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Abstract

Despite the recent proliferation of work on semistruc-
tured data models, there has been little work to date on sup-
porting uncertainty in these models. In this paper, we pro-
pose a model for probabilistic semistructured data (PSD).
The advantage of our approach is that it supports a flexible
representation that allows the specification of a wide class
of distributions over semistructured instances. We provide
two semantics for the model and show that the semantics are
probabilistically coherent. Next, we develop an extension
of the relational algebra to handle probabilistic semistruc-
tured data and describe efficient algorithms for answering
queries that use this algebra. Finally, we present experi-
mental results showing the efficiency of our algorithms.

1 Introduction

In recent years there has been a proliferation of
semistructured data models proposed [20, 18, 3, 5], along
with associated query languages [1, 10] and algebras [4,
15]. The semistructured data model has the advantage of
not placing hard constraints on the structure of the data.
However, a particular semistructured instance specifies de-
terministic relationships between objects. It is desirable to
have a model that allows us to represent uncertainty over the
relationships between objects in the semistructured model.

This uncertainty is necessary when relationships be-
tween objects and values for attributes of objects are not
known with absolute certainty. A common source for this
uncertainty comes when a semistructured representation is
constructed from a noisy input source: uncertainty in sensor
readings, information extraction using probabilistic parsing
of input sources and image processing all may result in a
semistructured instance in which there is uncertainty. An-
other source for this uncertainty comes from the need to�
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represent nondeterministic processes using a semistructured
model. In this case, it may be desirable to represent the dis-
tribution over possible substructures explicitly, rather than
forcing a particular choice. Examples where this may hold
include biological domains, manufacturing processes and
financial applications.

While there has been a great deal of work on support-
ing uncertainty in relational models [16, 11, 12, 13], to
date, there has been little work on supporting uncertainty
in semistructured models. Dekhtyar et al.[9] proposed a
model that allows probabilistic information to be stored us-
ing semistructured databases. Our proposal does the oppo-
site: we extend the semistructured data model so that paths
in such a model can include probabilistic information. More
closely related to our work is the work of [19], in which a
tree-structured probabilistic database is proposed. As we
will see, their model is a special case of our model.

The first contribution of this paper is a flexible proba-
bilistic representation for semistructured data which sup-
ports arbitrary distributions over the relationships between
an object and its children and arbitrary distributions over
the object’s value. We do not require the semistructured
instance to be tree structured, however we do require that
the probabilistic model is acyclic. The second major con-
tribution of this paper is a formal characterization of the
probabilistic semantics of the model. This connection is
missing in previous approaches to representing probabilis-
tic semistructured data. The third major contribution of
this paper is an algebra that supports querying probabilis-
tic semistructured data. In addition, as space permits, we
describe efficient algorithms for answering these queries. A
companion paper[14] describes an approach which uses in-
terval probabilities and gives a different kind of query lan-
guage and operational semantics.

The outline of the paper is as follows. We first start with
a motivating example in Section 2. In Section 3, we propose
the ����	 model of probabilistic semistructured databases.
We define the semantics for probabilistic semistructured
databases in Section 4. Then, in Section 5, we propose
an extension of the relational algebra operators to apply to
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Figure 1: A semistructured instance for a bibliographic domain.

probabilistic semistructured databases. We define the op-
erations of select, project and Cartesian product (for join,
renaming, union and intersection, we plan a longer version
of the paper). In Section 6, we give algorithms which ex-
ploit the local semantics, and result in efficient computation
of the results of these algebraic operations. In Section 7, we
present experimental results that evaluate the efficiency of
the algorithms we have proposed. Due to space reasons, we
do not include proofs of all results in this paper.

2 Motivating Example

As our running example, we will use a bibliographic ap-
plication. This example is rather simple, but we assume it
will be accessible to all readers. In this case, we assume
that the uncertainty arises from the information extraction
techniques used to construct the bibliography. Consider a
citation index such as Citeseer [6] or DBLP [7]. In Citeseer,
the indexes are created by crawling the web, and operations
include parsing postscript and PDF documents. Often, there
will be uncertainty over the existence of a reference (have
we correctly identified a bibliographic reference?), the type
of the reference (is the reference a conference paper, a jour-
nal article or a book?), the existence of subfields of the refer-
ence such as author, title and year, the identity of the author
(does Hung refer to Edward Hung or Sheung-lun Hung?).
In such environments, uncertainty abounds.

Semistructured data is a natural way to store such data
because for an application of this kind, we have some idea
of what the structure of data looks like (e.g. the general hi-
erarchical structure alluded to above). However, semistruc-
tured data models do not provide support for uncertainty
over the relationships in an instance. In this paper, we will
extend this model to naturally store the uncertainty that we
have about the structure of the instance as well. Besides,
we will see how our algebraic operations and query can han-
dle the following situations:

1. We want to know the authors of all books but we are
not interested in the institutions of the authors or the

titles of books. However, we want to keep the result in
the way that further enquiries (e.g., about probabilities)
can be made on it.

2. Now we know that a particular book surely exists.
What will the updated probabilistic instance become?

3. We have two probabilistic instances (e.g., the infor-
mation were collected by two different systems) about
books of two different areas and we want to combine
them into one.

4. We want to know the probability that a particular au-
thor exists.

3 Probabilistic Semistructured Data Model

In this section, we introduce the probabilistic semistruc-
tured data (PSD) model. We start by introducing syntactic
definitions for this data model, and then we introduce for-
mal semantics. We first review the definition of a semistruc-
tured data (SD) model and then we introduce the syntax for
the ����	 probabilistic semistructured data model.

3.1 Semistructured Data Model

We start by recalling some simple graph concepts.

Definition 3.1 Let � be a finite set (of vertices), �������
� be a set (of edges) and ���	��

� be a mapping from
edges to a set � of strings called labels . The triple ���� ����������� is an edge labeled directed graph.

Definition 3.2 Suppose ��� � ����������� is any rooted, edge-
labeled directed graph. For ����� :

� The children of � is the set � � ����� �!�#"#$ � �!�%�&"'�(���*) .� The parents of � , +%,#-/.#0�132 � ��� , is the set �!�#"4$ � �#"5�6�#�7�
�*) .� The descendants of � is the set 8�.92 � �#�:� �!��"�$
there is a directed path from � to ��" in �;) .� The non-descendants of � is the set non-des

� ���<�
�=�#">$/�&"?�@�BAC�#"ED��8#.�2 � �#�?FG�!�=)#) .� We use H I&J � �!��K'� to denote the set of children of � with
label K . More formally,

H I&J � �!�9K'�E�L�=� " $ � �!�%� " �(����AM� � �!�%� " ��� K5)ON
� A vertex � is called a leaf iff � � �����QP .

