
1

Transactions

Alan Fekete (U of Sydney)

fekete@it.usyd.edu.au

April 2004 Transactions by Alan Fekete 2

Overview

• Transactions
– Concept

– ACID properties

– Examples and counter-examples

• Implementation techniques

• Weak isolation issues

April 2004 Transactions by Alan Fekete 3

Definition

• A transaction is a collection of one or more
operations on one or more databases, which
reflects a single real-world transition
– In the real world, this happened (completely) or it

didn’ t happen at all (Atomicity)
• Commerce examples

– Transfer money between accounts
– Purchase a group of products

• Student record system
– Register for a class (either waitlist or allocated)

April 2004 Transactions by Alan Fekete 4

Coding a transaction

• Typically a computer-based system doing OLTP
has a collection of application programs

• Each program is written in a high-level language,
which calls DBMS to perform individual SQL
statements
– Either through embedded SQL converted by

preprocessor

– Or through Call Level Interface where application
constructs appropriate string and passes it to DBMS

April 2004 Transactions by Alan Fekete 5

Why write programs?

• Why not just write a SQL statement to
express “what you want”?

• An individual SQL statement can’ t do
enough
– It can’ t update multiple tables

– It can’ t perform complicated logic
(conditionals, looping, etc)

April 2004 Transactions by Alan Fekete 6

COMMIT

• As app program is executing, it is “ in a
transaction”

• Program can execute COMMIT
– SQL command to finish the transaction

successfully

– The next SQL statement will automatically start
a new transaction

2

April 2004 Transactions by Alan Fekete 7

Warning

• The idea of a transaction is hard to see when
interacting directly with DBMS, instead of
from an app program

• Using an interactive query interface to
DBMS, by default each SQL statement is
treated as a separate transaction (with
implicit COMMIT at end) unless you
explicitly say “START TRANSACTION”

April 2004 Transactions by Alan Fekete 8

A Limitation

• Some systems rule out having both DML
and DDL statements in a single transaction

• i.e., you can change the schema, or change
the data, but not both

April 2004 Transactions by Alan Fekete 9

ROLLBACK

• If the app gets to a place where it can’ t
complete the transaction successfully, it can
execute ROLLBACK

• This causes the system to “abort” the
transaction
– The database returns to the state without any of

the previous changes made by activity of the
transaction

April 2004 Transactions by Alan Fekete 10

Reasons for Rollback

• User changes their mind (“ctl-C” /cancel)
• Explicit in program, when app program

finds a problem
– e.g. when qty on hand < qty being sold

• System-initiated abort
– System crash
– Housekeeping

• e.g. due to timeouts

April 2004 Transactions by Alan Fekete 11

Atomicity

• Two possible outcomes for a transaction
– It commits: all the changes are made

– It aborts: no changes are made

• That is, transaction’s activities are all or
nothing

April 2004 Transactions by Alan Fekete 12

Integrity

• A real world state is reflected by collections
of values in the tables of the DBMS

• But not every collection of values in a table
makes sense in the real world

• The state of the tables is restricted by
integrity constraints

• e.g. account number is unique
• e.g. stock amount can’ t be negative

3

April 2004 Transactions by Alan Fekete 13

Integrity (ctd)

• Many constraints are explicitly declared in the
schema
– So the DBMS will enforce them

– Especially: primary key (some column’s values are non
null, and different in every row)

– And referential integrity: value of foreign key column
is actually found in another “ referenced” table

• Some constraints are not declared
– They are business rules that are supposed to hold

April 2004 Transactions by Alan Fekete 14

Consistency

• Each transaction can be written on the assumption that all
integrity constraints hold in the data, before the transaction
runs

• It must make sure that its changes leave the integrity
constraints still holding
– However, there are allowed to be intermediate states where the

constraints do not hold

• A transaction that does this, is called consistent
• This is an obligation on the programmer

– Usually the organization has a testing/checking and sign-off
mechanism before an application program is allowed to get
installed in the production system

