CSE 544 Lecture 11
Theory

Monday, May 3, 2004

Query Minimization

Definition A conjunctive query g is minimal
if for every other conjunctive query ' s.t. q
=(', q hasat least as many predicates
(‘subgoals’) asq

Are these queries minimal ?

() - R(xy), R(y,2), Rxx) |
‘q(x) - R(x,y), R(y,2), R(x,’AIice’)I

Query Minimization
¢ Query minimization algorithm

Choose a subgoal g of q

Remove g: let g’ be the new query
Wealready know q 0 g (why ?)

If g O qthen permanently remove g

< Notice: the order in which we inspect subgoals
doesn’t matter

Query Minimization In Practice

» No database system today performs
minimization !!

* Reason:
— It's hard (NP-complete)
— Users don’t write non-minimal queries

» However, non-minimal queries arise when
using views intensively

Query Minimization for Views

CREATE VIEW HappyBoaters

SELECT DISTINCT El.name, E1.manager
FROM Employee E1, Employee E2
WHERE E1.manager = E2.name

and El.boater="YES'

and E2.boater="YES'

This query is minimal

Query Minimization for Views

Now compute the VVery-Happy-Boaters

SELECT DISTINCT H1.name
FROM HappyBoaters H1, HappyBoaters H2
WHERE H1.manager = H2.name

This query is also minimal

What happens in SQL when we run a query on
aview ?




Query Minimization for Views

View Expansion

SELECT DISTINCT El.name
FROM Employee E1, Employee E2, Employee E3, Empolyee E4

WHERE El.manager = E2.name and El.boater = ‘YES and E2.boater = YES'
and E3.manager = E4.name and E3.boater = ‘YES' and E4.boater = ‘YES'

and E1.manager = E3.name

This query is no longer minimal !
E1 = i’
e
— \Ez\ E2 is redundant

Monotone Queries

» Theorem. Every conjunctive query is
monotone

* Stronger: every UCQ query is monotone

Monotone Queries

Definition A query g is monotone if:
For every two databases D, D’
if DOD’ thenq(D) O q(D")

Which queries below are monotone ?
¢ = IKR(X,X)

(¢ =Ox0y.[z.(u(R(xy) OR(y.2) OREzW) |

¢ =xk.Oy.R(xy)

How To Impress Y our Students
Or Your Boss

Find all drinkers that like some beer that is not
served by the bar “Black Cat”

SELECT L.drinker
FROM Likes L
WHERE L.beer not in (SELECT S.beer
FROM Serves S
WHERE S.bar = ‘Black Cat’)

e Canyou write asasimple SELECT-FROM-
WHERE (I.e. without a subquery) ?

Expressive Power of FO

 The following queries cannot be expressed
in FO:

o Transitive closure:
— Ox.Oy. thereexists xy, ..., X, St.
R(X,Xx;) OR(Xy,%p) O ... OR(X,.1.X,) OR(X,Y)

* Parity: the number of edgesin Riseven

Datalog

e Adds recursion, so we can compute transitive
closure

« A datalog program (query) consists of several
datalog rules:

P;(ty) - body,
P,(t,) :- body,

P,(t,) :- body,




Datalog

Terminology:
« EDB = extensional database predicates
— The database predicates
¢ |DB = intentional database predicates
— The new predicates constructed by the program

Datalog

Employee(x), ManagedBy(x,y), Manager(y)

All higher level managers that are employees. @
S

HMngr(x) :- Manager(x), ManagedBy(y,x), ManagedBy(z,y)
Answer(x) :- HMngr(x), Employee(x)

/

Datalog

Employee(x), ManagedBy(x,y), Manager(y)

All persons:

Person(x) :- Manager(x)
Person(x) :- Employee(x) Manger [ Employee

Unfolding non-recursive rules

Graph: R(x,y)

P(xy) = ROGU), R(uv), R(v.y)
Ax.y) - P(x,u), P(uy)

Can “unfold” it into:

‘A(x,y) - R(x,u), R(u,v), R(v,w), R(w,m), R(m,n), R(n,y)I

Unfolding non-recursive rules

Graph: R(x,y)

P(xy) - R(x.y)
P(x,y) - R(x,u), R(uy)
A(xy) - P(x,y)

Now the unfolding has a union:

[AMY) - Rixy) O CU(RxU) OR(uY) |

Recursion in Datalog

Graph: R(x,y)

Transitive closure: P(x,y) - R(X.y)

P(x,y) - P(x,u), R(uy)

Transitive closure: P(xy) - R(X,Y)

P(x.y) :- P(x,u), P(u,y)




Recursion in Datalog Recursion in Datalog

Boolean trees:
Leaf00x), Lear1(0), Onet9 - ANDI. Y v, Onely), Onely)
AND(X, Ys, Y2), OR(X, Y1, Y,), One(x) - OR(x, );1, 1y’Z),2 (’)ne(yl)1 ’ ’
Root(x) One(x) = OR(X, Y1, Y,), One(y,)

