Transactions

Alan Fekete (U of Sydney)
fekete@it.usyd.edu.au

Overview

 Transactions

— Concept

— ACID properties

— Examples and counter-examples
e Implementation techniques
» Weak isolation issues

April 2004

Transactions by Alan Fekete

Definition

¢ A transaction is a collection of one or more
operations on one or more databases, which
reflects asingle real-world transition
— Inthereal world, this happened (completely) or it

didn’t happen at all (Atomicity)

« Commerce examples
— Transfer money between accounts
— Purchase a group of products

¢ Student record system

— Register for aclass (either waitlist or allocated)

April 2004 Transactions by Alan Fekete

Coding atransaction

» Typicaly acomputer-based system doing OLTP
has a collection of application programs

Each program is written in a high-level language,

which calls DBMS to perform individual SQL

statements

— Either through embedded SQL converted by
preprocessor

— Or through Call Level Interface where application
constructs appropriate string and passes it to DBMS

April 2004 Transactions by Alan Fekete

Why write programs?

» Why not just write a SQL statement to
express “what you want”?

e Anindividual SQL statement can’t do
enough
— It can’t update multiple tables

— It can’t perform complicated logic
(conditionals, looping, etc)

April 2004 Transactions by Alan Fekete

COMMIT

e Asapp program is executing, itis“in a
transaction”
e Program can execute COMMIT

— SQL command to finish the transaction
successfully

— The next SQL statement will automatically start
anew transaction

April 2004 Transactions by Alan Fekete

Warning

» Theideaof atransaction is hard to see when
interacting directly with DBMS, instead of
from an app program

 Using an interactive query interface to
DBMS, by default each SQL statement is
treated as a separate transaction (with
implicit COMMIT at end) unless you
explicitly say “START TRANSACTION”

April 2004 Transactions by Alan Fekete 7

A Limitation

» Some systems rule out having both DML
and DDL statementsin a single transaction

* i.e., you can change the schema, or change
the data, but not both

April 2004 Transactions by Alan Fekete 8

ROLLBACK

* If the app getsto aplace where it can’t
complete the transaction successfully, it can
execute ROLLBACK

* This causes the system to “abort” the
transaction

— The database returns to the state without any of
the previous changes made by activity of the
transaction

April 2004 Transactions by Alan Fekete 9

Reasons for Rollback

 User changes their mind (“ctl-C”/cancel)
 Explicit in program, when app program
finds a problem
—e.g. when gty on hand < qty being sold
e System-initiated abort
— System crash
— Housekeeping

¢ e.g. due to timeouts

April 2004 Transactions by Alan Fekete 10

Atomicity

» Two possible outcomes for a transaction
— It commits: all the changes are made
— It aborts: no changes are made

» Thatis, transaction’s activitiesare all or
nothing

April 2004 Transactions by Alan Fekete 11

Integrity

A real world state is reflected by collections
of valuesin the tables of the DBMS

 But not every collection of valuesin atable
makes sense in the real world

* The state of the tablesis restricted by
integrity constraints

* e.g. account number is unique

 e.g. stock amount can’t be negative

April 2004 Transactions by Alan Fekete 12

Integrity (ctd)

* Many constraints are explicitly declared in the
schema

— So the DBMS will enforce them

— Especially: primary key (some column’s values are non
null, and different in every row)

— And referential integrity: value of foreign key column
isactually found in another “referenced” table

* Some constraints are not declared
— They are business rules that are supposed to hold

April 2004 Transactions by Alan Fekete 13

Consistency

» Each transaction can be written on the assumption that all
integrity constraints hold in the data, before the transaction
runs

e It must make sure that its changes leave the integrity
constraints still holding

— However, there are alowed to be intermediate states where the
constraints do not hold

* A transaction that does this, is called consistent
* Thisisan obligation on the programmer

— Usualy the organization has atesting/checking and sign-off
mechanism before an application program is allowed to get
installed in the production system

April 2004 Transactions by Alan Fekete 14

System obligations

* Provided the app programs have been
written properly,

* Then the DBMS s supposed to make sure
that the state of the datain the DBMS
reflects the real world accurately, as
affected by all the committed transactions

April 2004 Transactions by Alan Fekete 15

Local to global reasoning

 Organization checks each app program as a
separate task

— Each app program running on its own moves from state
where integrity constraints are valid to another state
where they are valid

» System makes sure there are no nasty interactions

e Sothefinal state of the datawill satisfy all the
integrity constraints

April 2004 Transactions by Alan Fekete 16

Example - Tables

 System for managing inventory
InStore(prodID, storelD, qty)
Product(prodID, desc, mnfr, ...,
WarehouseQty)

Order(orderNo, prodID, qty, rcvd,)
— Rows never deleted!

