CSE544 Data Modeling, Conceptual Design

Wednesday, April 7, 2004

Outline

- ER diagrams (Chapter 2)
- Conceptual Design (Chapter 19)

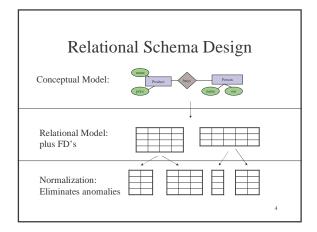
2

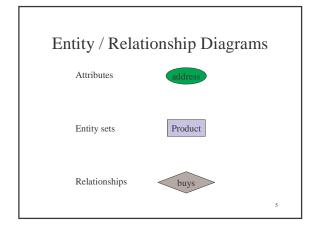
Database Design

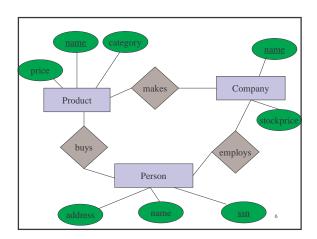
Refinement SQL Tables

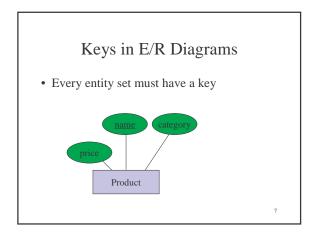
Files

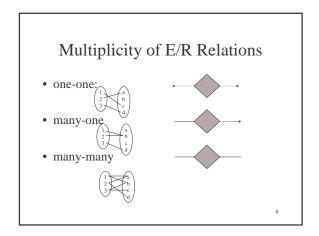
E/R diagrams Relations

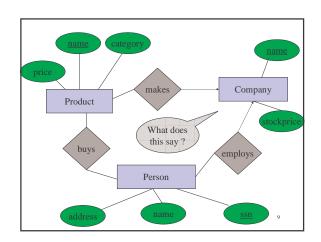


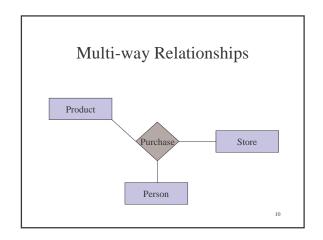


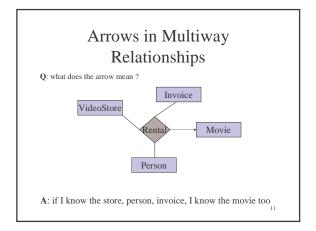


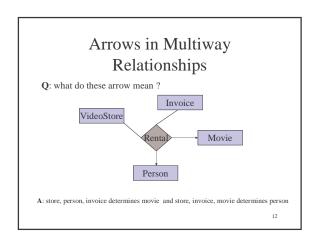




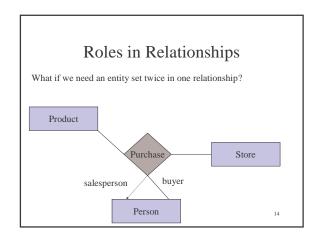


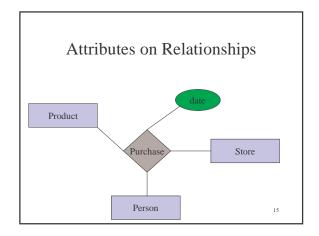


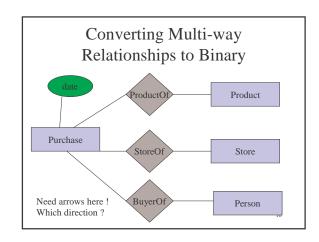




Arrows in Multiway Relationships Q: how do I say: "invoice determines store"? A: no good way; best approximation: Invoice VideoStore Person Incomplete (why?)