April 2004 Transactions by Alan Fekete 15

System obligations

• Provided the app programs have been
written properly,

• Then the DBMS is supposed to make sure
that the state of the data in the DBMS
reflects the real world accurately, as
affected by all the committed transactions

April 2004 Transactions by Alan Fekete 16

Local to global reasoning

• Organization checks each app program as a
separate task
– Each app program running on its own moves from state

where integrity constraints are valid to another state
where they are valid

• System makes sure there are no nasty interactions

• So the final state of the data will satisfy all the
integrity constraints

April 2004 Transactions by Alan Fekete 17

Example - Tables

• System for managing inventory
• InStore(prodID, storeID, qty)
• Product(prodID, desc, mnfr, …,

WarehouseQty)
• Order(orderNo, prodID, qty, rcvd, ….)

– Rows never deleted!
– Until goods received, rcvd is null

• Also Store, Staff, etc etc

April 2004 Transactions by Alan Fekete 18

Example - Constraints

• Primary keys
– InStore: (prodID, storeID)
– Product: prodID
– Order: orderId
– etc

• Foreign keys
– Instore.prodID references Product.prodID
– etc

4

April 2004 Transactions by Alan Fekete 19

Example - Constraints

• Data values
– Instore.qty >= 0

– Order.rcvd <= current_dateor Order.rcvd is null

• Business rules
– for each p, (Sum of qty for product p among all stores

and warehouse) >= 50

– for each p, (Sum of qty for product p among all stores
and warehouse) >= 70 or there is an outstanding order
of product p

April 2004 Transactions by Alan Fekete 20

Example - transactions

• MakeSale(store, product, qty)
• AcceptReturn(store, product, qty)
• RcvOrder(order)
• Restock(store, product, qty)

– // move from warehouse to store

• ClearOut(store, product)
– // move all held from store to warehouse

• Transfer(from, to, product, qty)
– // move goods between stores

April 2004 Transactions by Alan Fekete 21

Example - ClearOut

• Validate Input (appropriate product, store)

• SELECT qty INTO :tmp

FROM InStore

WHERE StoreID = :store AND prodID = :product

• UPDATE Product

SET WarehouseQty = WarehouseQty + :tmp

WHERE prodID = :product

• UPDATE InStore

SET Qty = 0

WHERE prodID = :product

• COMMIT

This is one way to write
the application; other algorithms
are also possible

April 2004 Transactions by Alan Fekete 22

Example - Restock

• Input validation
– Valid product, store, qty
– Amount of product in warehouse >= qty

• UPDATE Product
SET WarehouseQty = WarehouseQty - :qty
WHERE prodID = :product

• If no record yet for product in store
INSERT INTO InStore (:product, :store, :qty)

• Else, UPDATE InStore
SET qty = qty + :qty
WHERE prodID = :product and storeID = :store

• COMMIT

April 2004 Transactions by Alan Fekete 23

Example - Consistency

• How to write the app to keep integrity holding?

• MakeSale logic:
– Reduce Instore.qty

– Calculate sum over all stores and warehouse

– If sum < 50, then ROLLBACK // Sale fails

– If sum < 70, check for order where date is null
• If none found, insert new order for say 25

– COMMIT

This terminates execution
of the program (like return)

April 2004 Transactions by Alan Fekete 24

Example - Consistency

• We don’ t need any fancy logic for checking the
business rules in Restock, ClearOut, Transfer
– Because sum of qty not changed; presence of order not

changed
• provided integrity holds before txn, it will still hold afterwards

• We don’ t need fancy logic to check business rules
in AcceptReturn
– why?

• Is checking logic needed for RcvOrder?