— Until goods received, rcvd is null

* Also Store, Staff, etc etc

April 2004 Transactions by Alan Fekete 17

Example - Constraints

e Primary keys
— InStore: (prodID, storelD)
— Product: prodID
— Order: orderld
—etc
 Foreign keys
— Instore.prodI D references Product.prodi D
—etc

April 2004 Transactions by Alan Fekete 18

Example - Constraints

o Datavalues

— Instore.qty >=0

— Order.revd <= current_date or Order.rcevd is null
» Businessrules

— for each p, (Sum of qty for product p among all stores
and warehouse) >= 50

— for each p, (Sum of qty for product p among all stores
and warehouse) >= 70 or there is an outstanding order
of product p

April 2004 Transactions by Alan Fekete 19

Example - transactions

» MakeSale(store, product, gty)
e AcceptReturn(store, product, qty)
¢ RcvOrder(order)
» Restock(store, product, qty)
— /I move from warehouse to store
e ClearOut(store, product)
— /I move all held from store to warehouse
» Transfer(from, to, product, gty)
— /I move goods between stores

April 2004 Transactions by Alan Fekete 20

Example - ClearOut

< Validate Input (appropriate product, store)
* SELECT qty INTO :tmp
FROM InStore
WHERE StorelD = :store AND prodID = :product
* UPDATE Product
SET WarehouseQty = WarehouseQty + :tmp
WHERE prodID = :product

» UPDATE InStore Thisis one way to write
SET Qty =0 the application; other algorithms
WHERE prodID = :product are also possible

+ COMMIT

April 2004 Transactions by Alan Fekete 21

Example - Restock

« Input vaidation
— Valid product, store, gty
— Amount of product in warehouse >= gty
* UPDATE Product
SET WarehouseQty = WarehouseQty - :qty
WHERE prodID = :product
« If norecord yet for product in store
INSERT INTO InStore (:product, :store, :qty)
+ Else, UPDATE InStore
SET gty = qty + :qty
WHERE prodID = :product and storelD = :store
« COMMIT

April 2004 Transactions by Alan Fekete 22

Example - Consistency

* How to write the app to keep integrity holding?

« MakeSale logic: ~This terminates e_)ZéEﬁfﬁJD
— Reduce Instore.qty Qf\the program ("k‘?E“m
— Calculate sum over all stoWouse
— If sum < 50, then ROLLBACK // Sale fails
— If sum < 70, check for order where date is null

« If none found, insert new order for say 25
— COMMIT

April 2004 Transactions by Alan Fekete 23

Example - Consistency

* Wedon't need any fancy logic for checking the
business rules in Restock, ClearOut, Transfer
— Because sum of gty not changed; presence of order not
changed
« provided integrity holds before txn, it will still hold afterwards
* Wedon't need fancy logic to check business rules
in AcceptReturn
— Wh)n
* Ischecking logic needed for RcvOrder?

April 2004 Transactions by Alan Fekete 24

Threats to data integrity

» Need for application rollback
o System crash
 Concurrent activity

 The system has mechanisms to handle these

April 2004 Transactions by Alan Fekete 25

Application rollback

* A transaction may have made changes to the data
before discovering that these aren’t appropriate
— thedataisin state where integrity constraints are false
— Application executes ROLLBACK

e System must somehow return to earlier state
— Where integrity constraints hold

 So aborted transaction has no effect at all

April 2004 Transactions by Alan Fekete 2

Example

» While running MakeSale, app changes
InStore to reduce qty, then checks new sum

* If the new sum is below 50, txn aborts

» System must change InStore to restore
previous value of gty

— Somewhere, system must remember what the
previous value wasl!

