
Leak-o-meter: Finding the Leak and Beyond

Data Plumbers
∗

1 Introduction

Sweeney demonstrated in [6] how data from different databases could be collated to find out what
was meant to be private information. Miklau and Suciu [4] recently studied the following question
in an information theoretic setting: given a view V that is made public, does V disclose any
information about a query S the results of which one wants to keep a secret. The work provided an
exact characterization as to when a view is secure with respect to a confidential query. But what
maybe more desirable in a practical setting is a quantitative measure of how much information is
disclosed as opposed to whether or not any information is disclosed. Miklau and Suciu also propose
a measure of how much information does V “leak” with respect to S (we refer the reader to [4] for
the terminology):

leak(S, V) = sup
s,v

Pr[s ⊆ S(I)|v ⊆ V (I)] − Pr[s ⊆ S(I)]

Pr[s ⊆ S(I)]
. (1)

1.1 Contributions

In this work, we have come up with a definition of leak for the case when one is given a view V ,
a query S and a database instance D. We also give an efficient algorithm based on Monte-Carlo
sampling [2] that computes this leak for conjunctive queries (including joins).

2 Definition of Leak

Let us first examine the following variation of the leak in (1):

leak1(S, V) = sup
s,v

(Pr[s ⊆ S(I)|v ⊆ V (I)] − Pr[s ⊆ S(I)]). (2)

We note that this is the well known statistical distance [5] between the two distributions S|V and
S. We mention another interesting definition of leak in Section 6.

The problem we are tackling is different from the one considered in [4]. Miklau and Suciu defined
leakage with respect to any view answer v while in our case the view answer is known: v = V (D).
Further, we just consider boolean queries1, that is, the possible query answers are 0 and 1. Let pub

∗Ankur Jain (ankur@cs.washington.edu) and Atri Rudra (atri@cs.washington.edu)
1This is WLOG as in the open world model, any query has an equivalent boolean query.

1

denote Pr[S(I) = 1] and pvw denote Pr[S(I) = 1|V (I) = V (D)] where as in [4], the probabilities
are over database instances I. It is easy to see that in this case the following definition is equivalent
to (2):

leak(S, V,D) = pvw − pub (3)

3 Implementation

We first briefly mention the internal representation of a database in the tool. Note that in a schema
R(d1, · · · , dm) where each domain di is of size si, the total number of possible tuples is T =

∏m
i=1

si

and thus, all possible (non-empty) database instances can be indexed by a T bit number (which
ranges from 1 to 2T − 1). To complete the description of the encoding we need an ordering among
the tuples and we use the most obvious one2.

3.1 Exhaustive Search

As noted before, the basic task of the tool is to estimate the probabilities pub and pvw. The first
version of the tool tries to estimate these quantities by enumerating all possible database instances
D and checking on how many of those the query evaluates to true (this estimates pub). To calculate
pvw, we do an extra check to see if the database instance satisfies the view (in the open world
model), that is, we just count the number of database instances which yield the given view (denote
this latter set by Dv) and on which the query evaluates to true. The enumeration over all possible
databases is done by defining an iterator which goes over the encodings of all instances in D.

3.2 Monte Carlo Simulation

The exhaustive search method does not scale: we do not run into memory issues as we have a
compact representation of the database instances but it would take for ever to finish on even small
sized domains. The next version of the tool does sampling from both D and Dv and estimates pub

and pvw. Note that we are “sacrificing” accuracy for efficiency. We use a Monte Carlo simulation
[2] where the database instances in D and Dv are assumed to be distributed uniformly. The first
distribution is easy to generate: each tuple is assumed to be in a database instance with probability
1

2
. The uniform distribution on Dv is slightly more complicated because one has to ensure that

it has some tuples which would yield the view: this is done using an idea similar to the indexing
of database instances in the beginning of this section. We point out a small hack that we have
used: if a “large” number of tuples yield a given tuple in the view then choosing each of them
with probability 1

2
would give an error3 which would be smaller then the error of the Monte Carlo

simulation.

2A tuple (t1, · · · , tm) has “value”
∑m

i=1
ti

∏i−1

j=1
si (we assume that any ti is a value in [0, si − 1]). It is easy to see

that each tuple has an unique value.
3Note that for the database instance to be in Dv, atleast one of the tuples has to be in the database instance.

2

e p

50 1

13 2

23 3

57 3

99 4

Figure 1: The Database instance D

#runs leak pvw time (in secs)

100 0.5200 1.0 0

1000 0.5190 1.0 6

5000 0.4998 1.0 20

Figure 2: Leak-o-meter on S1

4 Results

In this section we will walk through three examples: one with large (or total) leak, one with partial
leak and one with no leak. Consider the following toy example: There is a schema Dir(e, p) where e

is the employee id (this domain size is assumed to be 100) and p is the phone number (this domain
size is 10). Now the company wants to publish the employee, phone pairs for a particular phone
say 1, that is, V (x, 1) : −Dir(x, 1). Figure 1 shows the database D.

