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Abstract

We introduce the new notion of XML Stream
Attribute Grammars (XSAGs). XSAGs are
the first scalable query language for XML
streams (running strictly in linear time with
bounded memory consumption independent of
the size of the stream) that allows for actual
data transformations rather than just docu-
ment filtering. XSAGs are also relatively easy
to use for humans. Moreover, the XSAG for-
malism provides a strong intuition for which
queries can or cannot be processed scalably
on streams. We introduce XSAGs together
with the necessary language-theoretic machin-
ery, study their theoretical properties such as
their expressiveness and complexity, and dis-
cuss their implementation.

1 Introduction

In recent years, XML has become a standard format
for document exchange and now seems to develop into
a preeminent representation language for streaming
data as well. This development calls for flexible query
languages for processing streams which support data
transformations.

In [11, 14, 6], fragments of the standard XML Query
language [15] are evaluated on XML streams. These
fragments tend to support powerful data transforma-
tions, with the consequence that query processing nei-
ther scales in terms of runtime nor memory consump-
tion. Indeed, in these works, memory buffers are re-
quired that can grow arbitrarily large, depending on
the amount of data communicated via the stream.

This problem is due to the nature of XML Query,
which renders it ill-suited for stream processing: Fea-
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tures such as nested for-loops with transitive paths
(e.g., using the descendant axis), which may lead to a
nonlinearly-sized output, and nonlocal computations
such as joins and the reordering and sorting of data
cannot be handled scalably on streams. In addition,
the syntax of XML Query makes it difficult to tell for
a user whether a query can — at least in principle — be
evaluated scalably, in linear time using little memory.

Query languages that require unbounded memory
buffers constitute a scalability issue on streams and
are not in the spirit of the database community’s quest
for tailored formalisms that provide the appropriate
tradeoffs between expressiveness and complexity for
the data management challenge at hand.

XML streams by definition may be wvery long, or
should even be assumed to be infinite. For query pro-
cessing to be feasible on streams, there is a need for
special-purpose query languages and evaluation algo-
rithms which scale to streams, i.e.,

(a) which can be evaluated strictly in linear time in
the size of the input,

(b) which work in the streaming fashion, by one linear
forward scan of the data, and

(¢) for which, at any time during query evaluation,
memory consumption is bounded!.

Among the models of computation that allow for
better control of complexity than languages such
as XML Query, there are various forms of au-
tomata/transducers and certain attribute grammars.
The former are, however, unsuitable as query lan-
guages used by humans because their specifications

1Note that a stack of memory proportional to the maximum
depth of the XML tree is necessary for even the most basic
sequential navigation and parsing tasks (see e.g. [7, 9]). To
be precise, in (c) we thus call for memory consumption that is
bounded w.r.t. the length of the stream but not the depth of
the XML tree (an indication of its structural complexity). XML
trees tend to be very shallow but wide, therefore such a stack is
not considered a bottleneck to scalability.



tend to be large, technical, and hard to read. The
latter approach is developed in the present paper.

Attribute Grammars for Stream Processing

In this work, we develop and investigate a formal-
ism for processing XML streams called XML Stream
Attribute Grammars (XSAGs), a new class of at-
tribute grammars specifically designed for scalable
XML stream processing. XSAGs can be evaluated
strictly in linear time in streaming fashion, consum-
ing only a stack of memory bounded by the depth of
the XML tree being streamed. Thus, XSAGs satisfy
our desiderata (a) through (c).

XSAGs are based on extended regular tree gram-
mars, i.e. regular tree grammars in which the right-
hand sides of productions may contain regular expres-
sions, allowing to specify nodes in the parse tree that
have an unbounded number of children. Extended reg-
ular tree grammars are thus well-suited for specifying
classes of unranked trees denoting XML documents.
We assume that extended regular tree grammars are
often available for XML streams in the dialect of Doc-
ument Type Definitions (DTDs). This adds to the
relevance of the present formalism.

An XSAG is obtained by annotating a given ex-
tended regular tree grammar with attribution func-
tions that describe the output to be produced from the
input stream. In the tradition of L-attributed gram-
mars [1], XSAGs are assumed to perform a single scan
of the XML stream, which amounts to effecting a single
depth-first left-to right traversal of the document tree.
Also in the tradition of L-attributed grammars, right-
hand sides of productions can be annotated with two
attribution functions, one — placed at the beginning
of the right-hand side — that is executed when reach-
ing the opening tag of a node in the XML document
(or equivalently, when descending into a subtree), and
the second — placed at the end of the right-hand side
— which is executed when reaching the corresponding
closing tag (or, equivalently, when returning from the
depth-first-traversal of the subtree).

Example 1.1 Consider the extended regular tree
grammar G = (Nt, T, P, bib) with nonterminals

Nt = {bib, book, article, title, author},
start nonterminal bib, terminals
T = {bib, book, article, title, author, PCDATA},

and the productions P

bib = bib((book U article)™)
book ::= book(title.author.author™)
article = article(title.author.author™)
title = title(PCDATA)
author author(PCDATA)

which defines an XML bibliography database.
By changing the first production to

bib ::= { ECHO} bib((book U article)™)

we obtain an XSAG that simply echoes the input
stream. Indeed, the start production matches the root
node of the document, and FCHO writes the entire
subtree of the current node to the output as XML.

If we are instead only interested in books arriving on
the stream, we can use the XSAG obtained by chang-
ing the bib and book productions to

bib = {print (books)}
bib ((book U article)*)
{print (/books)}
book = {ECHO} book(title.author.author™)

Here we apply ECHO to the “book” subtrees, but not
to articles. We output the opening and closing tags of
the root node explicitly, and label the root node of the
output produced by this XSAG “books”, rather than
“bib”. O

Based on the basic notion of XSAGs (bXSAGs)
exemplified so far, we introduce the easy XSAGs
(yXSAGs). These allow to annotate the regular ex-
pressions inside productions with attribution functions
as well, which adds to the flexibility of the formalism.

