 
each subquery yields a �����
���	��, which is a subgraph of the underlying XML data 
graph, by forming the union of the result paths for a given variable binding. The 
global relevance score for this result graph is computed as outlined in Section 2.2. 
Here it is important to emphasize that the same variable binding must be used for all 
subquery results, as the variables link the various subqueries.�
For a local variable binding the evaluation of a subquery always produces a single 
path of the XML data graph annotated with appropriate local relevance scores for 
each node according to the elementary conditions given by the considered subquery. 
As mentioned before we exploit the various index structures in finding matching sub-
graphs for a given query graph. This is done by identifying subgraphs of the query 
graph for which the matching subgraphs from the data graph have been precomputed 
and stored in one of the indexes. This is feasible in many, albeit not in all cases, but 



we expect that most applications would use a rather simple structure for XXL subque-
ries, namely, path expressions of the form ~e1.#.~e2.#. … .#.~en ~ t where e1 through 
en are element names and some or all of the ~ symbols in front of the element names 
and the path wildcards # may be omitted. This subquery type does not use the full 
expressiveness of regular expressions (e.g., there is no Kleene star recursion over 
nested subexpressions) and can therefore be efficiently evaluated. As an example con-
sider the subquery zoos.#.~zoo.animals.species ~ “lion” with the query graph shown 
in Fig. 6.  
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-��#�4, Example query graph for XXL subquery 

A �	
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��� is a path in the query graph from a start node to a final node. Each 
node of a path pattern is an elementary path condition (see Section 2.2), that is an 
element name, possibly with lexical wildcards %, or a name prefixed by the unary ~ 
operator. A ���
��
������
��� is an elementary content condition (see Section 2.2) to 
be met by the content of the end node in a matching path. A �����
��	
� for a query 
graph is a path of the XML data graph that satisfies both the path pattern and the con-
tent condition of the given query graph.  
Path patterns are evaluated using the following methods on the element path index 
(EPI) and the ontology index (OI), and content conditions are evaluated using the 
element content index (ECI) and the ontology index (OI). Recall from Section 2.2 that 
n-nodes are nodes of the XML data graph containing element names and c-nodes are 
nodes of the XML data graph containing the content of an XML element. 
1. For a given elementary path condition without the unary ~ operator, e.g., “zoos” 

or a version with lexical wildcards such as “zoo%”, the EPI returns a set of n-
nodes of the XML data graph that satisfies this condition with relevance π = 1. 

2. For a given elementary path condition with the unary ~ operator, e.g., “~zoo”, the 
OI returns a set of similar terms with relevance π > 0, e.g., “animal_park”, and 
then the EPI returns a set of n-nodes of the XML data graph that corresponds to 
one of these terms. 

3. For two concatenated elementary path conditions “c1.c2” and a given n-node that 
satisfies condition c1 with relevance π1 computed by method 1 or 2, the EPI re-
turns a set of n-nodes of the XML data graph that satisfies the condition c2 with 
relevance π2 using method 1 or 2 such that these are children of the given n-node. 
Finding parents is analogous.  

4. For two given n-nodes the EPI can test the existence of a path between the given 
nodes, e.g., solving „zoos.#.~zoos”. 

With the following three methods supported by the ECI and the OI we evaluate con-
tent conditions for a given c-node of the XML data graph.  
5. For a given content condition without the binary ~ operator, e.g., “= lion”, and a 

given n-node the ECI returns a c-node that satisfies the given search condition 
with relevance π = 1 and this c-node is a child of the given n-node. 



6. For a given content condition with the binary ~ operator, e.g., “~ lion”, and a 
given n-node the OI returns a set of similar terms with relevance π1 > 0, and then 
the ECI returns a c-node that corresponds to one of these terms with relevance π2 
such that the c-node is a child node to the given n-node. The final relevance is 
π1*π2.  

7. For a given elementary content condition of the form 1 and 2 and no information 
about the n-node, the ECI returns a set of c-nodes that satisfies the given condi-
tion with relevance π > 0.  

1#1��������(�.+��������

The result paths for the various subqueries of a given XXL query are composed into a 
global result, which is a subgraph of the underlying data graph, by forming the union 
of the result paths for a given variable binding. Relevance scores of this result graph 
are computed as outlined in Section 2.2. Here it is important to emphasize that the 
same variable binding must be used for all subquery results, as the variables link the 
various subqueries. The exhaustive search algorithm computes all results for all pos-
sible variable bindings according to the global evaluation order for the subqueries and 
their As clauses. 
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Our prior work [TW00] already described a preliminary and incomplete implementa-
tion of XXL based on Oracle. That implementation was fairly limited in that all XML 
data had to be loaded into an Oracle database upfront and all XXL queries were 
mapped onto SQL queries with some use of the Oracle interMedia text retrieval en-
gine. The full-fledged prototype that we refer to in the current paper has been com-
pletely re-implemented. It now includes the three index structures described in Sec-
tion 3, relies on Oracle only as a storage manager for index data (but not for the actual 
XML documents themselves), and has a full-fledged query processor implemented as 
a set of Java servlets (i.e., running under the control of a Web server such as Apache) 
and does no longer rely on an underlying SQL engine.  
The architecture of the XXL search engine is depicted in Fig. 6. It consists of three 
types of components:  
1. Service components: the crawler, the query processor (both Java servlets), and a 