April 2004 Transactions by Alan Fekete 27

System crash

e At time of crash, an application program may be
part-way through (and the data may not meet
integrity constraints)

* Also, buffering can cause problems

— Note that system crash loses all buffered data, restart
has only disk state

— Effects of acommitted txn may be only in buffer, not
yet recorded in disk state
— Lack of coordination between flushes of different

buffered pages, so even if current state satisfies
constraints, the disk state may not

April 2004 Transactions by Alan Fekete 28

Example

¢ Suppose crash occurs after

— MakeSale has reduced InStore.qty

— found that new sum is 65

— found there is no unfilled order

— I/ but before it has inserted new order
At time of crash, integrity constraint did not hold
Restart process must clean this up (effectively

aborting the txn that was in progress when the
crash happened)

April 2004 Transactions by Alan Fekete 29

Concurrency

» When operations of concurrent threads are
interleaved, the effect on shared state can be
unexpected

* Well known issue in operating systems,
thread programming
— see OS textbooks on critical section
— Java use of synchronized keyword

April 2004

Transactions by Alan Fekete 30

Famous anomalies

« Dirty data
— Onetask T reads data written by T' while T' isrunning, then T’
aborts (so its data was not appropriate)
¢ Lost update
— Twotasks T and T' both modify the same data
— Tand T’ both commit
— Find state shows effects of only T, but not of T
« Inconsistent read
— Onetask T sees some but not al changes made by T’
— The vaues observed may not satisfy integrity constraints

— Thiswas not considered by the programmer, so code moves into
absurd path

April 2004 Transactions by Alan Fekete 31

Example — Dirty data
25

pl |sl pl |etc |10
plL |s2 |70 p2 |etc |44
AcceptReturn(pl,s1,50) MakeSal e(p1,s2,65) 2 |s1 |60
Updaterow 1: 25 > 75 P ec Jec jec

update row 2: 70->5 [€tC |etc |etc

find sum: 90 "
J no need to insert | NitiAl state of InStore, Product

/I row in Order pl |sl |25

pl |etc |10
Abort L |2 |5

/I rollback row 1 to 25 p2 |etc |44

COMMIT p2 |sl |60
- — etc |etc |etc

Integrity constraint is false: etc |etc |etc

Sum for pl is only 40! Final state of InStore, Product

April 2004 Transactions by Alan Fekete 32

Example — Lost update

pL |t 2 pl |etc |40
PL |22 |80 p2 |etc |55
« ClearOut(p1,s1) AcceptReturn(pl,sl,60) p2 |sL |45
« Query InStore; qty is 25 eic |etc |efc
« Add 25 to WarehouseQty: 40->65 etc |etc jetc
. Update row 1: 25->85 L.
+ Update row 1, settingit 0 0 Initial state of InStore, Product
1 (sl |0
« COMMIT P ol Tec J6s
. COMMIT pl |2 |50
p2 |etc |55
- p2 |sl |45
60 returned p1’'s have vanished etc |etc |etc
from system; total is still 135 etc |etc jetc
April 2004 Transactions by Alan Fekete

33
Final state of InStore, Product

Example — Inconsistent read

pl sl |30 pl |etc |10
ClearOut(pl,sl) MakeSale(pL,2,60) |P1 |s2 |65 p2 |etc |44
Query InStore: qty is 30 p2 |sl |60 ac letc |etc
Add 30 to WarehouseQty: 10->40

update row 2: 65->5 [€C | €lC | €lc
find sum: 75
/I'no need to insert
I/ row in Order pl |sl |0

Initial state of InStore, Product

Update row 1, setting it to 0 pL |etc |40
COMMIT PL & |5 p2 |etc |44
- - C.OMMIT_ p2 |sl |60 etc |etc |etc
Integrity corjstra ntisfalse: ac lec lec
Sum for plisonly 45! Final state of
April 2004 Transactions by Alan Fekete InStore, Product

Serializability

* To makeisolation precise, we say that an
execution is serializable when

¢ There exists some serial (ie batch, no overlap at
all) execution of the same transactions which has
the samefinal state

- Horl)efully, the real execution runs faster than the serial
one!

