CSE544
SQL

Wednesday, March 31, 2004

Administrivia

e Sign up for the 544 mailing list!

e Assignment 1 is released. The deadline

for first part is 7th April.

SQL Introduction

Standard language for querying and manipulating data

Structured Query Language

Many standards out there:

e ANSI SQL

e SQL92 (a.k.a. SQL2)

e SQL99 (a.k.a. SQL3)

e Vendors support various subsets of these
¢ What we discuss is common to all of them

SQL

e Data Definition Language (DDL)
— Create/alter/delete tables and their attributes
- Following lectures...

e Data Manipulation Language (DML)
- Query one or more tables - discussed next !
- Insert/delete/modify tuples in tables

e Transact-SQL

- Idea: package a sequence of SQL statements
server

- Won't discuss in class

Data in SQL

1. Atomic types, a.k.a. data types
2. Tables built from atomic types

Data Types in SQL

e Characters:

- CHAR(20) -- fixed length

- VARCHAR(40) -- variable length
e Numbers:

- BIGINT, INT, SMALLINT, TINYINT

- REAL, FLOAT -- differ in precision
- MONEY
e Times and dates:
- DATE
- DATETIME -- SQL Server

e Others... All are simple

Table name Attribute names

Tables in SQL

Product
i V
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Tuples or rows

Tables Explained

e A tuple = a record

- Restriction: all attributes are of atomic type
e A table = a set of tuples

- Like a list...

- ..but it is unorderd: no first(), no next(), no last().
e No nested tables, only flat tables are allowed !

- We will see later how to decompose complex structures
into multiple flat tables

Tables Explained

e The schema of a table is the table name and its
attributes:

Product(PName, Price, Category, Manfacturer)

e A key is an attribute whose values are unique;
we underline a key

Product(PName, Price, Category, Manfacturer)

SQL Query

Basic form: (plus many many more bells and whistles)

SELECT attributes
FROM relations (possibly multiple, joined)
WHERE conditions (selections)

Simple SQL Query

Simple SQL Query

Product PName Price Category Manufracture
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
SELECT *
FROM Product
WHERE category="'Gadgets’

Manufacture
r

2 Gizmo $19.99 Gadgets GizmoWorks
Se|ect| on Powergizmo $29.99 Gadgets GizmoWorks

PName Price Category

Product PName Price Category Manufracture
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
SELECT PName, Price, Manufacturer
FROM Product
WHERE Price> 100
9 iy PName Price Manufracture
gectlon and SingleTouch $149.99 Ci
w SRR ingleToucl . anon
pl’Oja:thn MultiTouch $203.99 Hitachi

A Notation for SQL Queries

Input Schema

Product(PName, Price, Category, Manfacturer)

SELECT Name, Price, Manufacturer
FROM Product @
WHERE Price > 100

Answer(PName, Price, Manfacturer)

e X

Selections

What goes in the WHERE clause:

=y, X<y, Xx<=y,etc

For number, they have the usual meanings

For CHAR and VARCHAR: lexicographic ordering
* Expected conversion between CHAR and VARCHAR

For dates and times, what you expect...

e Pattern matching on strings: s LIKE p (next)

The LIKE operator

e s LIKE p: pattern matching on strings
e p may contain two special symbols:

- % = any sequence of characters

- _ = any single character

Product(Name, Price, Category, Manufacturer)
Find all products whose name mentions ‘gizmo”:

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category

Gadgets
) [ehotoarenty

Household

Category

Gadgets
Gadgets

Photography

Household

Ordering the Results

SELECT pname, price, manufacturer
FROM Product

WHERE category="gizmo’ AND price > 50
ORDER BY price, pname

Ordering is ascending, unless you specify the DESC keyword.

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering the Results

FROM

SELECT Category
Product
ORDER BY PName

PName Price Category | manuiacture

Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Ordering the Results

Category
SELECT DISTINCT category Gadgets
FROM Product I::> Household
ORDER BY category Photography

Compare to:

SELECT DISTINCT category
FROM Product
ORDER BY PName

— ?

Joins in SQL

e Connect two or more tables:

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in
return their names and prices.