Example 1.2 The yXSAG with production

article ::= article({print (article)}
(({ ECHO} title).
({print (authors); ECHO}
(author.author™)

{print (/authors)}))
{print (/article)})

outputs articles basically as they arrive on the stream,
but groups the authors of each article under a common
authors node. Here, the second appearance of FECHO
in the production applies to the tree region matched
by the regular expression author.author”, i.e., to the
subtrees below article nodes that are rooted by author
nodes. 0

Being attribute grammars, bXSAGs and yXSAGs
of course support attributes. In order to assure scala-
bility in the strictest sense, we require that attributes
range over a finite domain fixed with the XSAG.

Example 1.3 Assume that our grammar assures that
books in addition have a year of publication as a first
child:

book = book(year.title.author.author*)
year = year(PCDATA)

Then, for instance, the yXSAG



bib ::= {print (books)}
bib((book U article)*)
{print (/books)}
book ::= book (({ MATCH(“2003”,c)} year).
({if ¢ = true then
begin
print (book); ECHO
end}
(title. author.author™)
{if ¢ = true then print (/book)}))

outputs books whose year of publication is 2003 with
their title and author children, but without the years.

In this example yXSAG, we use a boolean-valued
condition attribute? ¢ whose value is set to true by
MATCH if the string value of the year child of a book
node matches “2003”, otherwise to false.® This condi-
tion attribute is passed on through the document tree
during its traversal. Just before we first visit the part
of the tree below v that matches the regular expression
title. author.author” (i.e., the list of subtrees rooted by
children of v that match the regular expression), if the
value of attribute ¢ is “true”, we output the opening
tag (book) and echo the tree region matching that reg-
ular expression. On leaving the tree region, if c is true,
we output the closing tag (/book).

Note that this yXSAG is equivalent to XML Query

books
~<{ for $; in //book where $z/year = 2003

return (/book) {$z/title} {$z/author} (/book) }
(/books)

on documents conforming to our grammar. ]

Attribute grammars are well known in the field of
compilers and have recently been revisited in the con-
text of XML, for instance for grammar-directed XML
publishing [3, 2]. Some of their theory relevant in the
context of structured documents has been studied in
[13, 12].

Our emphasis is on designing a practical formalism
for query processing that is relatively easy to use. At-
tribute grammars are widely agreed to carry a strong
intuition for specifying syntax-directed translations.
In our setting, they provide a metaphor for strictly
linear-time one-pass XML transformations that can be
grasped very intuitively. This renders it relatively easy
for a user to recognize or design queries which can be
executed (scalably) on a stream, even if this intuition
is paid for by our formalism being more operational
than languages such as XML Query. While ease of use

2Note that in the technical sections of this paper, we will use
a somewhat more explicit syntax when employing attributes (see
e.g. Example 3.6).

3A MATCH(p, c) command applied to a tree region matches
a regular expression p against the character text encountered
while traversing the tree region. That is, when MATCH is used
on entering a certain tree region — here, that of the year node —
the value of attribute c is assigned upon leaving the tree region.

cannot be conclusively asserted based only on our own
observations and the examples we provide, alternative
formalisms such as deterministic pushdown transduc-
ers (DPDTs) are unsuitable as query languages to be
used by humans; Query processors for languages such
as XML Query, on the other hand, do not scale to
streams. We can therefore argue that XSAGs achieve
our goal of relative ease of use. Already bXSAGs
are much more practical than DPDTs. yXSAGs per-
mit very convenient and elegant nested attributions,
which, as can be seen in Example 1.2 and others
throughout the paper, allow to specify many interest-
ing data transformations conveniently.

Contributions

The technical contributions of this paper are as follows.

e We examine the framework of extended regular
tree grammars and craft grammar classes appro-
priate for attribution and stream processing.

e In order to be able to characterize yXSAGs prop-
erly, we develop the new notion of strongly one-
unambiguous regular expressions, as well as some
of its theory. These expressions are precisely those
for which the parse tree of a word (analogously
to the derivation tree of a grammar) can be un-
ambiguously constructed online, with just a one-
symbol lookahead, while processing the stream.

yXSAGs allow for attributions to be nested inside
regular expressions by only permitting strongly
one-unambiguous regular expressions in the right-
hand sides of productions.

e We introduce and formally define our two notions
of attribute grammars, bXSAGs and yXSAGs,
and compare them with respect to usability.

e We introduce XML-DPDTS, deterministic push-
down transducers with a natural stack discipline
that assures that the size of the stack remains
strictly proportional to the depth of the XML tree
and which can only accept well-formed XML doc-
uments. XML-DPDTs in a sense capture the intu-
ition of scalable XML stream processing and serve
as an expressiveness yardstick for XSAGs.

e We show that both bXSAGs and yXSAGs are
precisely as expressive as XML-DPDTs. XSAGs
provide the same quasi-optimal trade-off be-
tween expressiveness and evaluation cost as do
XML-DPDT5.

e Finally, we study the complexity of XSAG query
evaluation and their implementation.

The structure of this paper basically follows the or-
der of contributions described above.



2 Regular Tree Grammars

Let Tag be a set of node labels (“tags”) and let Char be
a set of characters. An extended regular tree grammar
is a grammar G = (Nt,T, P, s) where

1. Nt is a set of nonterminals,
2. T = TagU Char is a set of terminals,

3. P is a set of productions p ::= t(p) where p € Nt,
t € T, and p is a regular expression over alphabet
Nt such that if ¢ € Char then p = ¢, and

4. s € Nt is the start production.