« NB: different serial txn orders may behave
differently; we ask that some serial order produces
the given state

— Other serial ordersmay give different final states

April 2004 Transactions by Alan Fekete ES

Example — Serializable execution

pl |sl |30 pl |etc |10
pl |2 |45 02 |etc |44
ClearOut(pl,s1) MakeSale(pL220) [> 1 g0
Query InStore: gty is 30 P ec |ec |etc
update row 2: 45->25| €tC | etc | etc Order: empty
find sum: 65 . .
no order for p1 yet | Nitial state of InStore, Product, Order
Add 30 to WarehouseQty: 10->40 pl |sl |0
Update row 1, setting it to 0 pl |etc |40
COMMIT pL |2 |25 02 |ec |44
Insert order for p1 p2 |sl |60
COMMIT ec |etc |etc
Execution is like serial elc |dc ec

4

Alan Fekete

Makgpalg, ClearOut

Final state of InStore, Product, Order

Serializability Theory

¢ Thereisabeautiful mathematical theory, based on formal
languages
— Treat the set of al serializable executions as an object of interest
(called SR)
— Thm: SRisin NP, i.e. the task of testing whether an executionis
serializable seems unreasonably slow
« Doesit matter?
— Thegod of practical importance isto design a system that
produces some subset of the collection of serializable executions

— It'snot clear that we care about testing arbitrary executions that
don't arisein our system

April 2004 Transactions by Alan Fekete 37

Conflict serializability

* Thereisanice sufficient condition (ie a conservative
approximation) called conflict serializable, which can be
efficiently tested

— Draw a precedes graph whose nodes are the transactions

- Edgefrom Ti to Tj when Ti accesses x, then later Tj accesses x,
and the accesses conflict (not both reads)

— Theexecution is conflict seriaizableiff the graph is acyclic
» Thm: if an execution is conflict serializable then itis
serializable
— Pf: the seria order with same find state is any topological sort of
the precedes graph

* Most people and books use the approximation, usually
without mentioning it!

April 2004 Transactions by Alan Fekete 38

ACID

« Atomic
— State shows either all the effects of txn, or none of them
« Consistent

— Txn moves from a state where integrity holds, to
another where integrity holds

¢ |solated

— Effect of txnsis the same as txns running one after
another (ie looks like batch mode)

¢ Durable
— Once atxn has committed, its effects remain in the
database
April 2004 Transactions by Alan Fekete 39

Big Picture

« If programmer writes applications so each txn is
consistent
* And DBMS provides atomic, isolated, durable
execution
— i.e. actual execution has same effect as some seria
execution of those txns that committed (but not those
that aborted)
» Then thefinal state will satisfy all the integrity
constraints

. } P
NB E(rullje even though s¥stem does n%t‘akenow all integrity con%ral nts!

April 2 ransactions by Alan

Overview

* Transactions

 Implementation Techniques
— Idess, not details!
— Implications for application programmers
— Implications for DBAs

» Weak isolation issues

April 2004 Transactions by Alan Fekete 41

Main implementation techniques

e Logging
— Interaction with buffer management
— Useinrestart procedure

» Locking
 Distributed Commit

April 2004 Transactions by Alan Fekete 42

Logging

» Thelog is an append-only collection of
entries, showing all the changes to data that
happened, in order as they happened

 e.g. when T1 changes gty in row 3 from 15
to 75, thisfact is recorded as alog entry

* Log also shows when txns

A log entry

e LSN: identifier for entry, increasing values
e Txnid

e Dataitem involved

e Oldvaue

* New vaue

— Sometimes there are separate logs for old
values and new values

April 2004 Transactions by Alan Fekete a4

start/commit/abort
Extrafeatures

* Log also records changes made by system
itself
—e.g. when old valueis restored during rollback
» Logentries are linked for easier accessto
past entries
— Link to previous log entry
— Link to previous entry for the same txn

April 2004 Transactions by Alan Fekete 45

Buffer management

« Each page has place for LSN of most recent
changeto that page

» When apageisfetched into buffer, DBMS
remembers latest LSN at that time

e Logitself isproduced in buffer, and flushed to
disk (appending to previously flushed parts) from
timetotime

* Important rules govern when buffer flushes can
occur, relative to LSNsinvolved
— Sometimes aflush is forced (eg log flush forced when

txn commits)

