CSE 544: Lectures 13 and 14
Storing Data, Indexes

Monday, 5/10/2004
Wednesday, 5/12/2004

What Should aDBMS Do?

Store large amounts of data
Process queries efficiently

Allow multiple users to access the database
concurrently and safely.

Provide durability of the data.

How will we do all this??

Outline

* Overview of aRDBMS

 Storing data: disks and files - Chapter 9
e Types of Indexes - Chapter 8.3

e B-trees - Chapter 10

e Hash-tables - Chapter 11

 Ouey Generic Architecture

User/

update —
& P ‘ Query compiler/optimizer ‘ .
Query execution
Transaction Record, plan
commands index

o1 ncesresoamr |
Transaction manager: Index/record mgr. Pege
«Concurrency control commands
Logging/recovery Buffer manager

Read/write
pages

The Memory Hierarchy

Processor Cache
Voldtile
‘ Main Memory = Disk Cache‘

Persistent

Disk

 The unit of disk 1/0 = block
— Typically 1 block = 4k
e Used with amain memory buffer

Important Disk Access

The Mechanics of Disk Characteristics

Cylinder

Mechanical characteristics:

+ Rotation speed (€.9. 7200RPM)oigi nead Disk latency =

* Number of platers (e.g. 5) = seek time + rotational latency + transfer time
* Number of tracks (<=10000) Secior

+ Number of bytes/track(e.g.10° e Seek time:

— e.g. min=2.2ms, max=15.5ms, avg=9.1ms
Rotational latency:

Important: Platters - eg.avg=4.17ms
* Logical R/W unit: block
typical 2KB - 32KB * Transfer rate

— E.g. 13MB/s
Arm assembly 8
How Much Storage for $200 RAIDs
1000 g 1 Terabyte .
E » ="“Redundant Array of Independent Disks’
100 L — Was “inexpensive’ disks
£ 088 ¢ ldea: use more disks, increase reliability
x s
& 10t * Recall:
= E — Database recovery helps after a systems crash, not after
é” 1k adisk crash
E I e 6waysto use RAIDs. Moreimportant:
01t 70 M — Level 4: use N-1 data disks, plus one parity disk
E o? Year — Level 5: same, but alternate which disk is the parity
o012 4 . . — Level 6: use Hamming codes instead of parity
1990 1995 2000 2005 . o

Buffer Management inaDBMS

Page Requests from Higher Levels BUffer M anagef
BUFFER POOL o
A Page request --> read it in afree frame
disk page e pin_count = how many processes requested
M it pinned
free frame « dirty flag = if the page in the frame has
MAIN MEMORY been Changed

DISK ———) choice of frame dictated
by replacement policy ° Repl acement pOI|C| es:
—LRU, Clock, MRU, etc.
« Need atable of <frame#, pageid> pairs — Only consider frames with pin_count=0

12

Buffer Manager

Why not use the Operating System for the task??
- DBMS may be able to anticipate access patterns

- Hence, may also be able to perform prefetching
- DBMS needs the ahility to force pages to disk.

13

Managing Free Blocks

« BytheOS

e By the RDBMS (typical: why ?)
— Linked list of free blocks

Files of Records

Types of files:

* Heap file - unordered

 Sorted file

o Clustered file - sorted, plus a B-tree

Will discuss heap files only; the others are
similar, only sorted by the key

15

Heap Files

Better: directory of pages

Hedr| \ Data
‘ page
S5 K Data
‘ page
%\\

Directory — E;z
17

— Bit map
14
Heap Files
Linked list of pages: T T~ T
Data Data Data
page page page
~_ A
Header ~
page Full pages
Y
Data Data Data
page page page
Dl .
N
Pages with some free space 1
Page Formats

Issues to consider
« 1 page = fixed size (e.g. 8KB)
* Records:
— Fixed length
— Variable length
e Recordid=RID
— Typicaly RID = (Pagel D, SlotNumber)

Why do we need RID’sin arelational DBMS ? 18

Page Formats

Fixed-length records: packed representation

Slot1 Slot2 Slot N

| Free space |N|

Problems ?

19

Page Formats

Record Formats

Fixed-length records --> all fields have fixed length

Field1 |Field 2| .| Fiedk |

21

- // —
A
L el ||
Slot directory
Variable-length records
Record Formats
Variable length records
[TTTT Foar [ridaz] N
Record header

Remark: NULLS require no space at all (why ?)