5

April 2004 Transactions by Alan Fekete 25

Threats to data integrity

• Need for application rollback

• System crash

• Concurrent activity

• The system has mechanisms to handle these

April 2004 Transactions by Alan Fekete 26

Application rollback

• A transaction may have made changes to the data
before discovering that these aren’ t appropriate
– the data is in state where integrity constraints are false

– Application executes ROLLBACK

• System must somehow return to earlier state
– Where integrity constraints hold

• So aborted transaction has no effect at all

April 2004 Transactions by Alan Fekete 27

Example

• While running MakeSale, app changes
InStore to reduce qty, then checks new sum

• If the new sum is below 50, txn aborts

• System must change InStore to restore
previous value of qty
– Somewhere, system must remember what the

previous value was!

April 2004 Transactions by Alan Fekete 28

System crash

• At time of crash, an application program may be
part-way through (and the data may not meet
integrity constraints)

• Also, buffering can cause problems
– Note that system crash loses all buffered data, restart

has only disk state
– Effects of a committed txn may be only in buffer, not

yet recorded in disk state
– Lack of coordination between flushes of different

buffered pages, so even if current state satisfies
constraints, the disk state may not

April 2004 Transactions by Alan Fekete 29

Example

• Suppose crash occurs after
– MakeSalehas reduced InStore.qty
– found that new sum is 65
– found there is no unfilled order
– // but before it has inserted new order

• At time of crash, integrity constraint did not hold
• Restart process must clean this up (effectively

aborting the txn that was in progress when the
crash happened)

April 2004 Transactions by Alan Fekete 30

Concurrency

• When operations of concurrent threads are
interleaved, the effect on shared state can be
unexpected

• Well known issue in operating systems,
thread programming
– see OS textbooks on critical section

– Java use of synchronized keyword

6

April 2004 Transactions by Alan Fekete 31

Famous anomalies

• Dirty data
– One task T reads data written by T’ while T’ is running, then T’

aborts (so its data was not appropriate)

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’
– The values observed may not satisfy integrity constraints
– This was not considered by the programmer, so code moves into

absurd path

April 2004 Transactions by Alan Fekete 32

Example – Dirty data

• AcceptReturn(p1,s1,50) MakeSale(p1,s2,65)

• Update row 1: 25 -> 75

• update row 2: 70->5

• find sum: 90

• // no need to insert

• // row in Order

• Abort

• // rollback row 1 to 25

• COMMIT

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of InStore, Product

Integrity constraint is false:
Sum for p1 is only 40!

etcetcetc

60s1p2

5s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1

April 2004 Transactions by Alan Fekete 33

Example – Lost update

• ClearOut(p1,s1) AcceptReturn(p1,s1,60)

• Query InStore; qty is 25

• Add 25 to WarehouseQty: 40->65

• Update row 1: 25->85

• Update row 1, setting it to 0

• COMMIT

• COMMIT

Initial state of InStore, Product

Final state of InStore, Product

60 returned p1’s have vanished
from system; total is still 135

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

0s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

April 2004 Transactions by Alan Fekete 34

Example – Inconsistent read

• ClearOut(p1,s1) MakeSale(p1,s2,60)

• Query InStore: qty is 30

• Add 30 to WarehouseQty: 10->40

• update row 2: 65->5

• find sum: 75

• // no need to insert

• // row in Order

• Update row 1, setting it to 0

• COMMIT

• COMMIT

etcetcetc

60s1p2

65s2p1

30s1p1

Initial state of InStore, Product

Final state of
InStore, Product

Integrity constraint is false:
Sum for p1 is only 45!

etcetcetc

60s1p2

5s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

April 2004 Transactions by Alan Fekete 35

Serializability

• To make isolation precise, we say that an
execution is serializable when

• There exists some serial (iebatch, no overlap at
all) execution of the same transactions which has
the same final state
– Hopefully, the real execution runs faster than the serial

one!
• NB: different serial txn orders may behave

differently; we ask that some serial order produces
the given state
– Other serial orders may give different final states

April 2004 Transactions by Alan Fekete 36

Example – Serializable execution

• ClearOut(p1,s1) MakeSale(p1,s2,20)