It is important to note that our graphs are not restricted
to trees— in fact, the above definition allows cycles. How-
ever, in our probabilistic semistructured data model, we will
restrict attention to directed acyclic graphs.

Definition 3.3 A semistructured instance R over a set of
objects S , a set of labels � , and a set of types T is a U -tuple
RV� � �W�X���3�&��YZ�3[\,OH � where:
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1. � � � �����M�3��� is a rooted, directed graph where � �
S , � � ����� and � ��� 
 � ;

2. Y associates a type in T with each leaf object � in � .
3. [%,OH associates a value in the domain 8 ��� � Y � �#��� with

each leaf object � .

We illustrate the above definition through an example
from the bibliographic domain.

Example 3.1 Figure 1 shows a graph represent-
ing a part of the bibliographic domain. The in-
stance is defined over the set of objects S �
� � ����� �	��
 �	�
� �����	����
 ����� �	��
 �����?�����?����
	) . The
set of labels is � � ��� ����� ��� �!�>K#"���$&%'�!( �*)=���!+-,��.�!�.%'� �'�&+?) .
There are two types, title-type and instition-type, with
domains given by: 8 ��� � title-type � � � VQDB � Lore ) and
8 �-� � institution-type � � � Stanford � UMD ) . The graph
shows that the relationships between the objects in the
domain and the types and values of the leaves.

3.2 The ����	 Probabilistic Data Model

In this section, we develop the basic syntax of the ����	
probabilistic data model. However, before defining the im-
portant concept of a probabilistic instance, we need some
intermediate concepts.

A central notion, that allows us to provide coherent prob-
abilistic semantics, is that of a weak instance. A weak in-
stance describes the objects that can occur in a semistruc-
tured instance, the labels that can occur on the edges in an
instance and constraints on the number of children an object
might have. We will later define a probabilistic instance to
be a weak instance with some probabilistic attributes.

Definition 3.4 A weak instance / with respect to S , �
and T is a U -tuple / � � �W�9H I\J=��YZ��[%,OH �XI9,#- 8O� where:

1. � � S .
2. For each object ���G� and each label K ��� , H I\J � �!��K'�

specifies the set of objects that may be children of �
with label K .

3. Y associates a type in T with each leaf vertex.
4. [%,OH associates a value in 02143 � Y � �#��� with each leaf ob-

ject � .
5. I9,#- 8 is mapping which constrains the number of chil-

dren with a given label K . I�,&- 8 associates with each
object � � � and each label K � � , an integer-
valued interval function, I9,#- 8 � �!�9K'�Q�65 387:9 �;3=<?>�@ ,
where 387:9 A B , and 3C<?>DA 3=7.9 . We use
I9,#- 8 � 1&EGF?H4I	J ��K'� N 387:9 and I9,#- 8 � 1&EGF?H4I	J ��K'� N 3=<?> to refer
to the lower and upper bounds respectively.

A weak instance implicitly defines, for each object and each
label, a set of potential sets of children. Consider the fol-
lowing example.

Example 3.2 Consider a weak instance with � �
� � �����?���

 �	�
� �'�K�	�'�L
 �	���?����
 �	�M�	�����	���	
	) . We may
have H I&J � � ��� �����Z� � �*���	���

 �	�
�	) indicating that
B1 and B2 are possible book-children of R. Likewise,
we may have H I\J � ���	��$&%'�!( �*)#� � �&���?���M
?) . If
I9,#- 8 � ���	�;<?NOJQP-14R&��� 5#S#��T4@ , then B1 can have between
one and two authors. The set of possible author-children
of B1 is thus ���*��� )��9�*�M
?)O� �*���4�	��
	)#) . Likewise, if
I9,#- 8 � ��� ���!+�,	�.�!� %'�.�'�*+4� �U5VS���S�@ then ��� must have exactly
one (primary) institution.

We formalize the reasoning in the above example below.

Definition 3.5 Suppose / � � ��� H I&JO��YZ�3[\,OH ��I9,#- 8O� is a
weak instance and 1 �Q� and W is a label. A set I of ob-
jects in � is a potential W -child set of 1 w.r.t. the above
weak instance iff:

1. If 1\"?� I then 1&"4�CH I\J � 1=�;W>� and
2. The cardinality of I lies in the closed interval
I9,#- 8 � 1=�;W � .

We use the notation ��X � 1=��W � to denote the set of all po-
tential W -child sets of 1 .

We are now in a position to define the potential children of
an object 1 .

Definition 3.6 Suppose / � � ��� H I&JO��YZ�3[\,OH ��I9,#- 8O� is a
weak instance and 1�� � . A potential child set of 1 is
any set Y of subsets of � such that Y �[Z]\ where \ is a
hitting set1 of � �KX � 1=�;W>� $ � ^ 1\" �G1\"4�CH I\J � 1=��W � ) . We use � � � 1&�
to denote the set of all potential child sets of 1 w.r.t. a weak
instance.

Once a weak instance is fixed, �4� � 1&� is well defined for
each 1 . We will use this to define the weak instance graph
below. We will need this in our definition of a probabilistic
instance.

Definition 3.7 Given a weak instance / �� ��� H I&JO��YZ�3[\,OH ��I�,&- 8�� , the weak instance graph,_O` � � ����� � , is a graph over the same set of nodes
� , and for each pair of nodes 1 and 1#" , there is an edge
from 1 to 1\" iff ^ I � � � � 1&� such that 1&"4�aI .

Before we define a probabilistic instance, let us first in-
troduce the notion of a local probability model for a set of
children of an object. We adopt the framework of classical
probability theory so that the sum of the probabilities of all
potential child sets equals S .