22

Spanning Records Across Blocks

block block
header heade

R1 R2 % R2 R3

¢ When recor j—l—ls arevery large
« Or even medium size: saves space in blocks
e Commercial RDBMS avoid this

]

23

LOB

 Large objects
— Binary large object: BLOB
— Character large object: CLOB
 Supported by modern database systems
 E.g. images, sounds, texts, etc.
 Storage: attempt to cluster blocks together

2

Modifications: Insertion

* Fileisunsorted (= heap file)
—addittotheend (easy J)
* Fileissorted:
— Isthere spacein theright block ?
* Yes: we are lucky, storeit there
— Isthere space in a neighboring block ?
« Look 1-2 blocks to the left/right, shift records
— If anything elsefails, create overflow block

25

Overflow Blocks

Block,, , Block,, Block,,,,

Overflow

o After awhilethefile starts being dominated
by overflow blocks: time to reorganize

26

Modifications: Deletions

* Free spacein block, shift records

* Maybe be able to eliminate an overflow
block

» Can never redlly eliminate the record,
because others may point to it

— Place atombstone instead (a NULL record)

27

Modifications: Updates
* |If new record is shorter than previous, easy J

« If itislonger, need to shift records, create
overflow blocks

28

Record Formats. Fixed Length

F1 F2 F3 F4

_Llﬁ-{ L2 L3 H L4 ‘

Base address (B) Address = B+L1+L2

« Information about field types samefor all
recordsin afile; stored in system catalogs.

e Finding i'th field requires scan of record.
¢ Notetheimportance of schema information!

Indexes

¢ Search key = can be any set of fields
— not the same as the primary key, nor akey

¢ Index = collection of dataentries

« Dataentry for key k can be:
— The actual record with key k
— (k, RID)
— (k, ligt-of-RIDs)

Index Classification

¢ Primary/secondary
— Primary = may reorder data according to index
— Secondary = cannot reorder data
¢ Clustered/unclustered
— Clustered = records close in the index are close in the data
— Unclustered = records close in the index may be far in the data
* Dense/sparse
— Dense = every key in the data appearsin the index
— Sparse = theindex contains only some keys
* B+tree/Hashtable/ ...

31

Primary Index

* Fileissorted on the index attribute
» Dense index: sequence of (key,pointer) pairs

e SRS 1) S—
= E I
o

e
. o

\\——,,
-
-

I

32

Primary Index

o Sparseindex

g|8|E|8
ii 8g iiii

Primary Index with Duplicate
Keys

¢ Denseindex:

8|8
ﬁﬁ
Si5||5|o

3
N
3|3

EX
o]

Primary Index with Duplicate
Keys

 Sparseindex: pointer to lowest search key
in each block:

5|5
|
I
|
|
|
i

20is 2 ~
here... il
~

» Search for 20

/
/

/

/

/

/

/

3|38 |8|5

ii
&

Primary Index with Duplicate
Keys
« Better: pointer to lowest new search key in

each block: CE—
. —

O [of]
5 o
search
> from here
» Searchfor 15?357 %

Secondary Indexes

» Toindex other attributes than primary key
* Always dense (why ?)

[20
10 30
»
» | 30
20
»
» 10
E)
» 20
10
30 a7

Clustered/Unclustered

e Primary indexes = usually clustered
» Secondary indexes = usually unclustered

38

Clustered vs. Unclustered Index

Data entries
Dataentries

AbBooo T)

Data Records Data Records

CLUSTERED UNCLUSTERED

Secondary Indexes

e Applications:
— index other attributes than primary key
— index unsorted files (heap files)
— index clustered data

40

Applications of Secondary Indexes

 Secondary indexes needed for heap files
 Also for Clustered data:
Company(name, city), Product(pid, maker)

Select city Select pid
From Company, Product From Company, Product
Where name=maker Where name=maker
and pid="p045” and city="Seattle"
Products of company 1 Products of company 2 Products of company 3
PN — —A
Company 1 Company 2 Company 3 A

Composite Search Keys

» Composite Search Keys: Search
on acombination of fields.

Examples of composite key

indexes using lexicographic order.

— Equality query: Every field

11.80

11

valueis equal to a constant

12

value. E.g. wrt <sal ,age> 1220

12

index: 1575

13

» age=20 and sa =75

<age, sal>

<age>

— Range query: Some field

10

valueisnot aconstant. E.g.:

20

* age =20; or age=20 and

5

sal > 10

0

<sal, age>
Data entries in index
sorted by <sal,age>

<sal>

Data entries
sorted by <sal>

B+ Trees

* Search trees
* ldeain B Trees:
— make 1 node = 1 block
* ldeain B+ Trees:
— Make leavesinto alinked list (range queries are

B+ Trees Basics

 Parameter d = the degree
 Each node has >= d and <= 2d keys (except root)