• Query InStore: qty is 30

• update row 2: 45->25

• find sum: 65

• no order for p1 yet

• Add 30 to WarehouseQty: 10->40

• Update row 1, setting it to 0

• COMMIT

• Insert order for p1

• COMMIT

etcetcetc

60s1p2

45s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Execution is like serial
MakeSale; ClearOut

etcetcetc

60s1p2

25s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

Order: empty

etcNull 25p1

7

April 2004 Transactions by Alan Fekete 37

Serializability Theory

• There is a beautiful mathematical theory, based on formal
languages
– Treat the set of all serializableexecutions as an object of interest

(called SR)
– Thm: SR is in NP, i.e. the task of testing whether an execution is

serializableseems unreasonably slow

• Does it matter?
– The goal of practical importance is to design a system that

produces some subset of the collection of serializableexecutions
– It’ s not clear that we care about testing arbitrary executions that

don’ t arise in our system

April 2004 Transactions by Alan Fekete 38

Conflict serializability

• There is a nice sufficient condition (iea conservative
approximation) called conflict serializable, which can be
efficiently tested
– Draw a precedes graph whose nodes are the transactions
– Edge from Ti to Tj when Ti accesses x, then later Tj accesses x,

and the accesses conflict (not both reads)
– The execution is conflict serializable iff the graph is acyclic

• Thm: if an execution is conflict serializable then it is
serializable
– Pf: the serial order with same final state is any topological sort of

the precedes graph

• Most people and books use the approximation, usually
without mentioning it!

April 2004 Transactions by Alan Fekete 39

ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds
• Isolated

– Effect of txns is the same as txns running one after
another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database

April 2004 Transactions by Alan Fekete 40

Big Picture

• If programmer writes applications so each txn is
consistent

• And DBMS provides atomic, isolated, durable
execution
– i.e. actual execution has same effect as some serial

execution of those txns that committed (but not those
that aborted)

• Then the final state will satisfy all the integrity
constraints

NB true even though system does not know all integrity constraints!

April 2004 Transactions by Alan Fekete 41

Overview

• Transactions

• Implementation Techniques
– Ideas, not details!

– Implications for application programmers

– Implications for DBAs

• Weak isolation issues

April 2004 Transactions by Alan Fekete 42

Main implementation techniques

• Logging
– Interaction with buffer management

– Use in restart procedure

• Locking

• Distributed Commit

8

April 2004 Transactions by Alan Fekete 43

Logging

• The log is an append-only collection of
entries, showing all the changes to data that
happened, in order as they happened

• e.g. when T1 changes qty in row 3 from 15
to 75, this fact is recorded as a log entry

• Log also shows when txns
start/commit/abort

April 2004 Transactions by Alan Fekete 44

A log entry

• LSN: identifier for entry, increasing values

• Txn id

• Data item involved

• Old value

• New value
– Sometimes there are separate logs for old

values and new values

April 2004 Transactions by Alan Fekete 45

Extra features

• Log also records changes made by system
itself
– e.g. when old value is restored during rollback

• Log entries are linked for easier access to
past entries
– Link to previous log entry

– Link to previous entry for the same txn

April 2004 Transactions by Alan Fekete 46

Buffer management

• Each page has place for LSN of most recent
change to that page

• When a page is fetched into buffer, DBMS
remembers latest LSN at that time

• Log itself is produced in buffer, and flushed to
disk (appending to previously f lushed parts) from
time to time

• Important rules govern when buffer flushes can
occur, relative to LSNs involved
– Sometimes a flush is forced (eg log flush forced when

txn commits)

April 2004 Transactions by Alan Fekete 47

Using the log

• To rollback txn T
– Follow chain of T’s log entries, backwards

– For each entry, restore data to old value, and
produce new log record showing the restoration

– Produce log record for “abort T”

April 2004 Transactions by Alan Fekete 48

Restart

• After a crash, follow the log forward,
replaying the changes
– i.e. re-install new value recorded in log