1Suppose b�ced�f�g	hQiQiGiQh.f2j?k where each f2l is a set. A hitting set forb is a set m such that (i) for all nporqOots , mvuCf?l�wcCx and (ii) there is
no mzy�{rm satisfying condition (i).
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Definition 3.8 Suppose / � � �W�9H I\J=��YZ��[%,OH �XI9,#- 8=� is a
weak instance. Let � ��� be a non-leaf object. An ob-
ject probability function (OPF for short) for � w.r.t. /
is a mapping � � � � � �#� 
 5 BZ��S�@ such that OPF is a legal
probability distribution, i.e.,

�������	��

��� � � I��E�[S#N
Definition 3.9 Suppose / � � �W�9H I\J=��YZ��[%,OH �XI9,#- 8=� is a
weak instance. Let ���G� be a leaf object. A value proba-
bility function (VPF for short) for � w.r.t. / is a mapping
�V�#8 ��� � Y � �����E
 5 B ��S�@ such that VPF is a legal probability
distribution, i.e.,

������������
���
������ � � [&�E� S�N
An object probability function provides the model the-

ory needed to study a single non-leaf object (and its chil-
dren) in a probabilistic instance to be defined later. It de-
fines the probability of a set of children of an object existing
given that the parent object exists. Thus it is the conditional
probability of a set of children, given their parent exists in
the semistructured instance. Similarly, the value probability
function provides the model theory needed to study a leaf
object, and defines a distribution over values for the object.

Definition 3.10 Suppose / � � ��� H I&JO��YZ�3[\,OH ��I�,&- 8�� is a
weak instance. A local interpretation is a mapping � from
the set of objects � �C� to local probability functions. For
non-leaf objects, � � �#� returns an OPF, and for leaf objects,
� � �#� returns a VPF.

Intuitively, a local interpretation specifies, for each object in
the weak instance, a local probability function.

Definition 3.11 A probabilistic instance � is a � -tuple
� � � ��� H I&J���YZ�3[\,OH ��I�,&- 8 � �4� where:

1. / � � �W�9H I\J=��YZ��[%,OH �XI9,#- 8=� is a weak instance and
2. � is a local interpretation.

A probabilistic instance consists of a weak instance, to-
gether with probability associated with each potential child
of each object in the weak instance.

Example 3.3 Figure 2 shows a very simple probabilistic in-
stance. The set S of objects is the same as in our earlier
� ��	 example. The figure shows the potential H I\J of each
object; for example, H I&J � �z�	��$&%'�!( �*)#� � �&���?���M
	) . The
cardinality constraints are also shown in the figure; for ex-
ample, object B1 can have 1 to 2 authors and 0 to 1 titles.
The tables on the right of Figure 2 shows the local proba-
bility models for each of the objects. The tables show the
probability of each potential child of an object. For exam-
ple, if B2 exists, the probability A1 is one of its authors is
BZN ! .

The components S���� �XT of a probabilistic instance are
identical to those in a semistructured instance. However, in
a probabilistic instance, there is uncertainty over:

� The number of sub-objects of an object 1 ;� The identity of the sub-objects.� The values of the leaf objects.

This uncertainty is captured through the function � � 1&� .
We may define � � 1&� more compactly, in the case where
there are some symmetries or independence constraints that
can be exploited in the representation. For example, if the
occurrence of each category of labeled objects is indepen-
dent, then we can simply specify a probability for each sub-
set of objects with the same label and compute the joint
probability as the product of the individual probabilities.
For example, if the existence of author and title objects
is independent, then we only need to specify a distribu-
tion over authors and a distribution over titles. Further-
more, in some domains it may be the case that some ob-
jects are indistiguishable. For example in an object recog-
nition system, we may not be able to distinguish between
vehicles. Then if we have two vehicles, vehicle1 and ve-
hicle2, and a bridge bridge1 in a scene S1, we may not
be able to distinguish between a scene that has a bridge1
and vehicle1 in it from a scene that has bridge1 and ve-
hicle2 in it. In this case, � �
" S6� � �4E�R47 0$#�H?S#��%?H*P-7 I�W H?S&)\�;�
� ��" S6� � �*E�R47:0$#'H2S��&%�H*P�7 I�W H4T!)%� . The semantics of the model
we have proposed is fully general, in that we can have ar-
bitrary distributions over the sets of children of an object.
However in the case where there is additional structure that
can be exploited, we plan to allow compact representations
of the distributions and make use of the additional structure
effectively when answering queries.

4 Semantics

In this section, we develop the semantics of probabilistic
semistructured databases. A � � 	 model defines a distribu-
tion over possible semistructured instances; we can repre-
sent our uncertainty about the world as a distribution over
possible semistructured instances. A probabilistic instance
implicitly is shorthand for a set of (possible) semistructured
instances—these are the only instances that are compatible
with the information we do have about the actual world state
which is defined by our weak instance. We begin by defin-
ing the notion of the set of semistructured instances that are
compatible with a weak instance.

Definition 4.1 Let R � � �(' �X���3�&��Y)' �3[\,OH '4� be a semistruc-
tured instance over a set of objects S , a set of labels � and
a set of types T and let / � � � ` � H I\J ` ��Y ` �3[\,OH ` ��I9,#- 8��
be a weak instance. R is compatible with / if for each � in
� ' :

� The root of / is in R .� � is also in � ` .� If � is a leaf in R , then � is also a leaf in / , Y ' � �#� �
Y ` � �#� and and [\,OH ' � �#� ��Y ' � �#� .
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o l � ��� 

� ��� � a

R book � B1, B2, B3 �
B1 title � T1 �
B1 author � A1, A2 �
B2 author � A1, A2, A3 �
B3 title � T2 �
B3 author � A3 �
A1 institution � I1 �
A2 institution � I1, I2 �
A3 institution � I2 �
o l

�	��
 � 
�� ��� �
R book [ 2,3 ]
B1 author [ 1,2 ]
B1 title [ 0,1 ]
B2 author [ 2,2 ]
B3 author [ 1,1 ]
B3 title [ 1,1 ]
A1 institution [ 0,1 ]
A2 institution [ 1,1 ]
A3 institution [ 1,1 ]

aWe only show non-empty � ���

� � �	��
�� � 
$
�� � 
 �
�
� B1, B2 � 0.2� B1, B3 � 0.2� B2, B3 � 0.2� B1, B2, B3 � 0.4� � �	��
����&� 
�
������ 
��
�
� A1 � 0.3� A1, T1 � 0.35� A2 � 0.1� A2, T1 � 0.15� A1, A2 � 0.05� A1, A2, T1 � 0.05��� �	��
������ 
�
������ 
 ���

� A1, A2 � 0.4� A1, A3 � 0.4� A2, A3 � 0.2��� �	��
������ 
�
������ 
 ���
� A3, T2 � 1.0

��� �	��
����&� 
$
������ 
��
�
��� 0.2� I1 � 0.8��� �	��
������ 
$
������ 
��
�
� I1 � 0.5� I2 � 0.5��� �	��
������ 
$
������ 
��
�
� I2 � 1.0

Figure 2: A probabilistic instance for the bibliographic domain.