April 2004 Transactions by Alan Fekete a6

Using thelog

e Torollback txn T
— Follow chain of T'slog entries, backwards

— For each entry, restore data to old value, and
produce new log record showing the restoration

— Produce log record for “abort T"

April 2004 Transactions by Alan Fekete 47

Restart

 After acrash, follow the log forward,
replaying the changes
—i.e re-install new valuerecorded in log

» Then rollback all txns that were active at the
end of the log

« Now normal processing can resume

April 2004 Transactions by Alan Fekete 48

Optimizations

» Use LSNsrecorded in each page of data, to
avoid repeating changes already reflected in
page

 Checkpoints: flush pages that have been in
buffer too long
— Record in log that this has been done
— During restart, only repeat history since last (or

second-last) checkpoint

April 2004 Transactions by Alan Fekete 49

Don’t be too confident

« Crashes can occur during rollback or restart!
— Algorithms must be idempotent

e Must be surethat log is stored separately from
data (on different disk array; often replicated off-
site!)

— In case disk crash corrupts data, log allows fixing this

— Also, since log is append-only, don’t want have random
access to data moving disk heads away

April 2004 Transactions by Alan Fekete 50

Complexities

» Multiple txns affecting the same page of
disk
— From “fine-grained locking” (see later)
* Operations that affect multiple pages
— Eg B-treereorganization
» Multithreading in log writing
— Use standard OS latching to prevent different
tasks corrupting the log's structure

April 2004 Transactions by Alan Fekete 51

ARIES

e Until 1992, textbooks and research papers
described only simple logging techniques
that did not deal with complexities

e Then C. Mohan (IBM) published a series of
papers describing ARIES agorithms
— Papers are very hard to read, give inconsistent

level of details, but at last the ideas of modern,
high-performance, real systems are available!

April 2004 Transactions by Alan Fekete 52

Implications

* For application programmer
— Choose txn boundaries to include everything
that must be atomic
— Use ROLLBACK to get out from a mess
* For DBA
— Tunefor performance: adjust checkpoint
frequency, amount of buffer for log, etc
— Look after the log!

April 2004 Transactions by Alan Fekete 53

Main implementation techniques

« Logging
 Locking
— Lock manager
— Lock modes
— Granularity
— User control

¢ Distributed Commit

April 2004 Transactions by Alan Fekete 54

L ock manager

¢ A structure in (volatile memory) in the DBMS
which remembers which txns have set locks on
which data, in which modes

« |t rgjectsarequest to get anew lock if a
conflicting lock is aready held by a different txn

« NB: alock does not actually prevent access to the
data, it only prevents getting a conflicting lock

— So data protection only comes if theright lock is
requested before every access to the data

April 2004 Transactions by Alan Fekete 55

Lock modes

 Locks can be for writing (W), reading (R)
or other modes

» Standard conflict rules; two W locks on the
same data item conflict, so do one W and
one R lock on the same data

— However, two R locks do not conflict

* Thus W=exclusive, R=shared

April 2004 Transactions by Alan Fekete 56

Automatic lock management

» DBMS requests the appropriate lock
whenever the app program submits a
request to read or write adataitem

* If lock isavailable, the accessis performed

« If lock is not available, the wholetxnis
blocked until the lock is obtained

— After aconflicting lock has been released by
the other txn that held it

April 2004 Transactions by Alan Fekete 57

Strict two-phase locking

e Locksthat atxn obtains are kept until the
txn completes

— Once the txn commits or aborts, then all its
locks are released (as part of the commit or
rollback processing)

e Two phases:
— Locks are being obtained (while txn runs)
— Locks are released (when txn finished)

April 2004 Transactions by Alan Fekete 58

Serializability

« If each transaction does strict two-phase
locking (requesting all appropriate locks),
then executions are serializable

» However, performance does suffer, as txns
can be blocked for considerable periods
— Deadlocks can arise, requiring system-initiated

aborts

April 2004 Transactions by Alan Fekete 59

Proof sketch

» Suppose all txns do strict 2PL

If Ti has an edge to Tj in the precedes graph

— That is, Ti accesses x before Tj has conflicting access to x

— Ti haslock at time of its access, Tj haslock at time of its access

— Sincelocks conflict, Ti must releaseits lock before Tj's access to x

— Ti completes before Tj accesses x

— Ti completes before Tj completes

* So the precedes graph is subset of the (acyclic) total order
of txn commit

» Conclusion: the execution has same final state as the serial
execution where txns are arranged in commit order