• Then rollback all txns that were active at the
end of the log

• Now normal processing can resume

9

April 2004 Transactions by Alan Fekete 49

Optimizations

• Use LSNs recorded in each page of data, to
avoid repeating changes already reflected in
page

• Checkpoints: flush pages that have been in
buffer too long
– Record in log that this has been done

– During restart, only repeat history since last (or
second-last) checkpoint

April 2004 Transactions by Alan Fekete 50

Don’ t be too confident

• Crashes can occur during rollback or restart!
– Algorithms must be idempotent

• Must be sure that log is stored separately from
data (on different disk array; often replicated off-
site!)
– In case disk crash corrupts data, log allows fixing this

– Also, since log is append-only, don’ t want have random
access to data moving disk heads away

April 2004 Transactions by Alan Fekete 51

Complexities

• Multiple txns affecting the same page of
disk
– From “fine-grained locking” (see later)

• Operations that affect multiple pages
– Eg B-tree reorganization

• Multithreading in log writing
– Use standard OS latching to prevent different

tasks corrupting the log’s structure

April 2004 Transactions by Alan Fekete 52

ARIES

• Until 1992, textbooks and research papers
described only simple logging techniques
that did not deal with complexities

• Then C. Mohan (IBM) published a series of
papers describing ARIES algorithms
– Papers are very hard to read, give inconsistent

level of details, but at last the ideas of modern,
high-performance, real systems are available!

April 2004 Transactions by Alan Fekete 53

Implications

• For application programmer
– Choose txn boundaries to include everything

that must be atomic

– Use ROLLBACK to get out from a mess

• For DBA
– Tune for performance: adjust checkpoint

frequency, amount of buffer for log, etc

– Look after the log!

April 2004 Transactions by Alan Fekete 54

Main implementation techniques

• Logging

• Locking
– Lock manager

– Lock modes

– Granularity

– User control

• Distributed Commit

10

April 2004 Transactions by Alan Fekete 55

Lock manager

• A structure in (volatile memory) in the DBMS
which remembers which txnshave set locks on
which data, in which modes

• It rejects a request to get a new lock if a
conflicting lock is already held by a different txn

• NB: a lock does not actually prevent access to the
data, it only prevents getting a conflicting lock
– So data protection only comes if the right lock is

requested before every access to the data

April 2004 Transactions by Alan Fekete 56

Lock modes

• Locks can be for writing (W), reading (R)
or other modes

• Standard conflict rules: two W locks on the
same data item conflict, so do one W and
one R lock on the same data
– However, two R locks do not conflict

• Thus W=exclusive, R=shared

April 2004 Transactions by Alan Fekete 57

Automatic lock management

• DBMS requests the appropriate lock
whenever the app program submits a
request to read or write a data item

• If lock is available, the access is performed
• If lock is not available, the whole txn is

blocked until the lock is obtained
– After a conflicting lock has been released by

the other txn that held it

April 2004 Transactions by Alan Fekete 58

Strict two-phase locking

• Locks that a txn obtains are kept until the
txn completes
– Once the txn commits or aborts, then all its

locks are released (as part of the commit or
rollback processing)

• Two phases:
– Locks are being obtained (while txn runs)

– Locks are released (when txn finished)

April 2004 Transactions by Alan Fekete 59

Serializability

• If each transaction does strict two-phase
locking (requesting all appropriate locks),
then executions are serializable

• However, performance does suffer, as txns
can be blocked for considerable periods
– Deadlocks can arise, requiring system-initiated

aborts

April 2004 Transactions by Alan Fekete 60

Proof sketch

• Suppose all txns do strict 2PL
• If Ti has an edge to Tj in the precedes graph

– That is, Ti accesses x before Tj has conflicting access to x
– Ti has lock at time of its access, Tj has lock at time of its access
– Since locks conflict, Ti must release its lock before Tj’saccess to x
– Ti completes before Tj accesses x
– Ti completes before Tj completes