� If � is not a leaf in R then

– For each edge
� �Z�6� " � with label K in R , � " �

H I&J ` � �!�9K'� ,
– For each label K�� � , let � � $ �=��" $ � �!�6�#" � �
� AC� � � ��� K5)!$ , then I�<?R*0 � �!��K'� N 387:9������
I�<?R*0 � �!��K'� N 3=<?>	N

We use �;� � $*�!+ � / � to denote the set of all semistruc-
tured instances that are compatible with a weak in-
stance / . Similarly, for a probabilistic instance � �� ��� H I\J"!	��Y#!	�3[\,OH !?��I�,&- 8 � �4� , we use �;� � $*�!+ � ��� to de-
note the set of all semistructured instances that are
compatible with � ’s associated weak instance / �� ��� H I\J"!	��Y#!	�3[\,OH !?��I�,&- 8O� .

Next we can define a global interpretation based on the
set of a compatible instances of a weak instance.

Definition 4.2 Suppose we have a weak instance
/ � � �W�9H I\J=��YZ��[%,OH �XI9,#- 8=� . A global interpretation$

is a mapping from � �%� $&�!+ � / � to 5 BZ��S�@ such that�'& �)( �+*',+-/. 
 ` �0$ �
" �W�[S .

Intuitively, a global interpretation is a distribution over the
set semistructured instances compatible with a weak in-
stance.

Recall that a local interpretation defines the local se-
mantics for an object. In addition, it enables us to define
the global semantics for our model. First we must put an
acyclicity requirement on the weack instance graph. This is
required to ensure that our probabilistic model is coherent.

Definition 4.3 Let / � � � ` � H I\J ` ��Y ` �3[\,OH ` ��I9,#- 8�� be a
weak instance. / is acyclic if its associated weak instance
graph

_ `
is acyclic.

Given a probabilistic instance � over an acyclic weak in-
stance / , the probability of any particular instance can be
computed from the OPF and VPF entries corresponding to
each object in the instance and its children. We are now
going to define the relationship between the local interpre-
tation and the global interpretation.

Definition 4.4 Let � be local interpretation for a weak in-
stance / � � ��� H I&JO��YZ�3[\,OH ��I�,&- 8O� . Then

$ 

returns a func-

tion defined as follows: for any instance
" �1� �%� $&�!+ � / � ,$ 
 �
" ���32 �)�4& � � �#� � I & � 1&��� � where if 1 is not a leaf in / ,

then I ' � ����� �!�&"5$ � �!�%�&" � ���*) , i.e., the set of children of �
in instance R ; otherwise, I ' � ���E� [\,OH ' � 1&� , i.e., the value of
1 in instance R .

In order to use this definition for the semantics of our
model, we must first show that the above function is in fact
a legal global interpretation.

Theorem 1 Suppose � is a local interpretation for a weak
instance / � � ��� H I&JO��YZ�3[\,OH ��I�,&- 8O� . Then

$ 

is a global

interpretation for / .

Example 4.1 Consider
" �

in Figure 3 and the probabilistic
semistructured instance from Figure 2.

57698 g;:=< 576	>@?BAC>EDGFIH : 576	JK?LA M�?NFO>P? :576	JK?BACJPDGF >�D : 576	Q�?RFIJS? : 576	Q�?TFIJPD :
< U%V W'X�UYV ZI['X#U%V \KX#UYV ]'X#UYV [
< U%V UOU^\^\I]

An important question is whether we can go the other
way: from a global interpretation, can we find a local in-
terpretation for a weak instance / � ��� H I&JO��YZ�3[\,OH ��I�,&- 8�� ? It
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S1:
P(S1) = 0.0112

S4:

P(S2) = 0.02

S3:

P(S4) = 0.0016

S2:

P(S3) = 0.01

S5:

P(S5) = 0.0096

Figure 3: Some of semistructured instances compatible with the
probabilistic instance in Figure 2.

turns out that we can if the global interpretation can be fac-
tored in a manner consistent with the structure constraints
imposed by / � ��� H I&JO��YZ�3[\,OH ��I�,&- 8O� .

One way to ensure this is to impose a set of independence
constraints on the distribution

$
.

Definition 4.5 Suppose
$

is a global interpretation and
/ � � ��� H I&JO��YZ�3[\,OH ��I�,&- 8=� is a weak instance.

$
satisfies

/ iff for every non-leaf object ���C� and each I � �4� � ���
(and for every leaf object �*��� and each I7� 8 ��� � Y � �#��� ),
it is the case that

$ � I#$ non-des
` � �#��� � $ � I9� where

non-des
` � �#� are the nondescendants of � in the weak in-

stance graph
_ `

.

In other words, given that � occurs in the instance, the
probability of any potential children I of � is independent
of the nondescendants of � in the instance.

Theorem 2 Suppose
$

is a global interpretation for a
weak instance / � � ��� H I&J���Y �3[\,OH ��I9,#- 8O� . If

$
satisfies / ,

then there exists a local interpretation � such that
$ 
 � $

.

5 Probabilistic Semistructured Algebra

This section describes several algebraic operations on
probabilistic instances. Due to space limitations, we cannot
present the full set or all details of operations included in
this paper. For convenience, we use the term an instance to
refer to a probabilistic instance when there is no ambiguity.

Relational algebra is based on relation names and at-
tribute names while our algebra is based on probabilistic
instance names and path expressions. The definition of path
expressions is a variation of the standard definition[2].

R

B 3

B 2

B 1
book

book

book
A 3

A 2

A 1

author

author

author

author
author

R

B 3

B 2

B 1
book

book

book
A 3

A 2

A 1

author

author

author

author
author

Figure 4: The result of the ancestor projection on the semistruc-
tured instance in Figure 1 with the path expressions R.book.author.