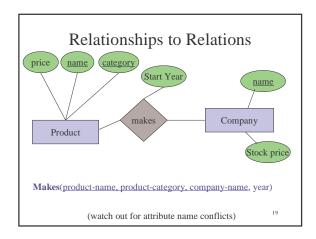


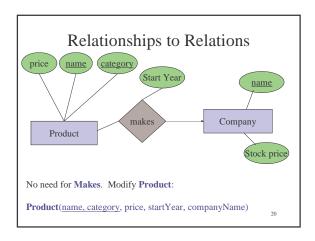
From E/R Diagrams to Relational Schema

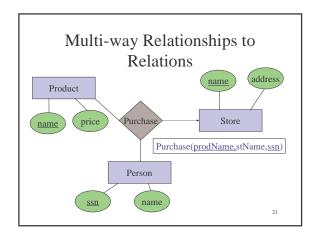
- Entity set à relation
- Relationship à relation

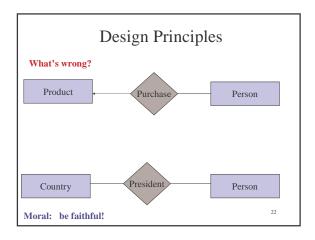
Entity Set to Relation

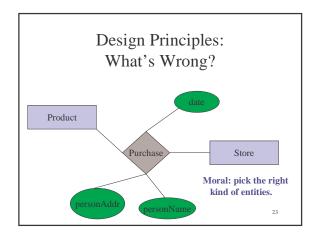
| name | category |
| price |
| Product | (name, category, price) |
| name | category | price |
| gizmo | gadgets | \$19.99 | 18

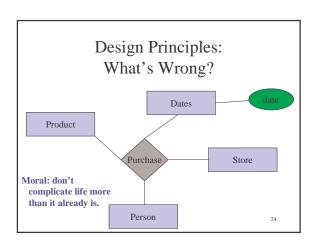


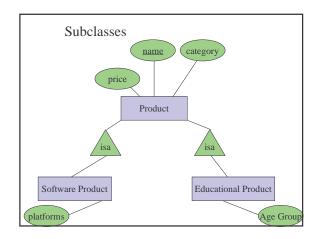


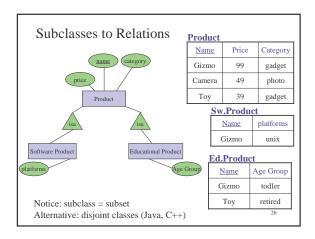


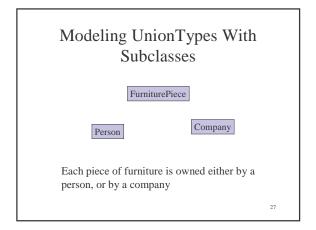


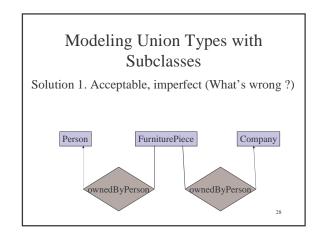


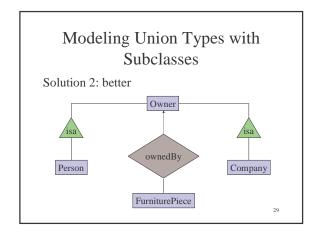


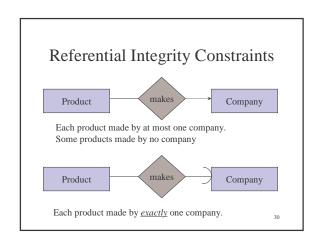


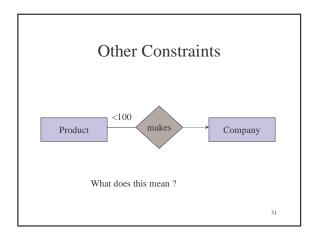


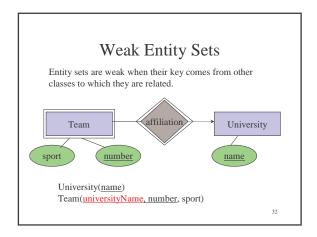


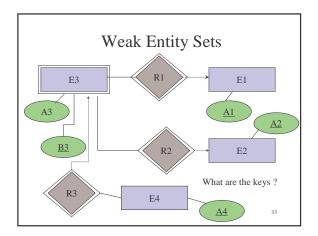








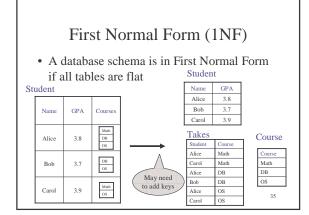




Schema Refinement

- For the relational model
- Relation: $R(A_1, A_2, ..., A_m)$
 - Schema: relation name, attribute names
 - Instance: a mathematical m-ary relation
- Database: $R_1, R_2, ..., R_n$
 - Schema
 - Instance
- Schema refinement = *normalization*

