# CSE 544: Lecture 11 Theory

Monday, May 3, 2004

# Query Minimization

**Definition** A conjunctive query q is minimal if for every other conjunctive query q' s.t.  $q \equiv q'$ , q' has at least as many predicates ('subgoals') as q

Are these queries minimal?

q(x) := R(x,y), R(y,z), R(x,x)

q(x) := R(x,y), R(y,z), R(x,'Alice')

# Query Minimization

· Query minimization algorithm

Choose a subgoal g of q Remove g: let q' be the new query We already know  $q \subseteq q'$  (why?) If  $q' \subseteq q$  then permanently remove g

Notice: the order in which we inspect subgoals doesn't matter

# Query Minimization In Practice

- No database system today performs minimization !!!
- Reason:
  - It's hard (NP-complete)
  - Users don't write non-minimal queries
- However, non-minimal queries arise when using views intensively

# Query Minimization for Views

CREATE VIEW HappyBoaters

SELECT DISTINCT E1.name, E1.manager FROM Employee E1, Employee E2 WHERE E1.manager = E2.name and E1.boater='YES' and E2.boater='YES'

This query is minimal

### Query Minimization for Views

Now compute the Very-Happy-Boaters

SELECT DISTINCT H1.name FROM HappyBoaters H1, HappyBoaters H2 WHERE H1.manager = H2.name

This query is also minimal

What happens in SQL when we run a query on a view ?

# Query Minimization for Views

View Expansion

SELECT DISTINCT E1.name
FROM Employee E1, Employee E2, Employee E3, Empolyee E4
WHERE E1.manager = E2.name and E1.boater = 'YES' and E2.boater = 'YES'
and E3.manager = E4.name and E3.boater = 'YES' and E4.boater = 'YES'
and E1.manager = E3.name

This query is no longer minimal!



E2 is redundant

#### Monotone Queries

**Definition** A query q is monotone if: For every two databases D, D' if  $D \subseteq D$ ' then  $q(D) \subseteq q(D')$ 

Which queries below are monotone?

 $\varphi \equiv \exists x.R(x,x)$ 

 $\phi \equiv \exists x. \exists y. \exists z. \exists u. (R(x,y) \land R(y,z) \land R(z,u))$ 

 $\phi \equiv \exists x. \forall y. R(x,y)$ 

## Monotone Queries

- **Theorem**. Every conjunctive query is monotone
- Stronger: every UCQ query is monotone

# How To Impress Your Students Or Your Boss

• Find all drinkers that like some beer that is not served by the bar "Black Cat"

SELECT L.drinker
FROM Likes L
WHERE L.beer not in (SELECT S.beer
FROM Serves S
WHERE S.bar = 'Black Cat')

• Can you write as a simple SELECT-FROM-WHERE (I.e. without a subquery) ?

# Expressive Power of FO

- The following queries cannot be expressed in FO:
- Transitive closure:
  - $\begin{array}{l} \ \forall x. \forall y. \ there \ exists \ x_1, \ ..., \ x_n \ s.t. \\ R(x,x_1) \wedge R(x_1,x_2) \wedge ... \wedge R(x_{n-1},x_n) \wedge R(x_n,y) \end{array}$
- Parity: the number of edges in R is even

## Datalog

- Adds recursion, so we can compute transitive closure
- A datalog program (query) consists of several datalog rules:

 $P_1(t_1) :- body_1$   $P_2(t_2) :- body_2$   $\vdots$   $P_n(t_n) :- body_n$ 

# Datalog

#### Terminology:

- EDB = extensional database predicates
  - The database predicates
- IDB = intentional database predicates
  - The new predicates constructed by the program



# Datalog

Employee(x), ManagedBy(x,y), Manager(y)

All persons:

Person(x) :- Manager(x) Person(x) :- Employee(x)

 $Manger \cup Employee$ 

# Unfolding non-recursive rules

Graph: R(x,y)