We assume the standard meaning of grammars and
their derivations for which we refer to [8] for basic and
to [10] for extended grammars.

Extended regular tree grammars (and DTDs, which
are a dialect of extended regular tree grammars) are a
convenient way to specify a class of unranked labeled
trees and thus XML documents.

Let Char = {c1,...,¢n}. As a shortcut, we define
the regular expression macro

PCDATA := (¢} U---UCd),)*

which, using new nonterminals ¢}, ..., ¢}, and produc-
tions ¢} == ¢;(¢) for each 1 < i < n, can be used just
like a terminal in right-hand sides of grammar pro-
ductions. PCDATA accepts all character strings. As
a further notational convenience, we will allow our-
selves to be somewhat imprecise below whenever we
only use PCDATA, but no characters, in our gram-
mar definitions. Then we will list “PCDATA” among

the terminals and will keep the nonterminals ¢/, ..., ¢,
unmentioned.
Given a production n ::= t(p) of an extended regu-

lar tree grammar, let 7(p) denote the regular expres-
sion in which each nonterminal n’ with production
n' = t/(p') occurring in p is replaced by the termi-
nal (tag or character) t'.

Each extended regular tree grammar can be alter-
natively considered as an extended context-free word
grammar (CFG), which is obtained by simply rewrit-
ing each right-hand side tag(p) into {tag)p(/tag). In
such a CFG, the enclosing start- and end-tags act
as determinizing guards, rendering the CFG deter-
ministic (at least if 7(p) is unambiguous). The rele-
vance of this stems from the fact that the deterministic
context-free languages are precisely those recognizable
by the deterministic pushdown automata (DPDA, see
e.g. [8]). These DPDAs run comfortably on streams re-
quiring only a stack of memory bounded by the depth
of the input tree. It follows that we can validate all ex-
tended regular tree grammars (and thus DTDs, which
are special regular tree grammars) on streams using
only the inexpensive DPDA model.

This degree of determinism is sufficient for tree
recognition on streams but not so for the evaluation of

attribute grammars. There, we need to be able to un-
ambiguously refer to the atomic symbols (from NUT)
in the regular expressions p to be able to access or
assign attributes. In extended attribute grammars, a
straightforward solution [12] is to require regular ex-
pressions to be unambiguous.

Example 2.1 Consider the grammar

bib = bib((book; U books)™)
book; = book(p)
books = book(p)

where p is some regular expression. The regular ex-
pression (book; U books)* is unambiguous, but

T(booky U books)*) = (book U book)*

is not. Therefore, when considering the tags of the
children of the root “bib” node, we cannot determine
where to apply which of the two “book” productions
with their possibly different attributions. (]

We cannot look ahead in the stream beyond a non-
terminal (which may stand for a large subtree that we
do not want to buffer) when parsing the input. Thus,
we will require the stronger notion of one-unambiguity
for regular expressions 7(p). That is, we will require
that 7(p) can be unambiguously parsed with just one
symbol of lookahead.

2.1 One-unambiguity and TDLL(1)

By a marking of a regular expression p over alphabet
3, we denote a regular expression p’ such that each
occurrence of an atomic symbol in p is replaced by the
symbol with its position among the atomic symbols of
p added as subscript. That is, the i-th occurrence of
a symbol a € ¥ in p is replaced by a;. For instance,
the marking of (a U b)*.a.a* is (a1 U b2)*.as.a}. The
reverse of a marking (indicated by #) is obtained by
dropping the subscripts.

Let p be a regular expression, p’ its marking, and
3’ the marked alphabet used by p’. Then, p is called
one-ambiguous iff there are words u, v, w over ¥’ and
symbols z,y € ¥’ such that uzv, uyw € L(p'),  # y,
and z# = y#. A regular expression is called one-
unambiguous if it is not one-ambiguous.

Example 2.2 Consider the regular expression p =
a*.a and its marking p’ = af.az. Let u = a1, © = aq,
y = a1, v =€ and w = ag. Clearly, uzv = aj.a2
and uyw = aj.a;.ae are both words of L(p), thus p
is one-ambiguous. On the other hand, the equivalent
regular expression a.a* is one-unambiguous. O

Definition 2.3 ([10]) A TDLL(1)-Grammar is an
extended regular tree grammar in which for each regu-
lar expression p in the right-hand side of a production,
7(p) is one-unambiguous. t
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Figure 1: Parse trees of regular expressions a* Ub* (a)
and a.a® (b) with nodes annotated with markings.

Example 2.4 The grammar of Example 1.1 is
TDLL(1). On the other hand, since the grammar of
Example 2.1 contains a regular expression p such that
7(p) is not even unambiguous, that grammar is not
TDLL(1). 0

Remark 2.5 (One-unambiguity in DTDs) For
XML elements that exclusively have elements as
children (but no character data), the W3C recom-
mendation [4]* explicitly requires a one-unambiguous
content model (that is, right-hand side regular expres-
sion). As mentioned in Appendix E of [4], this is to
assure compatibility with SGML.

Productions defining elements with mixed content
(also containing character data) must be constructed
according to either the pattern

ng := (PCDATA Uny U---Unpy)*

or ng = PCDATA (where ng,...,n, are DTD
element names, i.e., nonterminals).  Clearly, all
regular expressions such constructed are also one-
unambiguous.

Thus, since DTDs also contain at most one produc-
tion n ::= t(p) for each “element” ¢ (and thus if p is
one-unambiguous, 7(p) is as well), DTDs are TDLL(1)
grammars (see also [10]). O

2.2 Strong One-unambiguity and STDLL(1)

One-unambiguity and TDLL(1) grammars allow us to
use attributed regular tree grammars on XML streams.
However, as we will show below, the ability to add at-
tribution functions into the regular expressions at the
right-hand sides of productions will allow us to write
many practical queries in a much more user-friendly
fashion. Our machinery for achieving this is the no-
tion of strongly one-unambiguous regular expressions.