34



More Normal Forms

- Based on Functional Dependencies-
 - 2nd Normal Form (obsolete)
 - 3rd Normal Form
 - Boyce Codd Normal Form (BCNF)
- · Based on Multivalued Dependencies
 - $-\ 4th\ Normal\ Form$
- Based on Join Dependencies
 - 5th Normal Form

36

Discuss

Functional Dependencies

- A form of constraint
 - hence, part of the schema
- Finding them is part of the database design

Functional Dependencies

Functional Dependency:

$$A_1, A_2, ..., A_n \ \hat{a} \ B_1, B_2, ..., B_m$$

Meaning:

If two tuples agree on the attributes

 $A_1, A_2, ..., A_n$

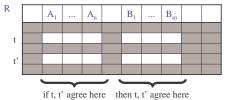
then they must also agree on the attributes

 $B_1, B_2, ..., B_m$

Functional Dependencies

Definition: $A_1, ..., A_n \grave{a} B_1, ..., B_m holds in R if:$

 $\forall t, t' \in R, (t.A_1 = t'.A_1 \land ... \land t.A_n = t'.A_n \Rightarrow t.B_1 = t'.B_1 \land ... \land t.B_m = t'.B_m)$



Examples

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E1847	John	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Marv	1234	Lawver

- EmpID à Name, Phone, Position
- Position à Phone
- but Phone à Position

Example

Product(name, category, color, department, price)

Consider these FDs:

category à department color, category à price

What do they say?

Example

FD's are constraints:

• On some instances they hold

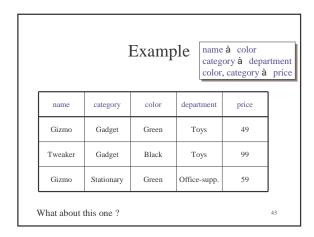
• On others they don't

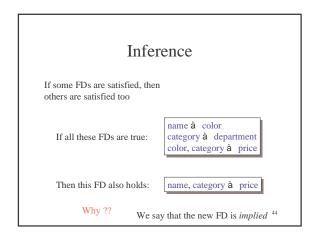
name à color category à department

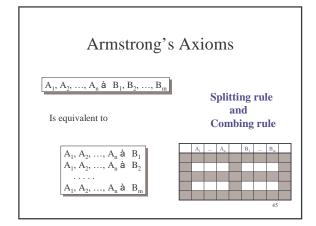
color, category à price

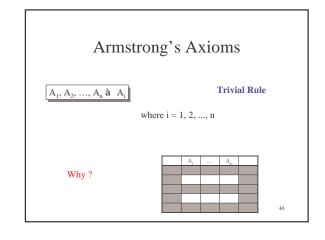
name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

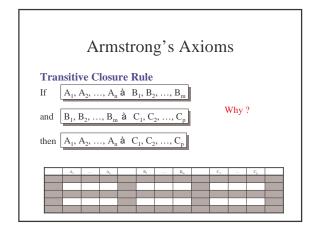
Does this instance satisfy all the FDs ?

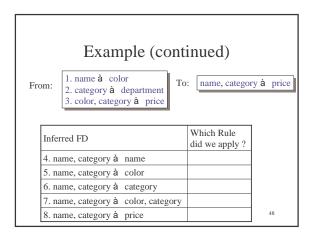












Example (continued)

1. name à color
2. category à department
3. color, category à price

Transitivity on 3, 7

Answers:

	Which Rule did we apply?
name	Trivial rule
color	Transitivity on 4, 1
category	Trivial rule
color, category	Split/combine on 5, 6
	name color category color, category

Closure of a Set of FDs

Definition. Given a set F of functional dependencies, the *closure*, F⁺, denotes all FDs *implied* by F

Theorem. Armstrong axioms are *sound* and *complete* for computing F⁺

What do sound and complete mean?