April 2004 Transactions by Alan Fekete 60

10

Example — No Dirty data

Example — No Lost update

ClearOut(p1,s1) AcceptReturn(p1,s1,60)
Query InStore; qty is25
/It R-lock InStore.rowl
Add 25 to WarehouseQty: 40->65
/I't1 W-lock Product.row 1
try Updaterow 1

1/ blocked

/I as W-lock on InStore.rowl

/I can't be obtained

PL st % pl |etc |40
PL |2 |50 p2 |etc |55
P2 st %5 | fec [ec [ec
ec |etc |etc

Initial state of InStore, Product

Update row 1, setting it to 0 pl sl |60

/It1 upgrades to W-lock on InStore.rowl pl |etc |65

COMMIT // releasetl’s locks pl [s2 |50
/I now get W-lock p2 |etc |55
Update row 1: 0->60 P2 sl |45 etc |etc |etc
COMMIT elc |etc |etc

OULQQ% IS same as se”alTrarmionsbyAlan Fekete 62

ClearOut; AcceptReturn

Final state of InStore, Product

pL |sl |2 1 |etc |10
AcceptReturn(pl,s1,50) MakeSal e(pl,s2,65) P ¢
Update row 1: 25 -> 75 pl |2 |70 p2 |etc |44
/It1 W-locks InStore. row 1
updaterow 2: 70->5 (P2 |sl |60 etc |etc |etc
/It2 W-locks Instore.row2
try find sum:// blocked | &€ | €€ | €tC
/I as R-lock on Instore.rowl .
J/ car't be obtained Initial state of InStore, Product
User-initiated Abort
/I rollback row 1 to 35; release lock pL |st |25 pl |etc |10
1 now get locks 1 |2 |70
find sum: 40 P p2 |etc |44
ROLLBACK p2 [s1 |60
1/ row 2 restored to 7 efc |efc |efc
. S . et et et
Integrity constraint is valid S Dl B Final state of
April 2004 Transactions by Alan Fekete InStore, Product

* What isadataitem (on which alock is obtained)?

— Most times, in most modern systems: item is one tuple
inatable

— Sometimes: item is a page (with several tuples)
— Sometimes: item is awhole table

« |n order to manage conflicts properly, system gets
“intention” mode locks on larger granules before
getting actual R/W locks on smaller granules

April 2004 Transactions by Alan Fekete 63

Granularity trade-offs

 Larger granularity: fewer locks held, so less
overhead; but less concurrency possible
— “false conflicts” when txns deal with different parts of

the same item

e Smaller “fine” granularity: more locks held, so
more overhead; but more concurrency is possible

e System usually getsfine grain locks until there are
too many of them; then it replaces them with

larger granularity locks

April 2004 Transactions by Alan Fekete 64

Explicit lock management

» With most DBMS, the application program
can include statements to set or release
locks on atable
— Detailsvary

e 9. LOCK TABLE InStoreIN
EXCLUSIVE MODE

April 2004 Transactions by Alan Fekete 65

Implications

« For application programmer
— If txn reads many rows in one table, consider locking

the whole table first

— Consider weaker isolation (see later)

¢ For DBA

— Tune for performance: adjust max number of locks,

granularity factors

— Possibly redesign schemato prevent unnecessary

conflicts

— Possibly adjust query plansif locking causes problems

April 2004 Transactions by Alan Fekete 66

11

I mplementation mechanisms
* Logging

» Locking
 Distributed Commit

April 2004 Transactions by Alan Fekete 67

Transactions across multiple DBM S

 Within one transaction, there can be
statements executed on more than one
DBMS
e To be atomic, we still need all-or-nothing
e That means: every involved system must
produce the same outcome
— All commit the txn
— Or all abort it

April 2004 Transactions by Alan Fekete 68

Why it's hard

* Imagine sending to each DBM S to say
“commit thistxn T now”

Even though this message is on its way,
any DBMS might abort T spontaneously
— e.g. dueto a system crash

April 2004 Transactions by Alan Fekete 69

NB unrelated to “two-phase locking”

wa-phase commit

e The solution isfor each DBMSto first
move to aspecial situation, wherethetxnis
“prepared”

A crash won't abort a prepared txn, it will
leaveit in prepared state
— So al changes made by prepared txn must be

recovered during restart (including any locks
held before the crash!)