• So the precedes graph is subset of the (acyclic) total order
of txn commit

• Conclusion: the execution has same final state as the serial
execution where txns are arranged in commit order

11

April 2004 Transactions by Alan Fekete 61

Example – No Dirty data
• AcceptReturn(p1,s1,50) MakeSale(p1,s2,65)
• Update row 1: 25 -> 75
• //t1 W-locks InStore. row 1
• update row 2: 70->5
• //t2 W-locks Instore.row2
• try find sum:// blocked
• // as R-lock on Instore.row1
• // can’ t be obtained
• User-initiated Abort
• // rollback row 1 to 35; release lock
• // now get locks
• find sum: 40
• ROLLBACK
• // row 2 restored to 70
•

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of
InStore, Product

Integrity constraint is valid etcetcetc

60s1p2

70s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1

April 2004 Transactions by Alan Fekete 62

Example – No Lost update
• ClearOut(p1,s1) AcceptReturn(p1,s1,60)
• Query InStore; qty is 25
• //t1 R-lock InStore.row1
• Add 25 to WarehouseQty: 40->65
• // t1 W-lock Product.row 1
• try Update row 1
• // blocked
• // as W-lock on InStore.row1
• // can’ t be obtained
• Update row 1, setting it to 0
• //t1 upgrades to W-lock on InStore.row1
• COMMIT // release t1’s locks
• // now get W-lock
• Update row 1: 0->60
• COMMIT

Initial state of InStore, Product

Final state of InStore, Product
Outcome is same as serial
ClearOut; AcceptReturn

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

60s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

April 2004 Transactions by Alan Fekete 63

Granularity

• What is a data item (on which a lock is obtained)?
– Most times, in most modern systems: item is one tuple

in a table

– Sometimes: item is a page (with several tuples)

– Sometimes: item is a whole table

• In order to manage conflicts properly, system gets
“ intention” mode locks on larger granules before
getting actual R/W locks on smaller granules

April 2004 Transactions by Alan Fekete 64

Granularity trade-offs

• Larger granularity: fewer locks held, so less
overhead; but less concurrency possible
– “ false conflicts” when txns deal with different parts of

the same item

• Smaller “ fine” granularity: more locks held, so
more overhead; but more concurrency is possible

• System usually gets fine grain locks until there are
too many of them; then it replaces them with
larger granularity locks

April 2004 Transactions by Alan Fekete 65

Explicit lock management

• With most DBMS, the application program
can include statements to set or release
locks on a table
– Details vary

• e.g. LOCK TABLE InStore IN
EXCLUSIVE MODE

April 2004 Transactions by Alan Fekete 66

Implications

• For application programmer
– If txn reads many rows in one table, consider locking

the whole table first
– Consider weaker isolation (see later)

• For DBA
– Tune for performance: adjust max number of locks,

granularity factors
– Possibly redesign schema to prevent unnecessary

conflicts
– Possibly adjust query plans if locking causes problems

12

April 2004 Transactions by Alan Fekete 67

Implementation mechanisms

• Logging

• Locking

• Distributed Commit

April 2004 Transactions by Alan Fekete 68

Transactions across multiple DBMS

• Within one transaction, there can be
statements executed on more than one
DBMS

• To be atomic, we still need all-or-nothing
• That means: every involved system must

produce the same outcome
– All commit the txn
– Or all abort it

April 2004 Transactions by Alan Fekete 69

Why it’ s hard

• Imagine sending to each DBMS to say
“commit this txn T now”

• Even though this message is on its way,
any DBMS might abort T spontaneously
– e.g. due to a system crash

April 2004 Transactions by Alan Fekete 70

Two-phase commit

• The solution is for each DBMS to first
move to a special situation, where the txn is
“prepared”

• A crash won’ t abort a prepared txn, it will
leave it in prepared state
– So all changes made by prepared txn must be

recovered during restart (including any locks
held before the crash!)