» Write aprogram that computes: Answer) - Roo(x), Onet)

Answer() :- trueif the root nodeis 1

Exercise Variants of Datalog
B?_Oelaefag()t(r)eef:eaf 1(x) without recursion with recursion
AND(X, Y1, ¥,), OR(X, Y1, Y,), Not(x,y), hout Non-recursive Datalog Datalo
Root(X) without= | _ oq (why 2 9
ith Non-recursive Datalog™ Dataloq-
 Hint: compute both One(x) and Zero(x) with = =FO od
here you need to use Leaf0
Non-recursive Datalog Non-recursive Datalog
« Union of Conjunctive Queries = UCQ * A non-recursive datalog:
_ i i i , Ty(xy) = Rx,U), R(uy)
Containment is decidable, and NP-complete _l_; Xy) - Ty000, To(liy)
« Non-recurs L) = Ty (60, Tos (UY)
Non recursive Datalog Answertey) T (xy)
— Isequivalent to UCQ « Itsunfolding asa CQ:
— Hence containment is decidable here too
lsit il NP—compIete? ‘Anser(x,y) = R(x,uy), R(uy, Uy), R(Uy, Ug), . .. R(U, y)I
e How bigisthis query ?




Query Complexity
e Givenaquery ¢ in FO
* And givenamodel D = (D, R,?, ..., R,P)

» What is the complexity of computing the
answer ¢(D)

Query Complexity
Vardi’s classification:

Data Complexity:
* Fix ¢. Compute ¢(D) as afunction of [D|

Query Complexity:
e Fix D. Compute ¢(D) as afunction of ||

Combined Complexity:
» Compute $(D) asafunction of D] and ||

Which is the most important in databases ?

Example

(00 = Cu(Rux) 0 Oy.(Dv.S(y.v) = ~R(xy) |

3 8
43 4
7 5
5 58
0 8 Py 5
09 7
— S= 9 | 79
R= 6 | 9
6 67
7 6
4 7
89 8
6 8
98 7
4 0
How do we proceed ?

General Evaluation Algorithm

for every subexpression ¢; of ¢, (i =1, ..., m)

compute the answer to ¢; asatable T;(x,, ...

return T,

 Xo)

Theorem. If ¢ hask variablesthen one
can compute (D) in time O(|o[* D)

Data Complexity = O(|D[) =in PTIME
Query Complexity = O(|p[*c¥) = in EXPTIME

General Evaluation Algorithm

Example. |00 = CL(RUX) 0 Oy.(0v.S(y,v) = ~Roxy) |

¢, (ux)  =R(ux)

ba(yv)  =Sy.v)

da(xy)  =-R(XY)

d()  =D0vd,(yvy)

ds(Xy) = duy) = ds(xy)

$e(¥)  =0y. ds(xy)

G7(ux)  =0y(ux) Ddg(x)

§g(x) =L dy(uX) = (x)

Complexity

Theorem. If ¢ hask variables then one can
compute ¢p(D) in time O(|¢ [*[D[¥)

Remark. The number of variables matters!




Paying Attention to Variables

» Compute al chains of length m

[Chain,(xy) = ROy, R(Uy, 1), R(U, ), - .- Rt V)|

* Weused m+1 variables
» Can you rewrite it with fewer variables ?

Counting Variables

e FOK = FOrestricted to variables x;,..., X,

* Write Chain,, in FO*

| Chain,(xy) - CLROU)(DCR(U, ) I(CLREXY)... 0L Ry, y)..) |

Query Complexity

* Note: it suffices to investigate boolean
queries only
— If non-boolean, do this:

fora inD,...,ginD
if (&, ..., a) in$(D) /* thisis aboolean query */
then output (a, ..., &)

Computational
Complexity Classes

Recall computational complexity classes:
« ACO

+ LOGSPACE

+ NLOGSPACE

+ PTIME

« NP

*« PSPACE

« EXPTIME

+ EXPSPACE

* (Kalmar) Elementary Functions
*  Turing Computable functions

Data Complexity of Query
Languages

Paper: On the Unusual Effectiveness of Logic in Computer Science

R) = datalog”
C R (s

Important: the more complex a QL, the harder it isto optimize

Views

Employee(x), ManagedBy(x,y), Manager(y)

‘ L(x,y) :- ManagedBy(x,u), ManagedBy(u,y) I

Views

| E(x,y) :- ManagedBy(x.y), Employee(y) |

Query { Q(x,y) :- ManagedBy(x,u), ManagedBy(u,v),
ManagedBy(v,w), ManagedBy(w,y), Employee(y)

How can we answer Q if we only have L and E ?




Views

* Query rewriting using views (when
possible):

Qxy) - L(x.u), L(uy), Evy)|

* Query answering:

— Sometimes we cannot expressit in CQ or FO,

but we can still answer it

Views

Applications:

» Using advanced indexes
 Using replicated data
 Dataintegration [Ullman’99]