50

Variation

Augmentation

8. name, category à price

If $A_1, A_2, ..., A_n \grave{a} B$

then

 $A_1, A_2, ..., A_n, C_1, C_2, ..., C_p$ à B

Augmentation follows from trivial rules and transitivity How?

51

Problem: Compute F⁺

Given F compute its closure F+.

How to proceed?

- · Apply Armstrong's Axioms repeatedly
- Better: use the *Closure Algorithm* for a set of attributes (next)

52

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$

The **closure**, $\{A_1, ..., A_n\}^+$, is the set of attributes B s.t. $A_1, ..., A_n$ à B

Example:

name à color category à department color, category à price

Closures

 $name^{_{+}} \, = \, \{name, \, color\}$

{name, category} $^+$ = {name, category, color, department, price} color $^+$ = {color}

Closure Algorithm (for Attributes)

Start with X={A1, ..., An}.

Repeat until X doesn't change do:

$$\label{eq:barder} \begin{split} \text{if} \qquad & B_1,\,...,\,B_n \ \text{\`a} \quad C \quad \text{is a FD and} \\ & B_1,\,...,\,B_n \ \text{ are all in } X \end{split}$$
 $\label{eq:barder} \text{then} \quad \text{add } C \text{ to } X.$

Example:

name à color category à department color, category à price

{name, category}+ =
{name, category, color,
department, price}

54

Example

In class:

R(A,B,C,D,E,F)

A, BàC A, D à E B à D A, Fà B

Compute $\{A,B\}^+$ $X = \{A, B,$

Compute $\{A, F\}^+$ $X = \{A, F,$

Closure Algorithm (for FDs)

Example:

A, B à C A, D à B B à D

Step 1: Compute X+, for every X:

A+ = A, B+ = BD, C+ = C, D+ = D

AB+ = ABCD, AC+ = AC, AD+ = ABCD ABC+ = ABD+ = ACD+ = ABCD (no need to compute- why?)

 $BCD^+ = BCD$, ABCD + = ABCD

Step 2: Enumerate all FD's X à Y, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

AB à CD, ADà BC, ABC à D, ABD à C, ACD à B

Keys

- A superkey is a set of attributes $A_1, ..., A_n$ s.t. $A_1, ..., A_n$ à B for all attributes B
- A key is a minimal superkey

Computing Keys

- Compute X⁺ for all sets X
- If $X^+ =$ all attributes, then X is a superkey
- Consider only the minimal superkeys

Note: there can be exponentially many keys!

• Example: R(A,B,C), ABà C, BCà A Keys: AB and BC

Examples of Keys

Product(name, price, category, color) name, category à price category à color

Key: {name, category} Superkeys: supersets

Enrollment(student, address, course, room, time) student à address room, time à course student, course à room, time

Keys are: [in class]

FD's for E/R Diagrams Say: "the CreditCard determines the Person" Incomplete (what does Purchase(name, sname, ssn, card-no) card-no à ssn

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

<u>Updated anomalies</u>: need to change in several places

Delete anomalies: may lose data when we don't want

 $\underline{\textbf{Schema refinement}} \text{ means removing the data anomalies}.$

61

Data Anomalies

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

SSN à Name, City

but not SSN à PhoneNumber

Anomalies:

- Redundancy = repeat data
- Update anomalies = Fred moves to "Bellevue"
- Deletion anomalies = Joe deletes his phone number: what is his city?

62

Relation Decomposition

Break the relation into two:

Joe	987-65-4321	908-555-2121	Westfield
Fred	123-45-6789	206-555-6543	Seattle
Fred	123-45-6789	206-555-1234	Seattle
Name	SSN	PhoneNumber	City

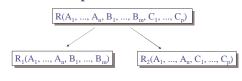
Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

*	
SSN	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
097 65 4221	908-555-2121

Anomalies have gone:

- · No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- \bullet Easy to delete all Joe's phone number (how ?)