[[0] 20
EARRENE

Keysk <30 Keys30<=k<120 Keys 120<=k<240 Keys 240<=k

 Each leaf has>=d and <= 2d keys:

easier)
43
B+ Tree Example
d=2 Find the key 40
[eo] T T 1|
oo fT-] [T]
[20Te] T] \|100\120\140\ |
LT T NN
20X 40560 =
|10‘15‘13‘ | 20‘30‘40‘50”50‘55‘ ||so‘as‘90‘
[

ool \E{éé

[0 [s0] o]
PEINEINE Next leaf
B w
Searching aB+ Tree

» Exact key values: Sdect rame

- Stal’t at the root From pa)p|e

— Proceed down, to the leaf Where age = 25
» Range queries: Select name

— From people

Asabove . Where 20 <= age
— Then sequential traversal and age <= 30

a6

B+ Tree Design

How larged ?

Example:

— Key size=4 bytes

— Pointer size = 8 bytes

— Block size = 4096 byes

e 2dx 4 + (2d+1) x 8 <= 4096
d=170

47

B+ Treesin Practice

e Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133
¢ Typical capacities:
— Height 4: 1334 = 312,900,700 records
— Height 3: 1333 = 2,352,637 records
¢ Can often hold top levelsin buffer pool:
— Level 1= 1page = 8Kbytes
— Level 2= 133 pages= 1Mbyte
— Level 3 =17,689 pages = 133 MBytes

Insertionin aB+ Tree

Insert (K, P)

e Find leaf where K belongs, insert

« If no overflow (2d keys or less), halt

o If overflow (2d+1 keys), split node, insert in parent:

parent parent
_ K3

[ki k2] k3]ka] ks | [k Jra] T J[kaxs] T]
[pofpileo Teafrafos| = [rleife[[|[ea[ralos] T|
 If leaf, keegp K3 too in right node
* When root splits, new root has 1 key only

49

Insertionin aB+ Tree
Insert K=19

|10‘15‘1a‘ 20‘30‘40‘50”60‘65‘ ||80‘85‘90‘

L] I INNNEIR H-I/\

LL; et 4

Insertionin aB+ Tree

After insertion

\\|100\120\140\ |

[~ 11 NES NN

|10‘15‘13‘19| 20‘30‘40‘50”50‘55‘ |so‘as‘90‘

iiidiin \E{éé

51

Insertionin aB+ Tree

Now insert 25

|10‘15‘1a‘19| 20‘30‘40‘50”60‘65‘ |ao‘35‘90‘

L] I NNEIE

LL\W.LEL@L\E{ ; 4

52

Insertionin aB+ Tree

After insertion

|10‘15‘18‘19| 20‘25‘30‘40‘50' |60‘65‘ ‘

L J‘\\ \

]
LL--L B @ih.

Insertionin aB+ Tree

But now have to split !

|20 Jeo] [|

|10‘15‘1B‘19| 20‘25‘ ‘40‘50"60‘65‘ ||BO‘85‘90‘

«\H \H\

Insertionin aB+ Tree

After the split
[eo] [T]
ATl T T
[20]30]e0]] \|100\120\140\ |
AINENESE L [1]
10|15(18| 19 20|25 30 | 40|50 80 85|90

R ELM bto

Deletion from aB+ Tree
Delete 30

LS e

10[15]18]19] [20]25 50 |50‘65‘ | [eo]es o]

L 4 T H——\

e EL\E{ bie

Deletion fromaB+ Tree

After deleting 30
[eo] T T 1|
Ll T T

May changeto
40, or not
_—

[20]s0]e]] \|100\120\140\ |
|

AENENENE EEENEEN

10 [15|18 | 19 20 | 25 40 | 50 80 85| 90

R, NLM “

Deletion from aB+ Tree
Now delete 25

e
/ \\ \\

10[15]18]19] [20]25 |50‘65‘ | [eo]es o] |

58

Deletion from aB+ Tree

After deleting 25
Need to rebalance
Rotate [[]
Tl
[20]30]e]] [100T120]100]]
ENENEE Ll] 4\I

10[15/ 18|19 |20 |4°‘5°‘ ‘ ”60 65

\HH\#»

I
LLLIH, Ja
NI/

59

Deletion from aB+ Tree
Now delete 40

"
N S

55 go‘ |‘

10[15] 18 1920 |60‘ ‘ |BO‘ ‘90‘ |‘

DL+ TP DT

L mmnh & BL-(‘.

10

Deletion fromaB+ Tree

After deleting 40

Rotation not possiblg

Need to merge nodeq
[19]s0]e]] \\|100\120\140\ |
AINENESE L [1]

/ T Sss
10]15] 18 M9]20 50
; :I_ :|_|:]

Deletion from aB+ Tree

Final tree

A EEE
\ e

N -
80 [85| 90

10[15] 18 19 [20] 50 [eofes] T J[eo]es]eo]]
& j—H [+ O ET

oot s

In Class

« Suppose the B+ tree has depth 4 and degree d=200
« How many records does the relation have (maximum) ?