NB unrelated to “ two-phase locking”

April 2004 Transactions by Alan Fekete 71

Basic idea

• Two round-trips of messages
– Request to prepare/ prepared or aborted

– Either Commit/committed or Abort/aborted

Only if all DBMSs are already prepared!

April 2004 Transactions by Alan Fekete 72

Read-only optimisation

• If a txn has involved a DBMS only for
reading (but no modifications at that
DBMS), then it can drop out after first
round, without preparing
– The outcome doesn’ t matter to it!

– Special phase 1 reply: ReadOnly

13

April 2004 Transactions by Alan Fekete 73

Fault-tolerant protocol

• The interchange of messages between the
“coordinator” (part of the TPMonitor
software) and each DBMS is tricky
– Each participant must record things in log at

specific times

– But the protocol copes with lost messages,
inopportune crashes etc

April 2004 Transactions by Alan Fekete 74

Implications

• For application programmer
– Avoid putting modifications to multiple databases in a

single txn
• Performance suffers a lot

• W-Locks are held during the message exchanges, which take
much longer than usual txn durations

• For DBA
– Monitor performance carefully

– Make sure you have DBMS that support protocol

April 2004 Transactions by Alan Fekete 75

Overview

• Transactions

• Implementation techniques

• Weak isolation issues
– Explicit use of low levels

– Use of replicas

– Snapshot isolation

April 2004 Transactions by Alan Fekete 76

Problems with serializability

• The performance reduction from isolation is high
– Transactions are often blocked because they want to

read data that another txn has changed

• For many applications, the accuracy of the data
they read is not crucial
– e.g. overbooking a plane is ok in practice

– e.g. your banking decisions would not be very different
if you saw yesterday’s balance instead of the most up-
to-date

April 2004 Transactions by Alan Fekete 77

A and D matter!

• Even when isolation isn’ t needed, no one is
willing to give up atomicity and durability
– These deal with modifications a txn makes

– Writing is less frequent than reading, so log
entries and write locks are considered worth the
effort

April 2004 Transactions by Alan Fekete 78

Explicit isolation levels

• A transaction can be declared to have
isolation properties that are less stringent
than serializability
– However SQL standard says that default should

be serializable (also called “ level 3 isolation”)

– In practice, most systems have weaker default
level, and most txns run at weaker levels!

14

April 2004 Transactions by Alan Fekete 79

Browse

• SET TRANACTION ISOLATION LEVEL
READ UNCOMMITTED
– Do not set read locks at all

• Of course, still set write locks before updating data

• If fact, system forces the txn to be read-only unless
you say otherwise

– Allows txn to read dirty data (from a txn that
will later abort)

April 2004 Transactions by Alan Fekete 80

Cursor stability

• SET TRANACTION ISOLATION LEVEL
READ COMMMITTED
– Set read locks but release them after the read has

happened
• e.g. when cursor moves onto another element during scan of

the results of a multirow query

– i.e. do not hold R-locks till txn commits/aborts
– Data is not dirty, but it can be inconsistent (between

reads of different items, or even between one read and a
later one of the same item)

• Especially, weird things happen between different rows
returned by a cursor

Most common in practice!

April 2004 Transactions by Alan Fekete 81

Repeatable read

• SET TRANACTION ISOLATION LEVEL
REPEATABLE READ
– Set read locks on data items, and hold them till txn

finished, but release locks on indices as soon as index
has been examined

– Allows “phantoms”, rows that are not seen in a query
that ought to have been (or vice versa)

– Problems if one txn is changing the set of rows that
meet a condition, while another txn is retrieving that set

April 2004 Transactions by Alan Fekete 82

Stale replicas

• In many distributed processing situations, copies
of data are kept at several sites
– e.g. to allow cheap/fast local reading

• If updates try to alter all replicas, they become
very slow and expensive (they need two-phase
commit, and they’ ll abort if a remote site is
unavailable!)