Definition 5.1 An edge sequence is a sequence W � N�N9N9N�N W�� ,
where W�� are labels of edges. A path expression � �
R\N W � N9N�N9N9N W�� is an object (oid) R , followed by a (possibly
empty) edge sequence W � N�N9N9N�N W � ; � denotes the set of ob-
jects that can be reached via the sequence of edges with
labels W � N9N�N9N�N W � .

A path expression is used to locate objects in an instance.
� ��� iff there is a path � to reach � . For example, in
the example instance in Figure 1, ��
:� � N � �6���4N $&%'�!( �*)
because there is a path from

�
to reach ��
 through a path

that is labeled �X�6���4N $&%'�!( �*) .
In this section we will define the following operators:

projection, selection, and cross product (join can be defined
in terms of these operations in the standard way). For each
operator, we will first describe how it works on an ordinary
semistructured instance, then on a probabilistic instance.

5.1 Projection

We propose several projection operators including an-
cestor projection, descendant projection and single projec-
tion. Here we give details only on the first. The ancestor
projection operation extracts subgraphs composed of ob-
jects located by a path expression and those objects’ ances-
tors up to the root. Note that only those ancestors and edges
on the paths to those objects are extracted.

Example 5.1 Consider the semistructured instance shown
earlier in Figure 1. Suppose we have a path expression� N � �6��� N!$*%'� (Z�&) , then the ancestor projection will first lo-
cate the set � " of objects that satisfy the path expression.
Here, � " � �&���4�	��
 ����� ) . Then it will add into the set V’
those objects that are on the path from the root to the ob-
jects in � " (here, they are B1, B2 and B3), and the root of
the instance (R). Now, � " is the set of the objects in our new
instance. For the edges in the new instance, we will connect
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Figure 5: Given the two instances S1 and S2 on the left, the ances-
tor projection of R.book.author gives the same resulting semistruc-
tured instance shown as S3 on the right. Because these are the
only two compatible instances that produce this result, the prob-
ability of the result is simply the sum of the two probabilities,57698 ZO:�< 57698�� :�
 57698 W^: .

those objects which are also connected in the original in-
stance. Finally, the labels of the edges in the new instance
will be identical to those in the old instance. The resulting
instance is shown in Figure 4.

Definition 5.2 [ancestor projection ( � )] Suppose � �� ����� � is an instance, R is the root of � and � is a path
expression. The ancestor-projection of � on � , denoted
��� � � ��� � � " �X� " � , is defined as follows:

� � " � �=� $ � � � A � � � ��� ^ �#" �
�W� edge sequences �#���%" � � � R\N��#N��6"ZA �G�]R\N�� A �&"(�
�!N��6" ��� )EFG��RO)
� � " � � � �!�6� " � $ � �Z�6� " � � � A �Z�6� " � � " A^

edge sequences �����%" a label W and an object ��" " �
� " � � � R\N ��N W3N��6"�AC�*�CR\N �EAC�#" � �!N W A �&" " � �&">N��6" � )
��� � < ��E �E� � " � �9" � < ��E ��� � � < ��E ���
We have seen how ancestor projection works on a

semistructured instance. Now, we are going to see what it
means for a probabilistic instance. For example, recall the
first situation we want to handle in Section 2. We can use an
ancestor projection with a path expression

� N E�1*1%� N <?NOJQP-14R
on the probabilistic instance. The result keeps the authors
and their ancestors, which can be used to deduce the global
probabilities of compatible instances or the probability of a
particular author in the future. Recall that from a proba-
bilistic instance, we can obtain a set of compatible instances
and a distribution over the probability of each of the com-
patible instances. We can perform the ancestor projection

on each of the compatible instances to obtain a resulting set
of semistructured instances. We then combine the probabil-
ities of identical instances by summing up them.

For example, after the ancestor projection with a path ex-
pression

� N E	1*1%�4N <?NOJQP-14R on the set of instances S1 and S2
in Figure 5(a), we will have

"��
as the result, shown in Fig-

ure 5(b). We can combine the probabilities of
" S#� " T , i.e.,� �
" S%��� � �
" T�� , which is the probability of the resulting

instance.

Definition 5.3 Suppose � � � ��� H I&J���YZ�3[\,OH ��I�,&- 8 � �4� is a
probabilistic instance,

$ � �! � � � and � is a path expres-
sion. Then, the probabilities of the result of the ancestor
projection with path expression � on � are defined as fol-
lows: for every R � �;� � $*�!+ �#"�$ � �E��� , the probability of R
is % ''& & �)( �+*',+-/. 
 ! � s.t. (') 
 ''& & ��* ' $ � RE" "/� .

In reality, there are much more efficient ways of comput-
ing the projection. We will describe them in Section 6.

5.2 Selection

In this section we will describe the selection operation.
We define two types of selection conditions, an object se-
lection condition and a value selection condition.

Definition 5.4 (object selection condition) An object se-
lection condition is of the form of �C� 1 where � is a path
expression starting from the root and 1 is an object id.

Definition 5.5 (value selection condition) A value selec-
tion condition is of the form of [%,OH � � �@� % where � is a
path expression starting from the root to some leaf and % is
a possible value for ��� � , i.e., % ��8 �-� � Y � �#��� .

Besides conditions based on object and value, other
kinds of selection conditions with comparisons based on,
for example, cardinality, OPF or VPF , work in a similar
way and have similar semantics.

With a given selection condition ��I and a probabilistic
instance � , the global approach will give a set of semistruc-
tured instances (with normalized probabilities) compatible
with the selection operation. The global approach works
as follows: among the set of instances compatible with the
probabilistic instance � , only those instances satisfying the
selection condition ��I will be selected; then their resulting
probabilities will be obtained by normalizing their original
probabilities using the formula in the following definition.

Definition 5.6 (selection ( + )) Suppose � � � �W�*H I&JO� YZ�
[%,OH � I9,#- 8 �)� � is a probabilistic instance, ��I is a se-
lection condition. Let � �%� $&�!+ � +-,/. � ����� � �9R �
� �%� $&�!+ � ����$ R satisfies ,10\) be the set of compatible in-
stances satisfying the selection condition. Then, � R �
� �%� $&�!+ � +2,/. � ����� , $ " � R(��� 3


 ' �465 &�718:9<;>=<? @/ACB�D<E�A�FHGCG 3
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Figure 6: (a) The set of compatible instances of a probabilistic in-
stance along with their probabilities. (b) The result of the selection
R.book = B1.