« How many index blocks do we need to read and/or write
during:
— A key lookup
— Aninsertion
— Adeletion

Hash Tables

 Secondary storage hash tables are much like
main memory ones

Recall basics:

— There are n buckets

— A hash function f(k) mapsakey kto {0, 1, ..., n-1}
— Store in bucket f(k) a pointer to record with key k

Secondary storage: bucket = block, use
overflow blocks when needed

Hash Table Example

e Assume 1 bucket (block) stores 2 keys +
pointers

« h(e)=0 o
« h(b)=h(f)=1 R
f
 h(g)=2 ,
* h(a=h(c)=3
3 a
.

Searching in a Hash Table

 Search for a

e Compute h(a)=3

 Read bucket 3 0

« 1 disk access 1 fb
2 9
3 [a

66

11

Insertion in Hash Table

 Placein right bucket, if space

Insertion in Hash Table

Create overflow block, if no space
* E.g. h(k)=1

« E.g. h(d)=2

0 e
1 b

f
2 g

d
3 a

Hash Table Performance

» Excellent, if no overflow blocks

 Degrades considerably when number of
keys exceeds the number of buckets (I.e.
many overflow blocks).

69

0 e
1 b |k
f
2 9
d
* Moreover- 5 |[a
flow blocks c
may be needed 6
Extensible Hash Table

Allows has table to grow, to avoid
performance degradation

* Assume a hash function h that returns
numbersin{0, ..., 2k—1}

 Start with n=2' << 2k only look at first i
most significant bits

70

Extensible Hash Table
e E.g.i=1, n=2=2, k=4
=] o010 [1]
0 P g
1] 1(011) [1]

» Note: we only look at the first bit (0 or 1)

71

Insertion in Extensible Hash

Table
e Insert 1110
[i=1] 010 [1]
// g
0 -
1 1(011) 1]
101

72

12

Insertion in Extensible Hash
Table

* Now insert 1010

[i=1] _Ao10 [1]
/ //

|
1| 1(011) 1]
\‘\ 1(110), 1(010)
» Need to extend table, split blocks
* | becomes 2

73

Insertion in Extensible Hash

Table
i= E 1
[i=2] P Ao [1]
pd
00 P
01 10(11) [2]
10 10(10)
11 —
11(10) 2]

74

Insertion in Extensible Hash

Insertion in Extensible Hash

Table
. -
After splitting the block 5 3
P
o ////» 01(01) [2]
Pz -
01 - 10(11) [2]
12 10(10)
11(10) 2]

Table
* Now insert 0000, then 0101
[i=2] _Ao(10) [1]
/// 0(000), 0(101)
00 Pz
01 10(11) 2]
10 10(10)
11 —
11(10) 2]
* Need to split block
Extensible Hash Table

» How many buckets (blocks) do we need to
touch after an insertion ?

» How many entries in the hash table do we
need to touch after an insertion ?

7

Performance Extensible Hash
Table

« No overflow blocks: access always one read
* BUT:

— Extensions can be costly and disruptive

— After an extension table may no longer fitin
memory

78

13

Linear Hash Table

* ldea: extend only one entry at atime
 Problem: n=no longer a power of 2
e Leti besuchthat 2 <=n< 2i*
 After computing h(k), uselast i bits:

— If last i bits represent a number > n, change msb
from 1 to O (get a number <= n)

79

Linear Hash Table Example

e N=3

(01)00 |]
i=2 _anw
pd Aoy siTFe |
o1~
01 ~
- (10)10 []
10

80

Linear Hash Table Example

* Insert 1000: overflow blocks...

Linear Hash Tables

 Extension: independent on overflow blocks

» Extend n:=n+1 when average number of
records per block exceeds (say) 80%

82

(0100 | 3 [(2oy00 []
i=2 (11)00
/ []
00
01 (10)10 []
10
81
Linear Hash Table Extension
¢ Fromn=3ton=4
(0100 [{on00 |]
i=2 ///' (1100 /[avw
7 Aoy |]
o[] : [CRE N
01 — (1010 [] =
10 (10)10 I
¢ Only need to touch 8(1) . //
one block (which one 7 onir (- []
(? 10 /,() V/
n=11 83

Linear Hash Table Extension

* From n=3 to n=4 finished

{00]

/| ary00
o Extension from n=4] [
to n=5 (new bit) - u

10)10

» Need to touch every oo =
single block (why ?) % (oD11]
11 84

14