By a bracketing of a regular expression p, we
intuitively refer to a marking of the nodes in the
parse tree of p using distinct indexes. Here, we as-
sume that the indexes are assigned as by a depth-
first left-to-right traversal of the parse tree, that
is, in document order (see Figure 1 for two exam-
ples). The bracketing pll is obtained by inductively
mapping each subexpression 7 of p with index ¢ to
[;-m.]i. Thus, a bracketing is a regular expression

4Sections 3.2.1, 3.2.2, and Appendix E.

over the alphabet ¥ UT, where I' = {[;,]; | i €
{1,2,3,...}}. (We assume ¥ and T disjoint.) For
example, [1(([2([3&]3)*]2)U([4([51)]5)*]4))]1 is the
bracketing of a*Ub* and [1(([20,]2)([3([40,]4)*]3))]1
is the bracketing of a.a*.

Definition 2.6 Let p be a regular expression and pl
be its bracketing. A regular expression p is called
strongly one-unambiguous iff there do not exist words
w,v,w over L, UT', words a # (8 over I', and a sym-
bol z € ¥ such that uazv, ufzw € L(pl) or ua,uf €
L(pl). O

Example 2.7 The regular expression a* U b*
(see Figure 1 (a)) is one-unambiguous but not
strongly one-unambiguous. Consider the bracketing

[1.(([2.([3.&.]3)*.]2) U ([4([51)]5)*]4))]1 The empty
word can be matched in two possible ways, namely

as u.a = [1.[2.]2.]1 and as w.f = [1.[4.]a.]1- The
equivalent regular expression a.a® U b* is strongly
one-unambiguous. O

Example 2.8 The regular expression (a*)* with the
bracketing [1.([2.([3.a.]3)*.]2)*.]1 is not strongly one-
unambiguous. For instance, for the word a.a,
there are the bracketings [1.[2.[3.a.]3.[3.a.]3.]2.]1 and
[1.[2.[3.@.]3.]2.[2.[3.@.]3.]2.]1 (u = [1.[2.[3.(17 « :]3.[3,
B =lz]o.[2.[3, x = a, v =w =[3.]2.]1). O

Definition 2.9 An STDLL(1) Grammar is an ex-
tended regular tree grammar in which for each regular
expression p in the right-hand side of a production,
7(p) is strongly one-unambiguous. (I

Obviously, all STDLL(1)
TDLL(1) grammars.

grammars are also

Remark 2.10 We suspect that most practical DTDs
use only strongly one-unambiguous regular expres-
sions in productions and are thus STDLL(1) gram-
mars. Strong one-unambiguity is only a short way
from one-unambiguity, and many of the most widely
used forms of regular expressions are actually strongly
one-unambiguous (e.g., regular expressions of the form
(e U---Uepm)*, where ey, ..., e, are element names).
In particular, the syntactic restriction on mixed-
content models mentioned in Remark 2.5 ensures that
such regular expressions are guaranteed to be strongly
one-unambiguous. O

Throughout the paper, we will assume a generalized
notion of parse trees for STDLL(1) grammars, which
reflects the structure of the regular expressions occur-
ring in the grammars. For TDLL(1) grammars, the
parse trees are simply the usual document trees asso-
ciated to XML documents. However, for STDLL(1)
grammars, the parse trees incorporate the derivation
trees of the regular expressions occurring in produc-
tions in a natural way, which we illustrate in the next
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Figure 2: Parse trees of Example 2.11.

example. Notably, in STDLL(1) parse trees, nodes la-
beled “U” have precisely one, nodes labeled “.” have
precisely two, and nodes labeled “+” may have an ar-
bitrary number of children (possibly none).

Example 2.11 The extended regular tree grammar
G of Example 1.1 is an STDLL(1) grammar. Consider
the XML document

(bib) (article)

(title/) (author/) (author/) (author/)

(/article) (/bib)
Using G as a TDLL(1) grammar, the document parses
into the tree depicted in Figure 2 (a). To be precise,

we assume here that the operation “.” associates to
the right and that the production

article ::= article(title. author. author*)
of G is thus equivalent to
article ::= article(title.(author.author”)).

The parse tree for G viewed as an STDLL(1) grammar
is shown in Figure 2 (b). O

3 XML Stream Attribute Grammars

We are now in the position to define our main at-
tribute grammar formalism, XML Stream Attribute
Grammars (XSAGs).

3.1 XSAGs in the Abstract

Definition 3.1 (Syntax) Let Att = {a1,...,ax} be
a set of attributes and Dom be a finite set of domain
values (to invoke an alternative intuition, of states).

Let F7 denote the class of partial functions
fr : Dom* — DomF x string,
and let Fj; denote the partial functions
f1r : Dom®* — Dom" x string.

We will refer to the functions of F; and Fjj as attri-
bution functions. (We will introduce a language for
implementing these partial functions in Section 3.2).

A Dbasic XSAG (bXSAG) is an attributed extended
regular tree grammar G = (Nt, T, P, s) with nontermi-
nals Nt, terminals T = TagU Char, and productions
in P that each are of one of the four forms

nu=t(p) n = {1} t(p)

n = t(p) {fuy n = {fr} tlp) {fur}

where n € Nt, t € T, fr € Fr, fi1 € Fyp, and p is
either € or a regular expression over Nt such that 7(p)
is one-unambiguous.