Example 5.2 Suppose we have a (simplified) probabilistic
instance with the

$
shown in Figure 6(a). Recall the

second situation in Section 2 and suppose now we know
the book �tS surely exists. So, how will the probabilities
be affected? The result of the selection

� N!�X�6��� � ���
is shown in Figure 6(b). The set of compatible instances
are shown, along with their updated probabilitites. Among
the four compatible instances shown in Figure 6(a), only" S#� "�� � "�� satisfy the selection condition. Then we nor-
malize the probabilities of the selected instances as follows.
For example, consider

" S :
$ " �
" S6� � 3


�&)�&�
3

�&)�����
3

�& �����
3

�&����

� �
	
�

�
	
���
�
	
���
��	
� � B N �

5.3 Cartesian Product

In Section 2, we mentioned a situation where we want to
combine two probabilistic instances into one. In this sec-
tion we will briefly describe how to do that by the operation
of Cartesian product. On two semistructured instances, the
Cartesian product operation simply merges the two roots of
the two input instances. Similar to the Cartesian product
of relational algebra, objects with identical object ids in the
two instances need to be renamed. For simplicity, we as-
sume that the object ids are unique (after renaming, if nec-
essary). Readers may wonder why we do not simply add a
new root as the parent of the two original roots. The reason
is to ensure that the same path expressions can be applicable
on the two input semistructured instances before and after
the Cartesian product. The Cartesian product of two proba-
bilistic instances is defined similarly. However, we need to
specify how to combine the probabilities. Here we make an
independence assumption and assume that the probability

of the product is the product of the component probabili-
ties. In a manner similar to what is done for projection, the
probabilities of identical resulting structures are combined.

Definition 5.7 (Cartesian product ( � )) Suppose � �� ��� H I&JO��YZ�3[\,OH ��I�,&- 8Z� �4� �
�W" � � � "'�9H I\J " ��YZ">�3[\,OH " �XI9,#- 8 " � � " �
are two probabilistic instances, R\�;R&" are the roots of � ����" .
The Cartesian product of � �
�E" , denoted � � ��" � �W" " �� � " " � H I&J " " ��YZ" ">�3[\,OH " " �XI9,#- 8 " " � � " " � , rooted at R\" " , is defined as
follows:

� � " "�� � �LF � "ZF ��R\" "')\��
B��RO)�
B��R\"') , YZ" "���Y*F@YZ" ,
[\,OH " " � [\,OH F [\,OH " .
� H I\J " " � H I\J F H I&J " and I�,&- 8 " " � I�,&- 8 FGI�,&- 8 " with the

modification such that the two old roots are merged
into R\" " with all children of R\�QR&" become the children of
R\" " .
��� E � H I\J " " � < ��W � (for every label W ),

– if < � R\" " , then: if EB� � , then
� ��" " � < ��E � �

� � R\��E9��� ; otherwise,
� �9" " � < ��E ��� �9" � R%">��E ��� ;

– else: if E;�<� , then
� �9" " � < ��E9� � � � < ��E ��� ; other-

wise,
� ��" " � < ��E ��� �9" � < ��E ��� .

� �4" " is defined such that � 1 �<� , � " " � 1&�7� � � 1&� ; � 1 �
� " , �4" " � 1&� � �4" � 1&� . The root R\" " requires a special
treatment: � I�" "?� � � � R\" " � such that I9" " � IWFCI9" where
I � �4� � R&� �XI9" � � � � R\" � , �4" " � R%" " � � I9" " �@� � � R\� � I6�;�
�4" � R%" � � I9" � .

6 Probabilistic XML ( ������� )

This section describes �����rX , an efficient implementa-
tion of the algebraic operations defined in the previous sec-
tion. We begin by describing algorithms for operations such
as ancestor projection which return an updated probabilis-
tic instance. Next we describe queries that simply return
the probability that a selection condition is satisfied in the
probabilistic instance.

In general, as we saw in Theorem 1, there is a mapping
between a probabilistic instance and a Bayesian network.
For any query, there is a mapping to an equivalent query in
the Bayesian network. Inference in Bayesian networks has
been studied extensively [21, 17, 8], and many off the shelf
implementations are available. In general, if the network is
tree structured, the inference will be linear in the number
of nodes in the network. If the network is not a tree, the
complexity depends on the connectivity of the graph and
the induced tree width of the graph. In practice, if the graph
is not highly connected, as in our example, the inference
is quite efficient. And, regardless of the structure, the infer-
ence algorithms are significantly more efficient than naively
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computing the probability by marginalizing over all of the
compatible instances.

Rather than presenting the generic inference algorithm
here, we show how to compute a variety of simple queries.
Here we give an efficient algorithm with the assumption that
all compatible instances are tree-structured. Note that this
is not a requirement, but it does simplify the algorithms.

6.1 Ancestor Projection

As we saw in the algebra section, ancestor projection
on a probabilistic instance results in a new probabilistic in-
stance, with the probability of an instance

" " in the pro-
jection computed as the sum of the probabilities of the in-
stances that map to

" " in the original probabilistic instance.
We can treat the probabilistic instance as an ordinary

semistructured instance and perform ancestor projection on
it and update the I�,&- 8 and � . The update of the � and I9,#- 8
are done starting from the immediate parents of leaves. The
update is bottom up; it will be performed on an object only
if the updates have been done on all of its children.

Here, we use 1 � to denote the non-leaf object whose
� � 1 �>� and I9,#- 8 are to be updated. We denote the original set
of children before projection as � � 1 �5� , the new set of chil-
dren after projection as �?" � 1 � � , and ����� � � 1 � � 
 �?" � 1 � � .
Similary, we use � " and I�,&- 8 " to denote the new local inter-
pretation and cardinality.

� Marginalization. First, consider the immediate parent
of a leaf. Intuitively, for each I9"	�Q�?" � 1 �>� , we project
all the children in the original, I*� � � 1 �5� , where I9" is
the result of projection of I (after removing the deleted
children), to I9" :

� y 6�� l : 6�� y :�< ��
	���
 s.t. ������� &�� ��������� ���! �
� 6�� l : 6�� y#"%$ : V

Normalization.
A non-leaf object (except the root) in the result of an-
cestor projection should not exist in a compatible in-
stance if none of its children exists in the compatible
instance (by the definition of ancestor projection). We
will compute &
'  , the probability that 1 � has some child
still existing in the result of the ancestor projection:

( �! < �� & �#��� & ���  �*) � &�+�-,
� y 6�� l : 6�� y : V

Then, we renormalize the probabilities so that
� " � 1 � � � I9� will represent the conditional probability of
1 � having children I given the condition that some of
the children exist. We set � " � 1 �5� � �#)%� � B and do the
normalization as follows: � I ���?" � 1 � � ,

� y 6�� l : 6�� : < � y 6�� l : 6�� :( �! 