April 2004 Transactions by Alan Fekete 70

Basic idea

» Two round-trips of messages
— Request to prepare/ prepared or aborted
— Either Commit/committed or Abort/aborted

Only if al DBMSs are already prepared!

April 2004 Transactions by Alan Fekete 71

Read-only optimisation

« If atxn hasinvolved aDBMS only for
reading (but no modifications at that
DBMS), then it can drop out after first
round, without preparing
— The outcome doesn’t matter to it!

— Special phase 1 reply: ReadOnly

April 2004 Transactions by Alan Fekete 72

12

Fault-tolerant protocol

» The interchange of messages between the
“coordinator” (part of the TPMonitor
software) and each DBMS istricky
— Each participant must record thingsin log at

specific times
— But the protocol copes with lost messages,
inopportune crashes etc

April 2004 Transactions by Alan Fekete

73

Implications

* For application programmer

— Avoid putting modifications to multiple databases in a
single txn
« Performance suffersalot

* W-Locks are held during the message exchanges, which take
much longer than usual txn durations

* For DBA
— Monitor performance carefully
— Meake sure you have DBMSS that support protocol

April 2004 Transactions by Alan Fekete 74

Overview

» Transactions

 Implementation techniques
» Weak isolation issues

— Explicit use of low levels

— Useof replicas

— Snapshot isolation

April 2004 Transactions by Alan Fekete 7

Problems with serializability

» The performance reduction from isolation is high
— Transactions are often blocked because they want to
read data that another txn has changed
» For many applications, the accuracy of the data
they read is not crucial
— e.g. overbooking aplaneis ok in practice

— e.g. your banking decisions would not be very different

if you saw yesterday’ s balance instead of the most up-
to-date

April 2004 Transactions by Alan Fekete 76

A and D matter!

» Even when isolation isn't needed, no oneis
willing to give up atomicity and durability
— These deal with modifications atxn makes
— Writing is less frequent than reading, so log

entries and write locks are considered worth the
effort

April 2004 Transactions by Alan Fekete 7

Explicit isolation levels

« A transaction can be declared to have
isolation properties that are |ess stringent
than serializability
— However SQL standard says that default should

be serializable (also called “level 3isolation”)

— In practice, most systems have weaker default
level, and most txns run at weaker levels!

April 2004 Transactions by Alan Fekete 78

13

Browse

o SET TRANACTION ISOLATION LEVEL
READ UNCOMMITTED
— Do not set read locks at all

« Of course, still set write locks before updating data

« If fact, system forces the txn to be read-only unless
you say otherwise

— Allows txn to read dirty data (from a txn that

Cursor stability

¢ SET TRANACTION ISOLATION LEVEL

READ COMMMITTED
— Set read locks but release them after theread has

happened

« eg. when cursor moves onto another element during scan of
the results of a multirow query

— i.e. do not hold R-lockstill txn commits/aborts
— Datais not dirty, but it can be inconsistent (between

reads of different items, or even between oneread and a

later one of the same item)

« Especidly, weird things happen between different rows
returned by a cursor

April 2004 Transactions by Alan Fekete 80

will later abort)
April 2004 Transactions by Alan Fekete 79
Repeatable read

« SET TRANACTION ISOLATION LEVEL
REPEATABLE READ
— Set read locks on data items, and hold them till txn
finished, but release locks on indices as soon as index
has been examined

— Allows “phantoms’, rows that are not seen in aquery
that ought to have been (or vice versa)

— Problemsif one txn is changing the set of rows that
meet a condition, while another txn isretrieving that set

April 2004 Transactions by Alan Fekete 81

Stale replicas

* In many distributed processing situations, copies
of data are kept at several sites
— e.g. to alow cheap/fast local reading
« |f updatestry to alter all replicas, they become
very slow and expensive (they need two-phase
commit, and they’ Il abort if aremote siteis
unavailable!)
» So allow replicas to be out-of -date
 Lazy propagation of updates
- Fasily managed by shipping the log across from time to
ime