Visual XXL GUI (a Java applet)  
2. Algorithmic components: parsing, indexing, word stemming, etc.  
3. Data components: structures and their methods for storing various kinds of in-

formation such as DTD/schema files, the EPI, the ECI, query templates, etc. 
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The ECI and the OI are stored as Oracle tables. So index lookups to these two struc-
tures involve SQL statements. These are very simple statements that can be executed 
very efficiently, but the query processor may invoke them very frequently. To avoid 
repeated lookups for the same element name or term and to minimize the number of 
JDBC calls to Oracle, both ECI and OI entries can be cached in the query processor 
servlet. 
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For the experimental setup we crawled four collections of XML documents and con-
structed the corresponding index structures: a collection of religious books (Bible, 
Koran, etc.), a collection of Shakespeare plays, bibliographic data about ACM Sig-
mod Record, and synthetic documents with the structure of bibliographic data. Alto-
gether this data collection contained 45 XML documents, some of which were ex-
tremely long and richly structured, with a total number of 208 449 elements (with 62 
different element names). Note that the diversity of this data posed a challenge for the 
search engine that would not be present with a homogeneous XML collection that 
follows a single DTD or XML schema. 
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Table 1 shows the results for simple similarity queries with both the unary and binary 
~ operator. Note that the large number of results is explained by the fact that  the que-
ries retrieved all matching paths, and there were many different matching paths within 
the same document. The “Select URL …” option would have condensed this result 
into a small number of matching documents, but we were especially interested in 
evaluating XXL’s capability to find and rank all semantically relevant pieces of in-
formation. 
The variants “top-down” and “bottom-up” refer to the two strategies for the local 
evaluation order, either starting from the start nodes of the query graph (top-down) or 
from the final nodes (bottom-up). As the run-time figures in the table show, there is 
no clear preference for one of the two strategies; the discriminating factor is the selec-
tivity of the elementary conditions (i.e., element names to be approximately matched) 
at the begin and end of the path patterns.  
For the third and fourth queries the relevance scores were relatively low as a result of 
multiplying a relevance score from the OI (for the conditions with the unary ~ opera-
tor) and a relevance score from the ECI (for the conditions with the binary ~ opera-
tor), which in turn stems from an independence assumption in our probabilistic 
model. Note, however, that this does not distort the relative ranking of the results; the 
situation is similar to that of Web search engines, and we could as well have applied 
their standard trick of re-normalizing the scores in the final result list.  
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Table 2 shows the results for more sophisticated path expressions in the Where clause 
of a query. All run-times were in the order of seconds; so the XXL search engine is 
fairly efficient. Note that even queries whose Where clause starts with a path wildcard 
# (e.g., the second query and the fifth query in Table 2) could be evaluated with rea-
sonably short response time. This is because the XXL query processor first evaluates 
the specified element names in the path pattern and only then tests whether the re-
trieved paths are connected to the roots specified in the From clause.  
In this set of queries the bottom-up evaluation strategy mostly outperformed the top-
down strategy. This is because the element names at the end of the path patterns 
tended to occur less frequently in the underlying data, so the corresponding elemen-
tary conditions were more selective. For queries with multiple subqueries either all 
subqueries were evaluated top-down or all of them were evaluated bottom-up.  

For the example queries of Table 2 we measured the number of calls to the various 
index structures, and for the ECI and OI, which are based on Oracle tables, also the 
number of DBS calls that resulted from the index methods. The number of DBS calls, 
which were simple SQL queries with many Fetch calls, incurred significant overhead, 
simply by having to cross a heavy-weight interface many times, in some queries more 
than 100 000 times. With caching of index entries enabled in the query processor, the 
number of DBS calls were drastically reduced from down to the order of a few hun-
dred calls. This optimization resulted in acceptable response times shown in Table 2. 
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~headline 2531 0.1 0.09 1.0 
0.8 
0.8 
… 

0.6 

headline=”DBS” (book.xml) 
title=”The Quran” (quran.xml) 
title=”The New Testament” (nt.xml) 
… 
subhead=”The Song” (a_and_c.xml) 

~publication. 
~headline 

1509 0.45 0.2 0.8 
0.64 
0.64 

… 
0.48 

publication.heading=”…” (publication.xml) 
book.title=”…” (book.xml) 
article.title=”…” (SigmodRecord.xml) 
… 
work.heading=”…” (book.xml) 