The abstract syntax of an attributed regular expres-
sion over symbols ¥ can be specified by the EBNF

(tt{ﬁ FI ((}77)? aT@geIO ((({77 FII L£}77)?;

Y | aregex “.” aregex |

aregex =
aregezr, =
aregex “U’ aregex | aregex “*7.
An easy XSAG (yXSAG) is an attributed extended
regular tree grammar G = (Nt,T, P, s) where each
production in P is of one of the four forms

n = {fr} t(a)
n o= t(a) {fi} no={fr} () {fu}

where « is either € or an attributed regular expres-
sion over symbols Nt such that for the regular ex-
pression p obtained from « by removing the attribu-
tions (enclosed in curly braces), 7(p) is strongly one-
unambiguous.

n == t(a)

The main purpose of the grammar component of an
XSAG is to unambiguously map XML documents to
parse trees.” The only differences between bXSAGs
and yXSAGs are that the former use TDLL(1) gram-
mars while the latter use STDLL(1) grammars, and
that in yXSAGs, right-hand side regular expressions
may be attributed®

It remains to specify how our attribute grammars
are evaluated on such parse trees. Obviously, there is a
natural method of assigning the attribution functions
from F; and Fj to nodes of the parse tree. For the sake
of simplicity, we assume that each node v of the parse
tree is assigned two functions f} € Fy and f}; € Fyy

5However, for evaluating XSAGs it will not at any time be
necessary to maintain entire parse trees in memory.

6And indeed, precisely the restriction to STDLL(1) gram-
mars makes it safe to attribute regular expressions in XSAGs.



through the attribute grammar definition. Where this
has not been the case (because for a nonterminal of
an bXSAG resp. a right-hand side subexpression of
a yXSAG either the left or right attribution function
were not provided), the defaults are

filar,. ... ar) :=={a1,...,ak,¢€)

and

f})[(aJ?" '7a//€7ak+17' . 7a2k) = <a//€+17' "7a/2k7€>'

bXSAGs and yXSAGs are (attributed) extended
regular tree grammars. For such grammars, nodes of
the parse tree may have an arbitrary number of chil-
dren. When dealing with streams, we generally cannot
store the attribute values of all these children in mem-
ory. We thus have to introduce special restrictions
to be able to deal with streams on one hand and at
the same time assure ease of use and expressiveness to
cover practical queries on the other.

We define XSAGs as L-attributed grammars, i.e.,
attribute grammars whose attributes are evaluated by
a single depth-first left-to-right traversal of the doc-
ument tree. Each node v of the parse tree is visited
twice (the visits are referred to as I and II), (I) from
the previous sibling or the parent of v (if v has no pre-
vious sibling) and (IT) on returning from the rightmost
child of v.

Definition 3.2 (Semantics) Let qi € Dom be a
special “uninitialized” value. We evaluate an XSAG
on a parse tree T by a depth-first traversal of T in
which we compute each attribute a; € Att for each
node v as follows.

qL ... v is the root node
vo.out[1].a; . v is the first child
v.n[l].a; = of vg
vo.out[2].a; . v is the right
sibling of vg
v.out[l].a; . v has no children
van[2].a; == w.out[2].a; . w is the rightmost

child of v

In the first visit of node v, we compute

(v.out[1].a1, ... ,v.out[l].ax, o) :=
fi (v.in[1].aq, ..

and write ¢ to the stream. In the second, we compute

., v.in[1].ay)

(v.out[2].a1, ... ,v.0ut]2].ax,0) =
fir(v.in[l].aq, ..., v.in[1].ax,
v.in2].ay, ..., v.in[2].ay)

and write o to the stream. In case f} or f; is unde-
fined on its input, the evaluation terminates and the
input is rejected. 0

Even though this semantics definition may seem in-
volved, we believe that its application is natural; ex-
amples will be provided later on in this section.

f}“ f'Ul
/vl: bib N
vg: article v3: book v4: book
U U U, v, V. V.
1 ’ fH2 13 fH3 14 fH4

W

Figure 3: bXSAG parse tree and traversal of Exam-
ple 3.3.

3.2 Concrete XSAGs

We use a simple programming language for defining at-
tribution functions. This language is basically a frag-
ment of Pascal, comprising the following constructs:
(1) if-then-else statements, (2) blocks of multiple com-
mands starting with the keyword “begin” and ending
with “end”, (3) boolean formulas — using “and”, “or”,
and “not” — over equality conditions comparing two
r-values” (used in if-statements), (4) assignments of
r-values to l-values, (5) the keyword “reject” for ter-
minating the computation and rejecting the input, and
(6) “print” statements taking a constant string as ar-
gument.

We assume that all - and r-values range over the
same finite domain Dom. For (partial) functions in F7,

{out[l].a | a € Att}
{in[l].a | a € Att} U Dom

lvaly =

rvalp =
and for (partial) functions in Fpj,

{out[2].a | a € Att}
{in[1].a, in[2].a | a € Att} U Dom.

lvalH =
rvalyp =

As a default, attributes out[1].a (resp., out[2].a) that
do not appear on the left-hand side of an assignment
obtain the value in[1].a (resp., in[2].a).

Such a program defines functions in Fy resp. Fjy in
the obvious way, with the notable fact that the func-
tions are assumed undefined for inputs for which the
“reject” statement is called.

Example 3.3 Consider the bXSAG G with produc-
tions

bib = {print (bib)} bib((book U article)*)
{print (/bib)}
book ::= {if in[l].prev = qarticie then
print (book/);
out[1].prev := qpook } book(e)
article = {print (article/); out[1].prev := qarticie }

article(e)

"We follow the widely used convention of calling constructs of
our language that may appear on the right side of an assignment
r-values and and those that may appear on the left side of an
assignment l-values.