We now consider the three queries S1() : −Dir(50, 1), S2() : −Dir(50, 9) and S3() : −Dir(50, 9), Dir(50, 1).
Noting that we generate database instances using the uniform distribution, it is easy to see that
the probabilities (pub, pvw) for the three queries are (1

2
, 1), (1

2
, 1

2
) and (1

4
, 1

2
).

Figures 2, 3 and 4 show the results4from Leak-o-meter. Note that the exhaustive search would
have to go through 21000 database instances which would take forever while the Leak-o-meter on
these queries takes atmost 36 seconds.

4#runs is the number of runs of the Monte Carlo Simulation and time is the time taken in seconds by the tool to
spit the leak.

#runs leak pvw time (in secs)

100 0.0500 0.4700 0

1000 0.0004 0.4990 3

5000 0.0024 0.5012 34

Figure 3: Leak-o-meter on S2

3

#runs leak pvw time (in secs)

100 0.2700 0.4700 1

1000 0.2590 0.4990 3

5000 0.2498 0.5012 36

Figure 4: Leak-o-meter on S3

5 Current Status

To summarize, we have come up with a definition of leak for the case when one is given a view V ,
a query S and a database instance D. We also give an efficient algorithm based on Monte-Carlo
sampling [2] that computes this leak for conjunctive queries (including joins).

Lastly, we point out implementation details which have not been covered till now. The tool supports
chain join at the time of writing of this report: the extension to arbitrary joins is straight-forward
and would be implemented soon. Another feature which needs to be looked into is the distribution
of database instances from Dv. Currently, for each tuple in the view, random database instances
from Dv are generated as discussed in Section 3. If the view has multiple tuples then the union of
the generated database instances are taken: after this the distribution does not remain uniform.
We are investigating taking this skewed distribution into account and incorporating ideas from [2].

6 Future Work

There are two main ideas for future work. First note that while generating instances from D, each
tuple occurs with probability 1

2
. It is not unreasonable to assume that the adversary has some idea

of c, the size of the database: for example, one can assume some upper limit on the distinct number
of phone numbers in an organization instead of all possible seven digit numbers. In this case we
can generate elements from D where each tuple appears with probability c

|D| .

Another idea is to make use of the observation that elements of domains which do not appear
as constants in the views and query behave similarly. For the ease of exposition, let us consider
the simple example of a schema R with one column whose domain size is d. Assume that the
view is R(0) and the query is R(1). Note that on any instance with the same number of elements
from {2, c . . . , d − 1} the query would evaluate to the same answer. Thus, we can collapse the
set {2, · · · , d − 1} to one “super-constant” s and treat all database instance which have the same
number of occurrences of 0, 1 and s as essentially the same. In other words, we have now reduced
the space of 2d − 1 instance to one with 22(d − 2) instances. Each element in this new space with
i occurrences of s corresponds to

(

d−2

i

)

instances in D. Thus, we now associate weights of
(

d−2

i

)

to each such “new” instances. The weights become more complicated for schemas with multiple
columns and in the presence of join: they can be expressed in terms of product of suitable binomial
coefficients. An interesting issue in the implementation of this idea is the fact that for even for
moderately sized domains, these weights become large (for example

(

200

100

)

cannot be represented as
a long variable) and thus, we need support for large number arithmetic. Efficiently computing the
binomial coefficient is an interesting problem in itself.

Miklau and Suciu cast polynomial identity testing [3] as testing the security of V with respect to S.

4

An alternate definition of the leak could be to measure the distance between the two polynomials
[1]. It may however be noted that the polynomial testing problems are cast as decision problems and
hence, the leakage tool would probably be a tester deciding if the leakage is within some threshold
in this framework.

References

[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing low-degree polynomials
over gf(2). In RANDOM 2003, 2003.

[2] R. M. Karp, M. Luby, and N. Madras. Monte carlo approximation algorithms for enumeration
problems. J. Algorithms, 10(3):429–448, 1989.

[3] A. Klivans and D. Speilman. Randomness efficient identity testing of multivariate polynomials.
In Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, 2001.

[4] G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. In
SIGMOD 2004, 2004.

[5] N. NIssan and D. Zuckerman. Randomness is linear in space. In Proceedings of the ACM

Symposium on Theory of Computing 1993, 1993.

[6] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-

Based Syst., 10(5):557–570, 2002.

5