• So allow replicas to be out-of-date
• Lazy propagation of updates

– Easily managed by shipping the log across from time to
time

April 2004 Transactions by Alan Fekete 83

Reading stale replicas

• If a txn reads a local replica which is a bit
stale, then the value read can be out-of-date,
and potentially inconsistent with other data
seen by the txn

• Impact is essentially the same as READ
COMMITTED

April 2004 Transactions by Alan Fekete 84

Snapshot Isolation

• Most DBMS vendors use variants of the
standard algorithms

• However, one very major vendor uses a
different approach: Oracle
– Before version 7.3 it did not support

ISOLATION LEVEL SERIALIZABLE at all

– Now it allows the SQL command, but uses a
different algorithm called Snapshot Isolation

15

April 2004 Transactions by Alan Fekete 85

Snapshot Isolation

• Read of an item does not give current value
• Instead, use the recovery log to find value that had

been most recently committed at the time the txn
started
– Exception: if the txn has modified the item, use the

value it wrote itself

• The transaction sees a “snapshot” of the database,
at an earlier time
– Intuition: this should be consistent, if the database was

consistent before

April 2004 Transactions by Alan Fekete 86

Checks for conflict

• If two overlapping txns try to modify the
same item, one will be aborted

• Implemented with write locks on modified
rows
– NB one txn out of the conflicting pair is

aborted, rather than delayed as in conventional
approach

April 2004 Transactions by Alan Fekete 87

Benefits of SI

• No cost for extra time-travel versions
– They are in log anyway!

• Reading is never blocked

• Prevents the usual anomalies
– No dirty read

– No lost update

– No inconsistent read

April 2004 Transactions by Alan Fekete 88

Problems with SI

• SI does not always give serializable
executions
– (despite Oracle using it for “ ISOLATION

LEVEL SERIALIZABLE)

• Integrity Constraints can be violated
– Even if every application is written to be

consistent!

April 2004 Transactions by Alan Fekete 89

Example – Skew Write

• MakeSale(p1,s1,26) MakeSale(p1,s2,25)

• Update row 1: 30->4

• update row 2: 35->10

• find sum: 72

• // No need to Insert row in Order

• Find sum: 71

• // No need to insert row in Order

• COMMIT

• COMMIT

etcetcetc

60s1p2

35s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Integrity constraint is false:
Sum is 46

etcetcetc

60s1p2

10s2p1

4s1p1

etcetcetc

44etcp2

32etcp1

etcetcetc

44etcp2

32etcp1

Order: empty

Order: empty

NB: sum uses old value of row1 and Product,
and self-changed value of row2

April 2004 Transactions by Alan Fekete 90

Skew Writes

• SI breaks serializability when txns modify
different items, each based on a previous state of
the item the other modified

• This is fairly rare in practice

• Eg the TPC-C benchmark runs correctly under SI
– when txns conflict due to modifying different data,

there is also a shared item they both modify too (like a
total quantity) so SI will abort one of them

16

April 2004 Transactions by Alan Fekete 91

Implications

• For the application programmer
– Think carefully about your programs behavior

if reads are inaccurate
– If possible without compromising correctness,

run at lower isolation level to improve
performance

• For the DBA
– Watch like a hawk for corruption of the data,

and have strong processes to correct it!

April 2004 Transactions by Alan Fekete 92

Further Reading

• Transaction concept: Standard database texts, e.g.
Garcia-Molina et al Chapter 8.6

• Main implementation techniques: e.g. Garcia-
Molina et al Chapters 17-19

• Big picture: “Principles of Transaction
Processing” by P. Bernstein and E. Newcomer

• Theory: “Transactional Information Systems” by
G. Weikum and G. Vossen

• The gory details: “Transaction Processing” by J.
Gray and A. Reuter

April 2004 Transactions by Alan Fekete 93

Recent Transaction Research

• Properties of weak isolation
– Declarative representation

– Restricted cases where you still get integrity running
with lower isolation level

• Conditions on the applications

• Conditions on the constraints

• Extended transaction models
– Suitable for web services workflows

– Across trust domains, so can’ t give up autonomy