Join
between Product
and Company

SELECT PName, Price
FROM

WHERE Qanufacturer=CNagde AND Country="Japan’

Product PName Price Category ['anm,_acwm
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
Company CName StockPrice Country
What is GizmoWorks 25 USA
the Connection Canon 65 Japan
Hitachi 15 Japan
Joins in SQL
Product Company
PName Prce | Category |- Cname StockPrice Country
Gizmo 19.99Y Gadgets | GizmoWorks [T 25 =
o $29.99 | Gadgets | GizmoWg :: Canon o5 /]apan \
o N9 Gron [f—Trochi 15 \ Japan)
MultiTouch | $203.99 “Haem] ~—
SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country="Japan’
AND Price <= 200

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all countries that manufacture some product in the
‘Gadgets' category.

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category="Gadgets'

Joins in SQL

Product

Company
Name price | Category | ™77 Cname StockPrice Country
Gizmo | $19.99 | /€adgew | GizmoWorks Cmoviorks > Ten
d $29.99 GizmoWorks
Canon 65 Japan
TgieTouc PRotograph
h $149.99 Canon Hitachi 15 Japan
MultiTouch | $203.99 | Household | Hitachi

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category='Gadgets'

What is
the problem ?

What's the
solution ?

Country

?

??

Joins

Product (pname, price, category, manufacturer)
Purchase (buyer, seller, store, product)
Person(persname, phoneNumber, city)

Find names of people living in Seattle that bought some

product in the ‘ Gadgets' category, and the names of the
stores they bought such product from

Disambiguating Attributes

e Sometimes two relations have the same attr:

Person(pname, address, worksfor)
Company(cname, address)

Which

SELECT DISTINCT pname, address address ?
FROM Person, Company
WHERE worksfor = cname

SELECT DISTINCT persname, store
FROM Person, Purchase, Product

city="Seattle’ AND category="Gadgets'

d

WHERE persname=buyer AND product = pname AND

SELECT DISTINCT Person.pname, Company.address
FROM Person, Company
WHERE Person.worksfor = Company.cname

Tuple Variables in SQL

Purchase (buyer, seller, store, product)

Find all stores that sold at least one product that was sold
at ‘BestBuy':

SELECT DISTINCT x.store
FROM Purchase ASx, Purchase ASy

WHERE x.product = y.product AND y.store = ‘BestBuy’

Tuple Variables

General rule:

tuple variables introduced automatically by the system:

Product (name, price, category, manufacturer)
SELECT name

FROM Product
WHERE price > 100

Becomes:

SELECT Product.name
FROM Product AS Product
WHERE Product.price > 100

Doesn’'t work when Product occurs more than once:

In that case the user needs to define variables explicitely.

Meaning (Semantics) of SQL

Queries
SELECT a1, a2, ..., ak
FROM R1 AS x1, R2 AS x2, ..., Rn AS xn
WHERE Conditions

1. Nested loops:

Answer = {}
for x1in R1do
for x2in R2 do

”“for xnin Rndo
if Conditions

return Answer

then Answer = Answer O {(al,...,ak)}

Meaning (Semantics) of SQL
Queries

SELECT al, a2, ..., ak
FROM R1 AS x1, R2 AS x2, ..., Rn AS xn
WHERE Conditions

2. Parallel assignment

Answer = {}
for all assignmentsx1in R1, ..., xnin Rn do

if Conditionsthen Answer = Answer [{(al,...,ak)}
g return Answer

First Unintuitive SQLism

SELECT DISTINCT RA
FROM R,S, T
WHERE RA=SA OR RA=TA

Lookingfor Rn (S T)

But what happensif T is empty?

Renaming Columns

Product PName Price

Category Mar‘UfrECture

Gizmo $19.99

Gadgets GizmoWorks

Powergizmo $29.99

Gadgets GizmoWorks

SingleTouch $149.99

Photography Canon

MultiTouch $203.99

Household Hitachi

FROM Product
WHERE Price > 100

SELECT Pname AS prodName, Price AS askPrice

gk

prodName

askPrice

Query with SingleTouch

$149.99

reneming MultiTouch

$203.99

Union, Intersection, Difference

(SELECT name
FROM Person
WHERE City="Seattle")

UNION

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store="The Bon”)

Similarly, you can use INTERSECT and EXCEPT.
Y ou must have the same attribute names (otherwise: rename).