P(x,y) := R(x,u), R(u,v), R(v,y)A(x,y) := P(x,u), P(u,y)

Can "unfold" it into:

A(x,y) := R(x,u), R(u,v), R(v,w), R(w,m), R(m,n), R(n,y)

# Unfolding non-recursive rules

Graph: R(x,y)

| P(x,y) := R(x,y)P(x,y) := R(x,u), R(u,y)A(x,y) := P(x,y)

Now the unfolding has a union:

 $A(x,y) := R(x,y) \lor \exists u(R(x,u) \land R(u,y))$ 

# Recursion in Datalog

Graph: R(x,y)

Transitive closure:

P(x,y) := R(x,y)P(x,y) := P(x,u), R(u,y)

Transitive closure:

P(x,y) := R(x,y)P(x,y) := P(x,u), P(u,y)

# Recursion in Datalog

#### Boolean trees:

Leaf0(x), Leaf1(x),  $AND(x, y_1, y_2), OR(x, y_1, y_2),$ Root(x)

• Write a program that computes: Answer():- true if the root node is 1

# Recursion in Datalog

One(x) :- Leaf1(x)

:- AND(x, y<sub>1</sub>, y<sub>2</sub>), One(y<sub>1</sub>), One(y<sub>2</sub>) :- OR(x, y<sub>1</sub>, y<sub>2</sub>), One(y<sub>1</sub>) :- OR(x, y<sub>1</sub>, y<sub>2</sub>), One(y<sub>2</sub>) :- Root(x), One(x) One(x) One(x)

One(x)

Answer()

#### Exercise

#### Boolean trees:

Leaf0(x), Leaf1(x),  $AND(x, y_1, y_2), OR(x, y_1, y_2), Not(x,y),$ Root(x)

• **Hint**: compute both One(x) and Zero(x) here you need to use Leaf0

## Variants of Datalog

without recursion with recursion

Non-recursive Datalog without -**Datalog** = UCQ (why?)

Non-recursive Datalog-Datalog with ¬ = FO

### Non-recursive Datalog

- Union of Conjunctive Queries = UCQ
  - Containment is decidable, and NP-complete
- · Non-recursive Datalog
  - Is equivalent to UCQ
  - Hence containment is decidable here too
  - Is it still NP-complete?

#### Non-recursive Datalog

• A non-recursive datalog:

 $T_1(x,y) := R(x,u), R(u,y)$  $T_2(x,y)$  :-  $T_1(x,u), T_1(u,y)$  $\begin{array}{ll} T_{n}(x,y) & \coloneq & T_{n\text{-}1}\left(x,u\right), \, T_{n\text{-}1}\left(u,y\right) \\ Answer(x,y) & \coloneq & T_{n}(x,y) \end{array}$ 

Its unfolding as a CQ:

Anser(x,y) :-  $R(x,u_1)$ ,  $R(u_1, u_2)$ ,  $R(u_2, u_3)$ , . . .  $R(u_m, y)$ 

• How big is this query ?

# **Query Complexity**

- Given a query φ in FO
- And given a model  $\mathbf{D} = (D, R_1^D, ..., R_k^D)$
- What is the complexity of computing the answer  $\phi(D)$

# **Query Complexity**

Vardi's classification:

#### **Data Complexity:**

• Fix  $\varphi$ . Compute  $\varphi(D)$  as a function of |D|

#### **Query Complexity:**

Fix D. Compute φ(D) as a function of |φ|

#### **Combined Complexity:**

• Compute  $\phi(D)$  as a function of |D| and  $|\phi|$ 

Which is the most important in databases?

## Example

 $\phi(x) \quad \equiv \exists u. (R(u,x) \land \forall y. (\exists v. S(y,v) \Rightarrow \neg R(x,y)))$ 





How do we proceed?