� For other non-leaf object (except the root), for each
I "��<�?" � 1 � � , we project all the children in the original
I7��� � 1 � � , where I9" is a subset of I , to I9" , and multiply
by the probability that each exists:

� y 6�� l : 6�� y :=< �� �#�!� ���! �*) � & 	 �
� 6�� l : 6�� :/.�10 � � &

( �10
.�10 � ����23� & �*) �!0 ����� & ���! �

6 �54 ( �!0 : V
As, above, we will record the probability & '  , set
�4" � 1 � � � �#)\� � B and renormalize the probabilities by
dividing by &
'  .� For the root R , we marginalize as above. However,
we do not need to set � " � R\� � ��)%� to B and do normal-
ization. In essence, �4" � R&� � �#)\� is the probability that a
compatible instance in the original has no object sat-
isfying the path expression of the ancestor projection
and, as a result, only the root object is returned.

The process of update of I�,&- 8 is the same for all non-leaf
objects: for an object 1 � and an edge label W76 ,

8�9;:=< y 6��?>^A!@ A : V @7B < CEDGF��	H� & ���!I � s.t. J & ���!I � � �K�ML >
6
number of

objects in N that have edge label
@�A :

8�9;:=< y 6��?>^A!@ A : V O B < C%PRQ��	H� & ���!I � s.t. J & ���!I � � �K�ML >
6
number of

objects in N that have edge label
@�A :

6.2 Probabilistic Point Queries

In this section, we will describe an algorithm to compute
the probability that an object exists satisfying some con-
straints on the path to the object.

To begin, we consider computing the probability of a
simple object chain. To compute the probability of a simple
object chain IG� R\N 1 � N 1 � N9N�N9N�N 1 � , we consider all possible
ways that the chain can be achieved:

576�� :=< ��1S ����� �GT �*) �US � �1S
� 6�V : 6�� g;:5W ��YX �#�!� ����S �*) �!X � �YX

� 6�� g+: 6���Z :
WRX�X�X[W ��\ �#��� ���Y �] S �7) �! � �Y 

� 6�� l 2 g+: 6�� l :

Next we consider probabilistic point queries, which al-
low us to compute the probability that an object satisfies a
path expression. This kind of query can be used to an-
swer the last situation in Section 2: we want to know the
probability that a particular author exists.

Definition 6.1 Given a path expression � and an object 1 in
a probabilistic instance, a probabilistic point query returns
the probability that 1 � � in a compatible instance.
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Here we assume that 1�� � in the probabilistic instance,
otherwise it is obvious that the probability must be zero.
First, let us define the path ancestors of 1 as all 1 ’s ances-
tors such that for every such ancestor 1�� , there exist a path
identical to the path expression � from the root to 1�� then
to 1 . We notice that if we extract only the object 1 and its
path ancestors from the probabilistic instance, and use the
same method described in the previous section to calculate&�� , then &�� will be the answer to this problem. The reason
is that the root of the result of the ancestor projection on a
compatible instance will have a child if and only if there is
some object in that compatible instance satisfying the path
expression. Here, because we only keep 1 and its path an-
cestors, the root of the result of the ancestor projection on a
compatible instance will have a child if and only if 1 in that
compatible instance satisfies the path expression � . Recall
the meaning of & � is that, given that R exists in a compati-
ble instance (which is true always), R still has a child that
should exist after the ancestor projection on that compatible
instance, so & � also gives the probability that 1 satisfies � .

An extension to this problem is to find the probability
that there exists some object satisfying a given path expres-
sion. We can solve it by keeping all objects satisfying the
path expression in the probabilistic instance and their path
ancestors and calculate &�� as the answer.

7 � � ��� Experiments

7.1 Experimental Design

We have implemented a prototype system in C on a Dell
PowerEdge with 1.13 Ghz PIII processors, 4GB RAM run-
ning Linux. We generated probabilistic instances as bal-
anced trees with every non-leaf nodes having the same num-
ber of children. Probabilistic instances were generated with
the depth (of the tree) ranging from 3 to 9 and the branch-
ing factor (the number of children of each non-leaf node)
ranging from 2 to 8. We assume that there is no cardinality
constraint, so the total number of entries in a local interpre-
tation for each non-leaf object is T � where E is the branching
factor. There are two kinds of random labeling of the edges.
In the same label (or SL) labeling, all children of the same
parent have the same labels (shown as SL in the figures).
The fully random (or FR) labeling assigns random labels
to all children of the same parent. We evaluated the per-
formance of ancestor projection and selection. We did not
evaluate the Cartesian product because it only involves the
update of the roots, whose running time is very short and
independent of the the size of the instances.

In this paper we include graphs of total query time and
the time required to update the local interpretation ( � ). The
total query time is the sum of the time to make a copy of the
input instance, the time to locate objects satisfying a path

expression (and the object id of the object to be selected in
the case of selection operation), the time to update the struc-
ture of the instance (for ancestor projection only), the time
to update the local interpretation, and the time to write the
resulting instance onto a disk. For each depth, each branch-
ing factor and each operation, we generated 10 instances.
For each instance, we kept track of labels used by edges of
objects in each depth and generated 10 random queries that
returned results not only consisting of a root. For example,
in an instance of depth 2 where the edges connecting objects
of depth 1 to their parents have labels from the set �4< ��E6) and
the edges connecting objects of depth 2 to their parents have
labels from the set ��I\��0Z) , the path expression of an ancestor
projection query generated has the form R\N > � N > � where R is
the root id, > � � �4< ��E6) and > � �V��I\��0Z) . We accepted this
query in the performance measurement in our experiment
only if there were objects satisfying the path expression of
this query. For each selection query, we generated a path
expression � (in the same way) and similarly found a set" H4W � EGF of objects satisfying the path expression. The selec-
tion queries used have the form �@� 1 where 1 is an object
id selected randomly from

" H4W � EGF . In our experiments, we
only consider single path expressions as defined in Defini-
tion 5.1. Besides, we set the length of the query (the length
of the path expression) equal to the depth of the instance be-
cause, according to the definition of ancestor projection and
selection, the objects whose depth exceeds the length of the
query will not be considered and will not affect the query
results and the local interpretation of such objects does not
need updating. For each combination of depth and branch-
ing factor, we took the average of 100 such queries.