Conserving Duplicates

(SELECT name
FROM Person
WHERE City="Seattle")

UNION ALL

(SELECT name
FROM Person, Purchase

WHERE buyer=name AND store=“The Bon”)

Subqueries

A subquery producing a single value:

SELECT Purchase.product
FROM Purchase

WHERE buyer =
(SELECT name
FROM Person

WHERE ssn = *123456789");
In this case, the subquery returns one value.

If it returns more, it's a run-time error.

Can say the same thing without a subquery:

SELECT Purchase.product
FROM Purchase, Person

This is equivalent to
and ‘123456789’ exists in the database;
otherwise they are different.

WHERE buyer = name AND ssn = ‘123456789
e previous one when the ssn is a key

Subqueries Returning Relations

Find companies that manufacture products bought by Joe Blow.

SELECT Company.name
FROM Company, Product
WHERE Company.name=Product.maker
AND Product.name IN
(SELECT Purchase.product
FROM Purchase
WHERE Purchase .buyer = * Joe Blow");

Here the subquery returns a set of values: no more
runtime errors.

Subqueries Returning Relations

Equivalent to:

SELECT Company.name

FROM Company, Product, Purchase

WHERE Company.name= Product.maker
AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

Is this query equivalent to the previous one ?

Beware of duplicates !

Removing Duplicates

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name= Product.maker
AND Product.name IN
(SELECT Purchase.product
FROM Purchase
WHERE Purchase.buyer = ‘ Joe Blow’)

SELECT DISTINCT Company.name

N
FROM Company, Product, Purchase thgyNare
WHERE Company.name= Product.maker equivalent

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

Subqueries Returning Relations

Youcanasouse: s>ALLR
s>ANY R
EXISTSR

Product (pname, price, category, maker)

Find products that are more expensive than all those produced
By “Gizmo-Works”

SELECT name
FROM Product
WHERE price> ALL (SELECT price
FROM Purchase
WHERE maker=‘Gizmo-Works')

Question for Database Fans
and their Friends

e Can we express this query as a single SELECT-
FROM-WHERE query, without subqueries ?

e Hint: show that all SFW queries are monotone
(figure out what this means). A query with
ALL is not monotone

Correlated Queries

Movie (title, year, director, length)

Find movies whose title appears more than once.

SELECT DISTINCT title
FROM MovieASx
WHERE year <> ANY
(SELECT year
FROM Movie
WHERE title= X.title);

Note (1) scope of variables (2) this can still be expressed as single SFW

Complex Correlated Query

Product (pname, price, category, maker, year)

e Find products (and their manufacturers) that are
more expensive than all products made by the same

manufacturer before 1972

SELECT DISTINCT pname, maker
FROM Product ASx
WHERE price>ALL (SELECT price

Existential/Universal Conditions

Product (pname, price, company)
Company(cname, City)

Find all companies s.t. some of their products have price < 100

FROM Product ASy
WHERE x.maker = y.maker AND y.year < 1972);

Powerful, but much harder to optimize !

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Produc.price < 100

Existential: easy ! J

Existential/Universal Conditions

Product (pname, price, company)
Company(cname, city)

Find all companies s.t. all of their products have price < 100

Universal: hard ! L

Existential/Universal Conditions

1. Find the other companies: i.e. s.t. some product = 100

SELECT DISTINCT Company.cname

FROM Company

WHERE Company.cname IN (SELECT Product.company
FROM Product
WHERE Produc.price >= 100

2. Find all companies s.t. all their products have price < 100

SELECT DISTINCT Company.cname

FROM Company

WHERE Company.cname NOT IN (SELECT Product.company
FROM Product
WHERE Produc.price >= 100