Attribute value

F before | after Output

i gL (bib)

Pl Qarticle | (article/)
f})]z Qarticle | Qarticle | €

1% | Qarticte | Qbook (book/)
f}}]?’ Qbook Gbook €

11)4 Gbook Gbook € (' ')
f}}; book book €
it | @vook | @voor | (/bib)

Table 1: Run of bXSAG G of Example 3.3.

G uses a single attribute prev that ranges over Dom =
{41, Qbooks Garticie and which is initialized with ¢, .
The grammar requires the input to consist of a dummy
bibliography database containing book and article
nodes without children. As output, the XSAG writes
a root node labeled “bib”, to which it assigns bach-
elor nodes labeled “book” and “article” as children,
filtering out books which are not right neighbors of
articles®.
The parse tree of XML document

(bib) (article/) (book/) (book/) {/bib)

is shown in Figure 3. Of course,

7t = {print (bib)}

F% = {print (/bib))

72 = {print (article/); out[1].prev := qarticie }
7 = Aif in[l].prev = garticie then print (book/);

out[1].prev i = Qbook}

Stated differently,

7t @ (x, (bib))
fit + @ (@, (/bib))
I — (Qarticte, (article/))
4 : (qbo‘)k’ <b00k/>) T = {Garticle
roEe { (qbook €) otherwise
Moreover, ”4 — f}/3 and
Tia fi f s () = (22,€),

i.e. is the default.

G is evaluated on the parse tree as shown in Ta-
ble 1. The four columns have the following meaning.
The first column shows which attribution function is
applied in the respective step. The second and third
columns show the value of our attribute prev before
and after the application of the attribution function,
respectively, and the rightmost column shows which

8This is a somewhat contrived example but illustrates a num-
ber of important points related to the evaluation of XSAGs.

output is produced and written to the output stream.
Clearly, G outputs

(bib) (article/) (book/) {(/bib)
and accepts its input. O

Example 3.4 We continue the previous example. Al-
ternatively, if we want to reject the strearn9 if two
books arrive in sequence, we define f; book o

{if in[1].prev = qarticie then
begin print (book/); out[l].prev:= qpoor end
else reject }

The meaning of this attribution function is

book . (qbook7 <b00k/>) ce T = (article
A e { undefined otherwise.

This new XSAG rejects the input of Example 3.3. O

3.3 Built-in Macros

For the convenient definition of queries using XSAGs,
we introduce three standard built-in macros, ECHO,
ECHO OFF, and MATCH. These are redundant with
the formalism presented so far, but allow to define
queries in a more concise way.

Echo and Echo Off

If macro EFCHO is used in an attribution function
(which must be of type Fr), the subtree of the parse
tree to which the attribution function applies is copied
to the output. Correspondingly, macro ECHO OFF
can be used to override ECHO and suppress the out-
put of certain XML subtrees.

To realize ECHO, we define a boolean attribute
echo € Att, initialized with false. For every produc-

tion {fr}t(p){fir},
e if t € Tag, we append

if 4n[1].echo = true then print (t)
to fr and
if 4n[1].echo = true then print (/t)
to fir.
e If t € Char we append
if in[1].echo = true then print t

to f].

9This could be alternatively achieved by modifying the gram-
mar rather than the attributions as done in this example, but
the goal here is to illustrate the use of the “reject” statement,
resp. partially undefined attribution functions.




e In both cases, we then append
out[2].echo := in[1].echo
to fr. '

e Moreover, occurrences of ECHO are replaced
by out[l].echo := true and occurrences of
ECHO OFF are replaced by out[1].echo := false.

Example 1.1 illustrates the use of the macro ECHO.
Below, we show an example that combines FCHO and
ECHO OFF.

Example 3.5 The bXSAG

bib = {ECHO} bib(book")
book = book(title. author.
({ECHO OFF} (author™)))
title = title(PCDATA)
author = author(PCDATA)
outputs books with their titles and first authors (drop-
ping all further authors). O

String Matching

Macro MATCH(p,c) matches the string value of an
XML node v (i.e., the string obtained by concatenat-
ing all the character data encountered in a document-
order traversall! of the subtree of v) against a regular
expression p, yielding true or false as a value for the
user-defined condition attribute c. MATCH may only
be used in attribution functions of type F;. The eval-
uation result becomes available in the corresponding
attribution function of type Fiy.

Example 3.6 We slightly extend Example 1.3. The
yXSAG production

book ::= book (({ MATCH(2003, ¢) }year).
({if in[1].c = true then
begin
print (book); ECHO
end}
(title. author.author™)
{if in[2].c = truethen
print (year)2003(/year)(/book)}))

selects those books for which child “year” has string
value “2003”; moreover, the year is output as the right-
most child of book, rather than as the leftmost as re-
quired for the input. (We omit productions defining
bib, year, title, and author, which are as in Exam-
ple 3.7.) O

MATCH can be easily implemented by compiling p
into a DFA and running it on the characters visited
while traversing a subtree.

10Thus, even though ECHO may be overshadowed by
ECHO OFF within a subtree, we may not accidentally create
malformed documents, as on leaving a node on which ECHO or
ECHO OFF is used, attribute echo is reset to its former value.

1 That is, a depth-first left-to-right traversal of the subtree.

3.4 DbXSAGs vs. yXSAGs

As we show in the next section, bXSAGs and yXSAGs
have the same expressive power. However, yXSAGs
are more convenient to use. In particular, it is often
necessary to introduce more attributes and more com-

plicated attribution functions to encode a given query
as a bXSAG than to encode it as a yXSAG.