Decompositions in General



 R_1 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m R_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p

64

Problems With Decomposition

- Can we get the data back correctly?
 - Lossless decomposition
 - Discuss next
- Can we recover the FD's on the 'big' table from the FD's on the small tables ?
 - Dependency-preserving decomposition
 - Figure out yourself, or read 19.5.2

5

Lossless Decomposition

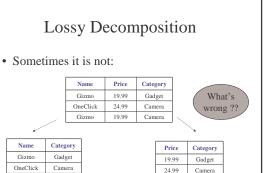
• Sometimes it is correct:

19.99	Gadget
24.99	Camera
19.99	Camera
	24.99

Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19:99

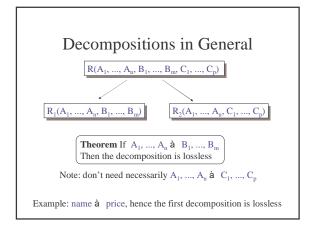
*	
Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

66



Camera

19.99



Normal Forms

- Decomposition into Boyce Codd Normal Form (BCNF)
 - Losselss

Cam

- Decomposition into 3rd Normal Form
 - Losless
 - Dependency preserving

69

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_1,...,A_n$ à B is a non-trivial dependency in R , then $\{A_1,...,A_n\}$ is a superkey for R

Equivalently: for any set of attributes X,

either $X^+ = X$ or $X^+ =$ all attributes

70

BCNF Decomposition Algorithm Repeat choose $A_1,\,...,\,A_m$ à $B_1,\,...,\,B_n$ that violates the BNCF condition split R into $R_1(A_1,\,...,\,A_m,\,B_1,\,...,\,B_n)$ and $R_2(A_1,\,...,\,A_m,\,[rest])$ continue with both R_1 and R_2 Until no more violations $\begin{array}{l} \text{choose } B_1,\, ...,\, B_n \\ \text{``as large as possible''} \end{array}$ Is there a 2-attribute rest relation that is Note: need to not in BCNF? compute the FDs on R₁, R₂ (how ?) R_1 R_2

BCNF Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

FD: SSN à Name, City Key: {SSN, PhoneNumber}

Is it in BCNF?

Another way: SSN+ ={SSN, Name, City} but no PhoneNumber 72

BCNF Example

Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN à Name, City

SSN	PhoneNumber	
123-45-6789	206-555-1234	
123-45-6789	206-555-6543	
987-65-4321	908-555-2121	
987-65-4321	908-555-1234	

Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

73

Example

- R(A,B,C,D) A à B, B à C
- Key: AD
- Violations of BCNF: A à B, Aà C, Aà BC, Bà C
- Pick Aà BC first: split into R₁(A,B,C) R₂(A,D)
- In R_1 : B à C; split into $R_{11}(A,B)$, $R_{12}(B,C)$
- Final answer: $R_{11}(A,B)$, $R_{12}(B,C)$, $R_{2}(A,D)$

7.4

Example (cont'd)

- R(A,B,C,D) A à B, B à C
- · Order matters!
- Pick Aà C first: R₁(A,C), R₂(A,B,D)
- In R_2 : A à B; decompose into $R_{21}(A,B)$, $R_{22}(A,D)$
- Final answer: R₁(A,C), R₂₁(A,B), R₂₂(A,D)
- Which one is better ?

75

BCNF and Dependencies

Unit	Company	Product

FD's: Unit \rightarrow Company; Company, Product \rightarrow Unit So, there is a BCNF violation, and we decompose.

** .	
Unit	Company

Unit \rightarrow Company

Unit	Product

No FDs

In BCNF we loose the FD: Company, Product à Unit

76

Solution: 3rd Normal Form (3NF)

A simple condition for removing anomalies from relations:

A relation R is in 3rd normal form if :

Whenever there is a nontrivial dependency $A_1,\,A_2,\,...,\,A_n\to B$ for $\,R$, then $\,\{A_1,\,A_2,\,...,\,A_n\,\}$ a super-key for R, or B is part of a key.

Please read in the book!!!

7

3NF Discussion

- 3NF decomposition v.s. BCNF decomposition:
 - Use same decomposition steps, for a while
 - 3NF may stop decomposing, while BCNF continues
- Tradeoffs
 - BCNF = no anomalies, but may lose some FDs
 - 3NF = keeps all FDs, but may have some anomalies

78