#### General Evaluation Algorithm

$$\label{eq:problem} \begin{split} & \textbf{for} \ \text{every subexpression} \ \phi_i \ \text{of} \ \phi, \ (i=1, \ ..., \ m) \\ & \text{compute the answer to} \ \phi_i \ \text{as a table} \ T_i(x_1, \ ..., \ x_n) \\ & \textbf{return} \ T_m \end{split}$$

**Theorem**. If  $\varphi$  has k variables then one can compute  $\varphi(D)$  in time  $O(|\varphi|^*|D|^k)$ 

 $\begin{aligned} & \text{Data Complexity} &= O(|D|^k) = \text{in PTIME} \\ & \text{Query Complexity} &= O(|\phi|^*c^k) = \text{in EXPTIME} \end{aligned}$ 

### General Evaluation Algorithm

Example:  $\phi(x) \equiv \exists u.(R(u,x) \land \forall y.(\exists v.S(y,v) \Rightarrow \neg R(x,y)))$ 

 $\begin{array}{|c|c|c|}\hline \phi_1(u,x) & \equiv R(u,x) \\ \phi_2(y,v) & \equiv S(y,v) \\ \phi_3(x,y) & \equiv \neg R(x,y) \\ \phi_4(y) & \equiv \exists v.\phi_2(y,v) \\ \phi_5(x,y) & \equiv \phi_4(y) \Rightarrow \phi_3(x,y) \\ \phi_6(x) & \equiv \forall y.\ \phi_5(x,y) \\ \phi_7(u,x) & \equiv \phi_1(u,x) \wedge \phi_6(x) \\ \phi_8(x) & \equiv \exists u.\ \phi_7(u,x) & \equiv \phi(x) \\ \hline \end{array}$ 

# Complexity

**Theorem**. If  $\phi$  has k variables then one can compute  $\phi(D)$  in time  $O(|\phi|^*|D|^k)$ 

**Remark**. The number of variables matters!

# Paying Attention to Variables

· Compute all chains of length m

Chain<sub>m</sub>(x,y) :-  $R(x,u_1)$ ,  $R(u_1, u_2)$ ,  $R(u_2, u_3)$ , ...  $R(u_{m-1}, y)$ 

- We used m+1 variables
- Can you rewrite it with fewer variables?

# Counting Variables

- $FO^k = FO$  restricted to variables  $x_1, ..., x_k$
- Write Chain<sub>m</sub> in FO<sup>3</sup>:

 $Chain_{m}(x,y) := \exists u.R(x,u) \land (\exists x.R(u,x) \land (\exists u.R(x,u)... \land (\exists u.R(u,y)...))$ 

# **Query Complexity**

- Note: it suffices to investigate boolean queries only
  - If non-boolean, do this:

for  $a_1$  in  $D, ..., a_k$  in Dif  $(a_1, ..., a_k)$  in  $\varphi(D)$  /\* this is a boolean query \*  $\textbf{then} \ \text{output} \ (a_1, \ ..., \ a_k)$ 

# Computational Complexity Classes

 $\begin{tabular}{ll} \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ 

- LOGSPACE
- NLOGSPACE
- PTIME
- PSPACE
- EXPTIME
- (Kalmar) Elementary Functions Turing Computable functions

# Data Complexity of Query Languages

Paper: On the Unusual Effectiveness of Logic in Computer Science



Important: the more complex a QL, the harder it is to optimize

#### Views

Employee(x), ManagedBy(x,y), Manager(y)

L(x,y):- ManagedBy(x,u), ManagedBy(u,y) Views E(x,y):- ManagedBy(x,y), Employee(y)

Q(x,y):- ManagedBy(x,u), ManagedBy(u,v), Query ManagedBy(v,w), ManagedBy(w,y), Employee(y)

How can we answer Q if we only have L and E?

# Views

• Query rewriting using views (when possible):

 $\boxed{Q(x,y) := L(x,u), L(u,y), E(v,y)}$ 

- Query answering:
  - Sometimes we cannot express it in CQ or FO, but we can still answer it

# Views

# Applications:

- Using advanced indexes
- Using replicated data
- Data integration [Ullman'99]