Example 3.7 Consider the yXSAG with productions

bib ::= bib( {print (bib)} article” {print (/bib)} )
article ::= article(({print (article_short); ECHO}
(title. author.author™)
{print (/article_short)})
U
({print (article_long); ECHO}
(year.title.author.author™.pub)

{print (/articlelong)}))
title ::= title(PCDATA)
author ::= author(PCDATA)
year ::= year(PCDATA)
pub ::= pub(PCDATA)

Article entries can appear either in a short version with
title and authors only, or in a long version which also
contains a year and a publisher. In the former case,
article nodes are relabeled as article_short, and in the
latter case, article nodes are relabeled article_long.

The following bXSAG is equivalent to the above
yXSAG:

bib ::= bib( {print (bib)} article” {print (/bib)} )
article ::= {out[1].state := Gunknown }
article ( (title.author.author™) U
(year.title.author.author™ .pub))
{if in[2].state = qgport then
print (/article_short)
else if in[2].state = qony then
print (/article_long)}
title ::= {if in[1].state = qunknown then
begin out[1].state := qshort;
print (article_short) end; ECHO}
title(PCDATA)
author ::= { ECHO} author(PCDATA)
year ::= {if in[l1].state = qunknown then
begin out[1].state := qiong;
print (article_long) end; ECHO}
year(PCDATA)
pub := { ECHO} pub(PCDATA)



While there are other ways of encoding our query as a
bXSAG, it does not seam to be possible to represent
the query as a bXSAG without using attributes. [

It is easy to verify that bXSAGs equivalent to the
yXSAGs of Examples 1.2 and 3.6 are also much more
complicated.

4 Expressive Power of XSAGs

We introduce deterministic pushdown transducers
(DPDTs) as deterministic pushdown automata with
output which accept by empty stack. As with push-
down automata [8], the DPDTs accepting by empty
stack are equivalent to the DPDTs accepting by final
state.

Definition 4.1 (DPDT) A deterministic pushdown
transducer is a tuple

T = (Q, E7F7 Qv 67 q0, ZO)

where @) is a finite set of states, X, I', and 2 are the
alphabets for input tape, stack, and output tape re-
spectively, ¢ is the transition function

0:Qx (Z2U{e}) xT - Q x Q" xI',

qo € @ denotes the initial state, and Z; the initial
stack symbol.

We define a run of 7 by means of instantaneous
descriptions (IDs): An ID is a quadruple

(¢, w,a,0) € Q x T* x '™ x Q*,

where ¢ is a state, w a string of input symbols, «
a string of stack symbols, and o a string of output
symbols. We make a transition

(¢, aw, X, 0) F (¢, w, v, 00)

if 6(¢,a,X) = (¢’,0,7) where a € XU {e}, X € T,
occQ* and ¢ € Q.

Here, v € T'* is the string of stack symbols which
replace X on top of the stack. For v = ¢, the stack
is popped, whereas for v = X, the stack remains un-
changed. If v = Y X, then stack symbol Y is pushed
on top of X.

Let F* be the reflexive and transitive closure of I-.
T accepts by empty stack if

(q07 w, Z07 6) = (Qa €, € 0)

for w € ¥*,q € @, and o0 € Q*.
Two conditions must hold for 7 to be deterministic:

1. For each ¢ € Q and X € T, if §(qg,¢,X) is
nonempty, then §(g,a, X) is empty for all a € ¥;

2.Forno g € Q, X €T, and a € X U {e} does
0(g,a, X) contain more than one element. O

Definition 4.2 (Well-formedness) An XML docu-
ment is called well-formed iff it conforms to an ex-
tended regular tree grammar G = (Nt, T, P, s) where
the production for the start symbol is s = t(p),
t € Tag. 0

A well-formed document contains at least one ele-
ment (i.e. the root element) and has element start-tags
and end-tags properly nested within each other. Fur-
thermore, the first symbol in the document must be
the opening tag for the root node. An XML document
is malformed if it is not well-formed.

Definition 4.3 (XML-DPDT) Let input alphabet
Y = {{®),{/t) | t € Tag} U Char consist of match-
ing opening and closing tags and characters. An
XML-DPDT is a DPDT T = (Q,%,T,9,4,q0, Zo)
which rejects malformed XML documents and for
which the transition function 9 is restricted as follows:

§:Qx(BU{e)xT = Qx0* xT? d<2

e In the very first transition the initial stack symbol
Zy is replaced: 6(qo, (t), Zo) = (p,0,Y) for (t) €
Yope@,oceQ andY €T

e For all other configurations of ¢ € Q and X €
I, a symbol is only pushed on the stack when
an opening tag is read from the input stream:
3gq, (), X) = (p,o,YX) for (t) € &, p € Q,
ceQ andY eT.

e A symbol is only popped from the stack when a
closing tag is encountered in the input stream,
ie. 0(q,(/t), X) = (p,0,¢) for ¢,p € Q, (/t) € %,
X eT,and o € Q. O

The conditions required in the definition of
XML-DPDT are only natural in the context of XML
stream processing: The size of the stack is bounded by
the maximum depth of the incoming document tree.
Moreover, the input has to start with the root element
of the XML document being read. Due to acceptance
by empty stack, only well-formed XML-documents are
accepted.

Lemma 4.4 For each XML-DPDT with e-transitions
there exists an equivalent e-free XML-DPDT.

We call XSAG G and XML-DPDT T output-
equivalent if for any given input w, the outputs of
G and 7 are equal (denoted G(w) = T (w)). XSAG
G and XML-DPDT T are called equivalent if they
are output-equivalent and accept the same inputs, i.e.
L(G) = L(T).

Both bXSAGs and yXSAGs possess exactly the
same expressiveness as XML-DPDTs'2.

Theorem 4.5 For each bXSAG, there is an equiva-
lent XML-DPDT.

12Note, however, that there are bXSAGs that are no yXSAGs
and vice versa, so Theorems 4.5 and 4.7 are not redundant.