INTERSECT and EXCEPT:
Not in SQL Server

(SELECTRA,RB SELECTRA,R.B
FROM R) FROM R
INTERSECT WHERE
(SELECT SA, SB EXISTS(SELECT *
FROM §) FROM S
WHERE R.A=S.A and R.B=S.B)

(SELECTRA,RB SELECT RA, RB
FROM R) FROM R
EXCEPT WHERE
(SELECT SA, SB NOT EXISTS(SELECT *
FROM S) FROM S

WHERE R.A=S.A and R.B=S.B)

Aggregation

SELECT Avg(price)
FROM Product
WHERE maker="Toyota”

SQL supports several aggregation operations:

SUM, MIN, MAX, AVG, COUNT

Aggregation: Count

SELECT Count(*)
FROM Product
WHERE year > 1995

Except COUNT, all aggregations apply to asingle attribute

Aggregation: Count

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category) | same as Count(*)
FROM Product
WHERE year > 1995

Simple Aggregation

Purchase(product, date, price, quantity)

Example 1: find total sales for the entire database

SELECT Sum(price* quantity)
FROM Purchase

Example 1': find total sales of bagels

SELECT Sum(price* quantity)
FROM Purchase
WHERE product = ‘bagel’

Better:

SELECT Count(DISTINCT category)

FROM Product

WHERE year > 1995

imple Aggr ion

Purchase Simple Aggregations

Product | Date Price Quantity
Bagel 10/21 0.85 15
Banana | 10/22 0.52 7
Banana | 10/19 0.52 17
Bagel 10/20 0.85 20

Grouping and Aggregation
Usually, we want aggregations on certain parts of the relation.
Purchase(product, date, price, quantity)

Example 2: find total sales after 9/1 per product.

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase

WHERE date > “9/1”

GROUPBY product

Let’s see what this means...

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.
2. Group by the attributes in the GROUPBY
3. Select one tuple for every group (and apply aggregation)

SELECT can have (1) grouped attributes or (2) aggregates.

First compute the FROM-WHERE clauses
(date > “9/1") then GROUP BY product:

Product | Date Price Quantity
Banana | 10/19 0.52 17
Banana | 10/22 0.52 7

Bagel 10/20 0.85 20

Bagel 10/21 0.85 15

Then, aggregate

Product Total Sales
Bagel $29.75
Banana $12.48

SELECT product, Sum(price* quantity) AS Total Sales
FROM Purchase

WHERE date>“9/1"

GROUPBY product

GROUP BY v.s. Nested Quereis

SELECT product, Sum(price* quantity) AS TotalSales
FROM Purchase

WHERE date>"“9/1"

GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
FROM Purchasey
WHERE x.product = y.product
AND y.date>‘9/1")
AS TotalSales
FROM Purchase x
WHERE x.date>"“9/1"

Another Example

Product SumSales MaxQuantity
Banana $12.48 17
Bagel $29.75 20

For every product, what is the total sales and max quantity sold?

SELECT product, Sum(price* quantity) AS SumSales
Max(quantity) AS MaxQuantity

FROM Purchase

GROUP BY product

HAVING Clause

Same query, except that we consider only products that had
at least 100 buyers.

SELECT product, Sum(price * quantity)
FROM Purchase

WHERE date>“9/1"

GROUPBY product

HAVING Sum(quantity) > 30

HAVING clause contains conditions on aggregates.

General form of Grouping and
Aggregation

SELECT S
FROM Ry,..,R,
WHERE C1
GROUP BY aj,...,a,
HAVING C2

S = may contain some of group-by attributes a;,...,a
and/or any aggregates but NO OTHER ATHRIB

C1 = is any condition on the attributes in Ry,...,R;
C2 = is any condition on aggregate expressions

General form of Grouping and

Aggregation
SELECT S
FROM Ry,Ry
WHERE C1
GROUP BY ay,...,a,
HAVING C2

Evaluation steps:

1. Compute the FROM-WHERE part, obtain a table with
all attributes in Ry,...,R,

Group by the attributes a,...,a,

3. Com?ute the aggregates in C2 and keep only groups
satisfying C2

4. Compute aggregates in S and return the result

N

Examples of Queries with
Aggregation

Web pages, and their authors:

Author(login,name)
Document(url, title)
Wrote(login,url)

Mentions(url,word)

e Find all authors who wrote at least 10
documents Author(login,name)
Wrote(login,url)

e Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url
FROM Wrote
WHERE Author.login=Wrote.login)
>10

¢ Find all authors who wrote at least 10
documents:

e Attempt 2: SQL style (with GROUP BY)

SELECT Author.name

FROM Author, Wrote

WHERE Author.login=Wrote.login
GROUP BY Author.login, Author.name
HAVING count(wrote.url) > 10

No need for DISTINCT: automatically from GROUP BY

e Find all authors who have a vocabulary
over 10000 words:

SELECT Author.name
FROM Author, Wrote, Mentions

WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url

GROUPBY Author.name
HAVING count(distinct Mentions.word) > 10000

Look carefully at the last two queries: you may
be tempted to write them as a nested queries,
but in SQL we write them best with GROUP BY

NULLS in SQL

Whenever we don’t have a value, we can put a NULL
Can mean many things:
- Value does not exists
- Value exists but is unknown
- Value not applicable
- Etc.
e The schema specifies for each attribute if can be null (nullable
attribute) or not
* How does SQL cope with tables that have NULLs ?

11

Null Values

e If x= NULL then 4*(3-x)/7 is still NULL

e If x= NULL then x="Joe”

is
UNKNOWN
e In SQL there are three boolean values:
FALSE = 0
UNKNOWN = 0.5
TRUE = 1
Null Values

Unexpected behavior:

SELECT *
FROM Person

WHERE age<25 OR age>=25

Some Persons are not included !

Null Values
¢ C1AND C2 = min(C1, C2)
e« C1 OR C2 = max(C1, C2)
e NOTC1 =1-C1
SELECT * £
FROM Person age=20
WHERE (age < 25) AND E heigh=NULL
(height > 6 OR weight > 190) | ~ Weigt=200
Null Values

Can test for NULL explicitly:
- x IS NULL
- x IS NOT NULL

SELECT *
FROM Person

WHERE age< 25 OR age>=250Rage|SNULL

Now it includes all Persons

Outerjoins

Product(name, category)
Purchase(prodName, store)

DispI?J/ list of all products along with the stores where they were
sold:

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

But Products that never sold will be lost !

Outerjoins

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON
Product.name = Purchase.prodName

12

Product Purchase

Name Category ProdName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OnecClick Photo Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Outer Joins

o Left outer join:

- Include the left tuple even if there’s no match
¢ Right outer join:

- Include the right tuple even if there’s no match
e Full outer join:

- Include the both left and right tuples even if there’s
no match

Modifying the Database

Three kinds of modifications
e Insertions

e Deletions

e Updates

Sometimes they are all called “updates”

Insertions

General form:

INSERT INTO R(AL....,An) VALUES (VL,....,vn)]

Example: Insert anew purchase to the database:

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Jo€, ‘Fred', ‘wakeup-clock-espresso-maching’
‘The Sharper Image’)

Missing attribute — NULL.
May drop attribute names if give them in order.

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01"

The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

Insertion: an Example

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

Purchase
PdeUCT prodNam buyerNa rice
e me P
name listPrice | category PR o 200
gizmo 100 gadgets gizmo Smith 80
camera Smith 225

Task: insert in Product all prodNames from Purchase

13

Insertion: an Example

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase

WHERE prodName NOT IN (SELECT name FROM Product)

Insertion: an Example

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase

WHERE prodName NOT IN (SELECT name FROM Product)

name listPrice category
gizmo 100 Gadgets
camera
Deletions

Example:

DELETE FROM PURCHASE

WHERE seller =*Joe AND
product = ‘Brooklyn Bridge'

Factoid about SQL: thereisno way to delete only asingle

occurrence of atuple that appears twice
inarelation.

name listPrice category
gizmo 100 Gadgets
camera 200
camera?? | 225 72 «— Depends on the implementation
Updates
Example:

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN
(SELECT product
FROM Purchase
WHERE Date ='Oct, 25, 1999');

14