~headline ~ “XML” 36 2.5 2.4 0.208 
0.108 
0.108 

… 
0.082 

Heading=”XML-QL: …” (publication.xml) 
headline=”DBS” (book.xml) 
title=”XML and …” (SigmodRecord.xml) 
… 
heading=”Draft…in Java” (book.xml) 

~publication. 
~headline ~ “XML” 

35 0.83 2.5 0.208 
        0.083 

0.083 
… 

0.049 

publication.heading=”XML-QL:…” (publ.xml) 
article.title=”XML and …” (SigmodRec.xml) 
article.heading=”Adding…XML” (article.xml) 
… 
work.heading=”Draft…in Java” (book.xml) 
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~headline 2531 0.10 0.10 

#.~headline 11335 19.80  2.88 

~author ~ “King” 10 0.43 1.61 

~author AS A AND A ~ “King” 10 0.51 0.51 

#.~author AS A AND A ~ “King” 60 16.21 0.83 

~headline ~ “XML” 36 2.45 2.45 

~headline AS A AND A ~ “XML” 36 2.51 2.51 

#.~headline AS A AND A ~ “XML” 165 20.19 6.49 

~title ~ “Testament” 2 0.70 1.37 

~title AS A AND A ~ “Testament” 2 0.77 0.77 

#.~title AS A AND A ~ “Testament” 6 7.72 1.22 

~figure ~ “King” 62 3.66 4.21 

~figure AS A AND A ~ “King” 62 3.68 3.76 

#.~figure AS A AND A ~ “King” 190 18.15 4.42 

#.(pgroup)?.~figure ~ “King” 190 20.79 3.69 

#.~chapter.(v|line) ~ “Testament” 52 8.71 2.65 
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���%,  Experimental results for XXL queries with path expressions 
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Finally we considered two more complex queries: 

Query 1: Select * From Index                 Query 2: Select * From Index 
             Where #.~publication AS A                  Where #.play AS A 

   And A.~headline ~ “XML”                   And A.#.personae AS B 
   And A.author% AS B                           And B.~figure ~ “King” 

                And B.title AS C 

Table 3 shows the run-times for these more challenging queries, which were again in 
the acceptable time range of a few seconds, provided the proper evaluation strategy 
was chosen. In addition to the top-down and bottom-up strategies for the local evalua-
tion order, we also tested an optimization heuristics, coined �
	�
���
���2	
��� ����� for 
automatically deciding on the most selective node of the query graph based on statis-
tics about the frequency of the corresponding element name(s) in the indexed data. 
Once the most selective node is determined the evaluation proceeds both ways, top-
down and bottom-up, from this node; with the top-down direction being inspected 
first, we refer to this strategy as td+so, otherwise we refer to it as bu+so. Furthermore 
we use a simple heuristic (opt. heur.) algorithm that chooses the evaluation order of 
the subqueries, i.e., 2,1,3 for query Q1 and 1, 2, 3, 4 for query Q2, and the local 
evaluation strategy (t=top down or b=bottom-up) for each subquery individually. In 
Table 3 we give the actual query execution times (exec) and the plans (plan) obtained 
from the optimization. The optimization time itself was about 0,3 sec for each of the 
two queries. The heuristics are based on considering the syntax and the selectivity of 
all start nodes and end nodes of each subquery. For example, as the first subquery of 
Q1 starts with # and ends with a similarity condition involving the relatively frequent 
term “publication”, it is considered less selective than the second subquery; so our 
heuristic optimizer decides to evaluate the second subquery first.  



 
 # 

results 
td 

(sec) 
bu 

(sec) 
td + so 
(sec) 

bu + so 
(sec) 

opt. heur.                            opt.heur. + so  
exec (sec)             plan              exec (sec) 

Q1 131 14,30 694,62 14,20 3,24 2,69 �bu,�bu,�td  2,68 
Q2 58 8,56 3,76 8,52 3,69 4,63 �bu,�td,�td,�td  4,64 

��
���',  Experimental results for complex XXL queries  
(td = top down, bu = bottom-up, so = start optimization) 
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Ongoing and future work includes a more advanced kind of ontology index, perform-
ance improvements of the query processor algorithms, and the broad and challenging 
issue of query optimization. More specifically, we plan to extend the OI so as to cap-
ture more semantic relationships between concepts. This also requires extending our 
similarity metric. As for query evaluation performance, we are considering various 
heuristics for finding some good approximate matches in the result list as quickly as 
possible with possibly deferred or slowed-down computation of the (nearly) complete 
result. This way we strive for the best ratio of retrieval effectiveness (i.e., search re-
sult quality) and efficiency (i.e., response time). Finally, we plan further studies on 
query optimization heuristics for both global and local evaluation ordering of subque-
ries and elementary search conditions based on selectivity estimations. 
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