Theorem 4.6 For each XML-DPDT, there is an
equivalent XSAG which is both a bXSAG and a
yXSAG.

Theorem 4.7 For each yXSAG, there is an equiva-
lent XML-DPDT.

The lengthy proofs for these three theorems will be
provided in the long version of this paper.

5 Efficient Evaluation of XSAGs

The proofs of Theorems 4.5 and 4.7 are based on a
translation to DPDTs which, as a method for evaluat-
ing XSAGs, has the strong point that once the DPDT
has been created, the query evaluation time is in prin-
ciple independent of the size of the XSAG/DPDT and
only depends on the input data.

Corollary 5.1 An XSAG G can be evaluated on a tree
T in time O(f(|G|)+|T|) using only a stack of memory
of size O(depth(T)).

However, the DPDTs of the construction of the
proof of Theorem 4.5 are of size exponential in the
number k of attributes in the XSAG, i.e., f is O(2%).

The exponential-time compilation phase can be
avoided by using a simple hybrid evaluation method
in which the grammars (and in particular the regu-
lar expressions appearing in the grammar productions)
are compiled into transducers which however interpret
the attribution functions (rather than materializing
the graphs of the attribution functions as is done in
our proofs). Thus one obtains an XSAG evaluation
method which runs scalably on streams and which is
strictly polynomial in the size of the XSAG.

Theorem 5.2 A bXSAG G can be evaluated on a tree
T in time O(|G|? + |T| - |G|) using a stack of size
O(depth(T)).

Theorem 5.2 also makes use of the fact that DFAs
for one-unambiguous regular expressions can be com-
puted in polynomial (actually, quadratic) time'3 [5].

For yXSAGs, the construction of the proof of The-
orem 4.7 is in addition exponential in the maximum
depth of the parse trees of the regular expressions used
(which only depend on the XSAG). This can be re-
solved by pushing attributes onto the stack at yXSAG
regular expression nodes as well. The stack consump-
tion of course remains proportional to the depth of the
input tree.

The main technical challenge we have to deal with
when evaluating yXSAGs is the matching of attributed
regular expressions on the stream and the invocation
of attribution functions at the right time.

13This construction — that of the Glushkov automaton of a
regular expression — also provides a procedure for deciding one-
ambiguity with the same complexity. A regular expression is
known to be one-unambiguous precisely if its Glushkov automa-
ton is deterministic.

A finite-state transducer (FST) is an NFA with out-

. . L. a/w
put, which in each transition ¢ — ¢’ from state g to
¢’ on input symbol a outputs a fixed word w. A deter-
ministic finite-state transducer (DFT) is an FST that
is deterministic, i.e., which is a DFA if the output is

ignored and for which no two transitions ¢ oy q' and
a/w

q — ¢ exist such that v # w.
Below, in regular expressions of the form p.®, let ®
be a new end-marker symbol that does not occur in p.

Theorem 5.3 Let p be a reqular expression. Then,

there is an FST All(p) which

1. recognizes L(p.®),
2. is deterministic iff p is strongly one-unambiguous,

8. if p is strongly ome-unambiguous, outputs the
bracketing of word w for each w.® € L(p.®), and

4. can be computed in time O(|p|3).

Using the DFT construction of Theorem 5.3, the
preprocessing phase for yXSAGs takes time cubic in
the size of each of the productions.

Theorem 5.4 A yXSAG G can be evaluated on a tree
T in time O(|G]® + |T| - |G|) using a stack of size
O(depth(T)  |G]).

6 Discussion and Conclusions

The goal of this paper was to develop a framework for
query formulation which

1. satisfies our criteria for scalable query processing
on streams,

2. has a good and well-justified foundation, and

3. is user-friendly, i.e. allows to state many common
queries quickly and easily.

We can argue that XSAGs satisfy these three
desiderata.

(1) Each XSAG can be translated into a DPDT
with a stack discipline that assures that the size of the
stack remains proportional to the depth of the XML
tree. This is known to be the minimum amount of
memory required to do any meaningful (sequential)
processing of XML data [9]. Of course queries are
evaluated strictly in linear time.

(2) Throughout the paper, we have explained and
justified our design choices. Regular tree grammars
are a commonly accepted grammar formalism for XML
(as are DTDs, which are restricted regular tree gram-
mars). In the right-hand sides of the productions of
such grammars, we use regular expressions to be able
to parse nodes with an unbounded number of chil-
dren. Our restriction of these regular expressions to
strongly one-unambiguous ones in the case of yXSAGs
allows for precisely those expressions for which the
parse trees of words can be unambiguously generated



using a lookahead of only one symbol (a necessity in
stream processing). Having the regular expressions
inside grammar productions available for attribution
allows to conveniently define attribute grammars for
unranked trees, and to approach the usability of XML
Query with a formalism that allows for much better
control of complexity.

We have precisely characterized the expressive
power of XSAGs relative to deterministic pushdown
transducers.

Note that our formalism fully fits into the classical
framework of attribute grammars (and more precisely,
L-attributed grammars), even if we did not introduce,
say, the distinction between synthesized and inherited
attributes.

(3) A number of examples in this paper and our
experiences with many more demonstrate that XSAGs
are of practical value, and that they fill an important
void in the design space of tailored query languages.

Earlier in this paper, we defined XSAGs with at-
tributes ranging exclusively over a finite domain to
be able to assure scalability and memory bounds in
the strongest sense. However, it is desirable and often
justified to generalize this framework to make certain
uniformity assumptions and to allow for values from
an infinite domain. In the future, we plan to carry
out a more detailed study of conservative extensions
of our formalism with small buffers (using uniformity
assumptions for numbers, small strings, and small sub-
trees).
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