7.2 Performance results

Figure 7 (a) and (b) show the total query processing time
and the time of updating � in an ancestor projection. By
comparing the two graphs, we can see that the time of up-
dating � dominates the total query processing time. Fig-
ure 7 (b) shows that the time to update is linear to the num-
ber of objects, which can be explained by the fact that � � 1&�
is updated only once for each object 1 . Recall that the time
to propagate probabilities from children of an object 1 to 1
is quadratic in the size of � � 1&� . When we fix the number
of objects, we can see from Figure 7 (b) that the time in-
creases by a multiple less than 16 when the branching factor
increases by 2, i.e. the number of entries in � � 1&� is multi-
plied by 4. Besides, under the setting of having the same
labels for all children of the same parent, the time is longer
than the other setting. One possible reason is that in the
former setting, there is a higher chance that more objects
are located by the path expression, and so there are more
objects to be kept whose local interpretations are to be up-
dated. The final note is that the updating time for T	�
�OU	� �
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Figure 7: (a) Total query time of ancestor projection, (b) update local interpretation time of ancestor projection and (c) total query time of
selection for instances of sizes ranging from 100 to 100000, branching factors ranging from 2 to 8 and two different labeling schemes (SL
= same labels for children of the same parent; otherswise, all random labels).

objects and branch factor 8 SL (the top rightmost point) is
S�BZN � s, which seems to be long. However, it is reasonable
after considering the fact that about �&B B - U&B B2B objects are
kept and about T$! B2B B - T&B2B B B2B � � 1&� entries are processed.

Figure 7 (c) shows the total query processing time for se-
lection. The result of selection is different from that of an-
cestor projection as the time to write the result onto the disk
dominates the total query processing time (the time of up-
dating � only involves less than 0.001 second). The reason
is that the structure of the resulting instance does not change
after selection. Hence, the amount of data to be written is
much larger than the number of objects whose � � 1&� needs
to be updated (the number is the same as the depth). The
total time is linear in the number of objects and linear in the
number of entries in � � 1&� of each object 1 . The quantity
of data to be written is independent of whether SL or FR
labelings are used.

8 Related Work

ProTDB proposed by Nierman and Jagadish[19] is sim-
ilar in spirit to our model, however there are a few im-
portant differences. In ProTDB, independent probabilities
are assigned to each individual child of an object; � ���8X
supports arbitrary distributions over sets of children. Fur-
thermore, dependencies are required to be tree-structured
in ProTDB, whereas � ���8X allows arbitrary acyclic depen-
dency models. Thus � ���8X data model subsumes ProTDB
data model. In addition, here we prove that the semantics
of � ���8X are probabilistically coherent. Another impor-
tant difference is the queries supported. There is no direct
mapping among our algebra and their query language. For
example, in their conjunctive query, given a query pattern
tree, they return a set of subtrees (with some modified node
probabilities) from the given instance, each with a global
probability. There is no direct mapping between their con-
junctive query and our ancestor projection because they find

subtrees matching the pattern tree, while we use a path ex-
pression. Each of their subtrees is restricted to match the
query pattern tree and has a fixed structure while our output
is a probabilistic instance which implicitly includes many
possible structures.

The work of Dekhtyar et al.[9] was the first to deal with
probabilities and semistructured data. It appears to be sim-
ilar to �����8X but in fact it is quite different. They intro-
duce a semistructured model to allow us to use an object
(semistructured probabilistic object or SPO) to represent the
probability table of one or more random variables, the ex-
tended context and the extended conditionals. An SPO it-
self can be represented in a semistructured way, but its main
body is just a flat table. It cannot show the semistructured
relationship among variables. In contrast, our model is
based on the widely used model OEM[20], which allows
data to be represented in a truly semistructured manner. We
modify the syntax and semantics of the model by introduc-
ing cardinality and object probability functions to demon-
strate the uncertainty of the number and the identity of ob-
jects existing in possible worlds. Every possible world is
a semistructured instance compatible with the probabilistic
instance. The representation of a possible world (semistruc-
tured instance) is the same as the one widely accepted nowa-
days. However, the model of Dekhtyar et al. cannot do this.
Their model also requires random variables to have distinct
variable names (or edge labels) (in our model, they are the
children connected to their parents with the same edge la-
bel). Consequently, their model cannot allow two or more
variables with the same variable names (no matter their val-
ues are the same or different) in a single possible world.
Their model also cannot capture the uncertainty of cardinal-
ity. On the other hand, our model can represent their table.
For each random variable, define a set of children (with the
possible variable values) connected to their parent with the
same edge label (set as the variable name). The cardinal-
ity associates with the parent object with each label is set
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to 5#S#��S�@ so that each random variable can have exactly one
value in each possible world.

XPath[22] and XQuery[23] are languages that use path
expressions (defined in XPath) to extract objects. SAL [4]
and TAX [15] are two algebras for semistructured data.
The reason that we cannot use XPath, Xquery and SAL di-
rectly is that the original parent-children relationships and
probabilities associated with them cannot be kept directly in
the results since individual objects are selected during the
process. However, our algebra uses the well-defined path
expressions as a tool to locate the objects we are interested
and manipulates the graph structure of semistructured data
directly. On the other hand, TAX uses a pattern tree to ex-
tract subsets of nodes (called witness trees), one for each
embedding of the pattern tree in an input tree (instance).
The reason that we cannot use theirs directly is the fixed
structure of the result, e.g., fixed number of children, which
restricts the representation of the uncertainty in cardinality.

9 Conclusions

We have presented a new probabilistic semistructured
data model, given semantics for the model and proven that
the semantics are probabilistically coherent. We have pre-
sented an algebra for the data model. The algebra has some
interesting differences from existing XML algebras. We
have shown how queries can be answered efficiently in our
system PXML.

The marriage of semistructured model with probabilistic
models is a natural pairing. It supports uncertainty not only
over the schema but also over the instance. This is partic-
ularly useful in the processing of complex, noisy data that
abounds in real world domains. Our future work includes
extending our model to allow cycles.
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