April 2004 Transactions by Alan Fekete 82

Reading stale replicas

« If atxn reads alocal replicawhich is a bit
stale, then the value read can be out-of-date,
and potentially inconsistent with other data
seen by the txn

* Impact is essentially the same as READ
COMMITTED

April 2004 Transactions by Alan Fekete 83

Snapshot Isolation

* Most DBMS vendors use variants of the
standard agorithms

» However, one very major vendor uses a
different approach: Oracle

— Before version 7.3 it did not support
ISOLATION LEVEL SERIALIZABLE at all

— Now it allows the SQL command, but uses a
different algorithm called Snapshot Isolation

April 2004 Transactions by Alan Fekete 84

14

Snapshot Isolation

« Read of anitem does not give current value

¢ Instead, use the recovery log to find value that had
been most recently committed at the time the txn
started
— Exception: if the txn has modified the item, use the

valueit wrote itself

* Thetransaction sees a“snapshot” of the database,
at an earlier time
— Intuition: this should be consistent, if the database was

Checksfor conflict

* |If two overlapping txns try to modify the
same item, one will be aborted

e Implemented with write locks on modified
rows

— NB one txn out of the conflicting pair is
aborted, rather than delayed as in conventional
approach

April 2004 Transactions by Alan Fekete 86

consistent before
April 2004 Transactions by Alan Fekete 85
Benefits of Sl

» No cost for extratime-travel versions
— They arein log anyway!
» Reading is never blocked
* Prevents the usual anomalies
— Nodirty read
— No lost update
— No inconsistent read

April 2004 Transactions by Alan Fekete 87

Problems with SI

* Sl does not always give seriaizable
executions

— (despite Oracle using it for “ISOLATION
LEVEL SERIALIZABLE)

« Integrity Constraints can be violated

— Even if every application is written to be
consistent!

April 2004 Transactions by Alan Fekete 88

NB: sum uses old value of row1 and Product,
and self-changed value of row2

Example — Skew Write

pl |sl

pl |etc |32

‘ pL |2 |35 p2 |etc |44

MakeSde(pL,sL,26) MakeSde(pl,2,25)| p2 |sL | 60 e le lac
Update row 1: 30->4 ac et lec

update row 2: 35->1 Order: empty

find sum: 72 Initial state of InStore, Product, Order
/I'No need to Insert row in Ord ol s |4

Find sum: 71 pl |etc |32
/I No need to insert row in Order pl |s2 |10 02 |ec |44
COMMIT

COMMIT P2 ISt %0 | Jec [ec [ec

Integrity constraint is false: fc e e

g 200:SUM IS 46 T by Alan Fekete Order: empty
inal state of InStore, Product, Order

Skew Writes

e Sl breaks serializability when txns modify
different items, each based on a previous state of
the item the other modified

e Thisisfairly rarein practice

» Eg the TPC-C benchmark runs correctly under S|

— when txns conflict due to modifying different data,
there is also a shared item they both modify too (likea
total quantity) so Sl will abort one of them

April 2004 Transactions by Alan Fekete 90

15

Implications

* For the application programmer

— Think carefully about your programs behavior
if reads are inaccurate

— If possible without compromising correctness,
run at lower isolation level to improve
performance

» Forthe DBA

— Watch like a hawk for corruption of the data,
and have strong processes to correct it!

April 2004 Transactions by Alan Fekete o1

Further Reading

» Transaction concept: Standard database texts, e.g.

Garcia-Molina et al Chapter 8.6

+ Main implementation techniques: e.g. Garcia-

Molina et al Chapters 17-19

Big picture: “Principles of Transaction

Processing” by P. Bernstein and E. Newcomer

e Theory: “Transactional Information Systems” by
G. Weikum and G. Vossen

e Thegory details: “Transaction Processing” by J.
Gray and A. Reuter

April 2004 Transactions by Alan Fekete

92

Recent Transaction Research

« Properties of weak isolation
— Declarative representation
— Restricted cases where you still get integrity running
with lower isolation level
« Conditions on the applications
« Conditions on the constraints
» Extended transaction models
— Suitable for web services workflows
— Across trust domains, so can't give up autonomy

April 2004 Transactions by Alan Fekete 93

16

